summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/l3kernel/l3fp-aux.dtx
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/source/latex/l3kernel/l3fp-aux.dtx')
-rw-r--r--Master/texmf-dist/source/latex/l3kernel/l3fp-aux.dtx104
1 files changed, 52 insertions, 52 deletions
diff --git a/Master/texmf-dist/source/latex/l3kernel/l3fp-aux.dtx b/Master/texmf-dist/source/latex/l3kernel/l3fp-aux.dtx
index 87a64248736..a62a2eb6718 100644
--- a/Master/texmf-dist/source/latex/l3kernel/l3fp-aux.dtx
+++ b/Master/texmf-dist/source/latex/l3kernel/l3fp-aux.dtx
@@ -1,13 +1,13 @@
% \iffalse meta-comment
%
-%% File: l3fp-aux.dtx Copyright(C) 2011-2014,2016-2017 The LaTeX3 Project
+%% File: l3fp-aux.dtx Copyright(C) 2011-2017 The LaTeX3 Project
%
% It may be distributed and/or modified under the conditions of the
% LaTeX Project Public License (LPPL), either version 1.3c of this
% license or (at your option) any later version. The latest version
% of this license is in the file
%
-% http://www.latex-project.org/lppl.txt
+% https://www.latex-project.org/lppl.txt
%
% This file is part of the "l3kernel bundle" (The Work in LPPL)
% and all files in that bundle must be distributed together.
@@ -21,7 +21,7 @@
% for those people who are interested.
%
%<*driver>
-\documentclass[full]{l3doc}
+\documentclass[full,kernel]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
@@ -41,7 +41,7 @@
% }^^A
% }
%
-% \date{Released 2017/11/14}
+% \date{Released 2017/12/05}
%
% \maketitle
%
@@ -147,7 +147,7 @@
%
% \subsection{Using arguments and semicolons}
%
-% \begin{macro}[int, EXP]{\@@_use_none_stop_f:n}
+% \begin{macro}[EXP]{\@@_use_none_stop_f:n}
% This function removes an argument (typically a digit) and replaces
% it by \cs{exp_stop_f:}, a marker which stops \texttt{f}-type
% expansion.
@@ -156,7 +156,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_use_s:n, \@@_use_s:nn}
+% \begin{macro}[EXP]{\@@_use_s:n, \@@_use_s:nn}
% Those functions place a semicolon after one or two arguments
% (typically digits).
% \begin{macrocode}
@@ -165,7 +165,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]
+% \begin{macro}[EXP]
% {\@@_use_none_until_s:w, \@@_use_i_until_s:nw, \@@_use_ii_until_s:nnw}
% Those functions select specific arguments among a set of arguments
% delimited by a semicolon.
@@ -176,7 +176,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_reverse_args:Nww}
+% \begin{macro}[EXP]{\@@_reverse_args:Nww}
% Many internal functions take arguments delimited by semicolons, and
% it is occasionally useful to swap two such arguments.
% \begin{macrocode}
@@ -184,7 +184,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_rrot:www}
+% \begin{macro}[EXP]{\@@_rrot:www}
% Rotate three arguments delimited by semicolons. This is the inverse
% (or the square) of the Forth primitive |ROT|, hence the name.
% \begin{macrocode}
@@ -192,7 +192,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_use_i:ww, \@@_use_i:www}
+% \begin{macro}[EXP]{\@@_use_i:ww, \@@_use_i:www}
% Many internal functions take arguments delimited by semicolons, and
% it is occasionally useful to remove one or two such arguments.
% \begin{macrocode}
@@ -203,7 +203,7 @@
%
% \subsection{Constants, and structure of floating points}
%
-% \begin{macro}[int]{\s_@@, \@@_chk:w}
+% \begin{macro}{\s_@@, \@@_chk:w}
% Floating points numbers all start with \cs{s_@@} \cs{@@_chk:w},
% where \cs{s_@@} is equal to the \TeX{} primitive \tn{relax}, and
% \cs{@@_chk:w} is protected. The rest of the floating point number
@@ -221,7 +221,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int]{\s_@@_mark, \s_@@_stop}
+% \begin{macro}{\s_@@_mark, \s_@@_stop}
% Aliases of \cs{tex_relax:D}, used to terminate expressions.
