diff options
Diffstat (limited to 'Master/texmf-dist/source/latex/l3kernel/l3fp-aux.dtx')
-rw-r--r-- | Master/texmf-dist/source/latex/l3kernel/l3fp-aux.dtx | 104 |
1 files changed, 52 insertions, 52 deletions
diff --git a/Master/texmf-dist/source/latex/l3kernel/l3fp-aux.dtx b/Master/texmf-dist/source/latex/l3kernel/l3fp-aux.dtx index 87a64248736..a62a2eb6718 100644 --- a/Master/texmf-dist/source/latex/l3kernel/l3fp-aux.dtx +++ b/Master/texmf-dist/source/latex/l3kernel/l3fp-aux.dtx @@ -1,13 +1,13 @@ % \iffalse meta-comment % -%% File: l3fp-aux.dtx Copyright(C) 2011-2014,2016-2017 The LaTeX3 Project +%% File: l3fp-aux.dtx Copyright(C) 2011-2017 The LaTeX3 Project % % It may be distributed and/or modified under the conditions of the % LaTeX Project Public License (LPPL), either version 1.3c of this % license or (at your option) any later version. The latest version % of this license is in the file % -% http://www.latex-project.org/lppl.txt +% https://www.latex-project.org/lppl.txt % % This file is part of the "l3kernel bundle" (The Work in LPPL) % and all files in that bundle must be distributed together. @@ -21,7 +21,7 @@ % for those people who are interested. % %<*driver> -\documentclass[full]{l3doc} +\documentclass[full,kernel]{l3doc} \begin{document} \DocInput{\jobname.dtx} \end{document} @@ -41,7 +41,7 @@ % }^^A % } % -% \date{Released 2017/11/14} +% \date{Released 2017/12/05} % % \maketitle % @@ -147,7 +147,7 @@ % % \subsection{Using arguments and semicolons} % -% \begin{macro}[int, EXP]{\@@_use_none_stop_f:n} +% \begin{macro}[EXP]{\@@