% \begin{macrocode}
\__scan_new:N \s_@@_mark
@@ -229,7 +229,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int]
+% \begin{macro}
% {
% \s_@@_invalid, \s_@@_underflow, \s_@@_overflow,
% \s_@@_division, \s_@@_exact
@@ -273,7 +273,7 @@
% \end{macrocode}
% \end{variable}
%
-% \begin{variable}[int]{\c_@@_minus_min_exponent_int, \c_@@_max_exponent_int}
+% \begin{variable}{\c_@@_minus_min_exponent_int, \c_@@_max_exponent_int}
% Normal floating point numbers have an exponent between $-$
% \texttt{minus_min_exponent} and \texttt{max_exponent} inclusive.
% Larger numbers are rounded to $\pm\infty$. Smaller numbers are
@@ -308,7 +308,7 @@
% \end{macrocode}
% \end{variable}
%
-% \begin{macro}[int, EXP]{\@@_zero_fp:N, \@@_inf_fp:N}
+% \begin{macro}[EXP]{\@@_zero_fp:N, \@@_inf_fp:N}
% In case of overflow or underflow, we have to output
% a zero or infinity with a given sign.
% \begin{macrocode}
@@ -319,7 +319,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_exponent:w}
+% \begin{macro}[EXP]{\@@_exponent:w}
% For normal numbers, the function expands to the exponent, otherwise
% to $0$. This is used in \pkg{l3str-format}.
% \begin{macrocode}
@@ -335,7 +335,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_neg_sign:N}
+% \begin{macro}[EXP]{\@@_neg_sign:N}
% When appearing in an integer expression or after \cs{__int_value:w},
% this expands to the sign opposite to |#1|, namely $0$ (positive) is
% turned to $2$ (negative), $1$ (\texttt{nan}) to $1$, and $2$ to $0$.
@@ -349,8 +349,8 @@
%
%^^A todo: the sign of exact zeros should depend on the rounding mode.
%
-% \begin{macro}[int, EXP]{\@@_sanitize:Nw, \@@_sanitize:wN}
-% \begin{macro}[aux, EXP]{\@@_sanitize_zero:w}
+% \begin{macro}[EXP]{\@@_sanitize:Nw, \@@_sanitize:wN}
+% \begin{macro}[EXP]{\@@_sanitize_zero:w}
% Expects the sign and the exponent in some order, then the
% significand (which we don't touch). Outputs the corresponding
% floating point number, possibly underflowed to $\pm 0$ or overflowed
@@ -378,8 +378,8 @@
%
% \subsection{Expanding after a floating point number}
%
-% \begin{macro}[int, EXP]{\@@_exp_after_o:w}
-% \begin{macro}[int, EXP]{\@@_exp_after_f:nw}
+% \begin{macro}[EXP]{\@@_exp_after_o:w}
+% \begin{macro}[EXP]{\@@_exp_after_f:nw}
% \begin{syntax}
% \cs{@@_exp_after_o:w} \meta{floating point}
% \cs{@@_exp_after_f:nw} \Arg{tokens} \meta{floating point}
@@ -417,7 +417,7 @@
% \end{macro}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_exp_after_special:nNNw}
+% \begin{macro}[EXP]{\@@_exp_after_special:nNNw}
% \begin{syntax}
% \cs{@@_exp_after_special:nNNw} \Arg{after} \meta{case} \meta{sign} \meta{scan mark} |;|
% \end{syntax}
@@ -437,7 +437,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_exp_after_normal:nNNw}
+% \begin{macro}[EXP]{\@@_exp_after_normal:nNNw}
% For normal floating point numbers, life is slightly harder, since we
% have many tokens to jump over. Here it would be slightly better if
% the digits were not braced but instead were delimited arguments (for
@@ -459,8 +459,8 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_exp_after_array_f:w}
-% \begin{macro}[aux, EXP]{\@@_exp_after_stop_f:nw}
+% \begin{macro}[EXP]{\@@_exp_after_array_f:w}
+% \begin{macro}[EXP]{\@@_exp_after_stop_f:nw}
% \begin{syntax}
% \cs{@@_exp_after_array_f:w}
% \meta{fp_1} |;|
@@ -540,8 +540,8 @@
% provide different sets of packing functions and shifts, depending on
% ranges of input.
%
-% \begin{macro}[int, EXP]{\@@_pack:NNNNNw}
-% \begin{variable}[int]
+% \begin{macro}[EXP]{\@@_pack:NNNNNw}
+% \begin{variable}
% {
% \c_@@_trailing_shift_int ,
% \c_@@_middle_shift_int ,
@@ -559,8 +559,8 @@
% \end{variable}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_pack_big:NNNNNNw}
-% \begin{variable}[int]
+% \begin{macro}[EXP]{\@@_pack_big:NNNNNNw}
+% \begin{variable}
% {
% \c_@@_big_trailing_shift_int ,
% \c_@@_big_middle_shift_int ,
@@ -583,8 +583,8 @@
% \end{macro}
%
% ^^A \@@_pack_Bigg:NNNNNNw = \@@_pack_big:NNNNNNw ?
-% \begin{macro}[int, EXP]{\@@_pack_Bigg:NNNNNNw}
-% \begin{variable}[int]
+% \begin{macro}[EXP]{\@@_pack_Bigg:NNNNNNw}
+% \begin{variable}
% {
% \c_@@_Bigg_trailing_shift_int ,
% \c_@@_Bigg_middle_shift_int ,
@@ -604,7 +604,7 @@
% \end{variable}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_pack_twice_four:wNNNNNNNN}
+% \begin{macro}[EXP]{\@@_pack_twice_four:wNNNNNNNN}
% \begin{syntax}
% \cs{@@_pack_twice_four:wNNNNNNNN} \meta{tokens} |;| \meta{$\geq 8$ digits}
% \end{syntax}
@@ -618,7 +618,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_pack_eight:wNNNNNNNN}
+% \begin{macro}[EXP]{\@@_pack_eight:wNNNNNNNN}
% \begin{syntax}
% \cs{@@_pack_eight:wNNNNNNNN} \meta{tokens} |;| \meta{$\geq 8$ digits}
% \end{syntax}
@@ -632,7 +632,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
% {
% \@@_basics_pack_low:NNNNNw,
% \@@_basics_pack_high:NNNNNw,
@@ -663,7 +663,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
% {
% \@@_basics_pack_weird_low:NNNNw,
% \@@_basics_pack_weird_high:NNNNNNNNw
@@ -687,7 +687,7 @@
% \subsection{Decimate (dividing by a power of 10)}
%
% ^^A begin[todo]
-% \begin{macro}[int, EXP]{\@@_decimate:nNnnnn}
+% \begin{macro}[EXP]{\@@_decimate:nNnnnn}
% \begin{syntax}
% \cs{@@_decimate:nNnnnn} \Arg{shift} \meta{f_1}
% ~~\Arg{X_1} \Arg{X_2} \Arg{X_3} \Arg{X_4}
@@ -742,7 +742,7 @@
% followed by $4$ blocks of $4$ digits.
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_decimate_:Nnnnn, \@@_decimate_tiny:Nnnnn}
+% \begin{macro}[EXP]{\@@_decimate_:Nnnnn, \@@_decimate_tiny:Nnnnn}
% If the \meta{shift} is zero, or too big, life is very easy.
% \begin{macrocode}
\cs_new:Npn \@@_decimate_:Nnnnn #1 #2#3#4#5
@@ -752,7 +752,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
% {
% \@@_decimate_auxi:Nnnnn, \@@_decimate_auxii:Nnnnn,
% \@@_decimate_auxiii:Nnnnn, \@@_decimate_auxiv:Nnnnn,
@@ -812,7 +812,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[EXP, aux]{\@@_decimate_pack:nnnnnnnnnnw}
+% \begin{macro}[EXP]{\@@_decimate_pack:nnnnnnnnnnw}
% The computation of the \meta{rounding} digit leaves an unfinished
% \cs{__int_value:w}, which expands the following functions. This
% allows us to repack nicely the digits we keep. Those digits come
@@ -864,7 +864,7 @@
% other operation on the \meta{floating point}. We provide similar
% functions with two trailing \meta{floating points}.
%
-% \begin{macro}[int, EXP]{\@@_case_use:nw}
+% \begin{macro}[EXP]{\@@_case_use:nw}
% This function ends a \TeX{} conditional, removes junk until the next
% floating point, and places its first argument before that floating
% point, to perform some operation on the floating point.
@@ -873,7 +873,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_case_return:nw}
+% \begin{macro}[EXP]{\@@_case_return:nw}
% This function ends a \TeX{} conditional, removes junk and a floating
% point, and places its first argument in the input stream. A quirk
% is that we don't define this function requiring a floating point to
@@ -884,7 +884,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_case_return_o:Nw}
+% \begin{macro}[EXP]{\@@_case_return_o:Nw}
% This function ends a \TeX{} conditional, removes junk and a floating
% point, and returns its first argument (an \meta{fp~var}) then expands
% once after it.
@@ -894,7 +894,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_case_return_same_o:w}
+% \begin{macro}[EXP]{\@@_case_return_same_o:w}
% This function ends a \TeX{} conditional, removes junk, and returns
% the following floating point, expanding once after it.
% \begin{macrocode}
@@ -903,7 +903,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_case_return_o:Nww}
+% \begin{macro}[EXP]{\@@_case_return_o:Nww}
% Same as \cs{@@_case_return_o:Nw} but with two trailing floating
% points.
% \begin{macrocode}
@@ -912,7 +912,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_case_return_i_o:ww, \@@_case_return_ii_o:ww}
+% \begin{macro}[EXP]{\@@_case_return_i_o:ww, \@@_case_return_ii_o:ww}
% Similar to \cs{@@_case_return_same_o:w}, but this returns the first
% or second of two trailing floating point numbers, expanding once
% after the result.
@@ -926,7 +926,7 @@
%
% \subsection{Integer floating points}
%
-% \begin{macro}[int, EXP, pTF]{\@@_int:w}
+% \begin{macro}[EXP, pTF]{\@@_int:w}
% Tests if the floating point argument is an integer. For normal
% floating point numbers, this holds if the rounding digit resulting
% from \cs{@@_decimate:nNnnnn} is~$0$.
@@ -952,8 +952,8 @@
%
% \subsection{Small integer floating points}
%
-% \begin{macro}[int, EXP]{\@@_small_int:wTF}
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]{\@@_small_int:wTF}
+% \begin{macro}[EXP]
% {
% \@@_small_int_true:wTF,
% \@@_small_int_normal:NnwTF,
@@ -1013,8 +1013,8 @@
%
% \subsection{Length of a floating point array}
%
-% \begin{macro}[int, EXP]{\@@_array_count:n}
-% \begin{macro}[aux, EXP]{\@@_array_count_loop:Nw}
+% \begin{macro}[EXP]{\@@_array_count:n}
+% \begin{macro}[EXP]{\@@_array_count_loop:Nw}
% Count the number of items in an array of floating points. The
% technique is very similar to \cs{tl_count:n}, but with the loop
% built-in. Checking for the end of the loop is done with the
@@ -1035,8 +1035,8 @@
%
% \subsection{\texttt{x}-like expansion expandably}
%
-% \begin{macro}[int, EXP]{\@@_expand:n}
-% \begin{macro}[aux, EXP]{\@@_expand_loop:nwnN}
+% \begin{macro}[EXP]{\@@_expand:n}
+% \begin{macro}[EXP]{\@@_expand_loop:nwnN}
% This expandable function behaves in a way somewhat similar to
% \cs{use:x}, but much less robust. The argument is
% \texttt{f}-expanded, then the leading item (often a single character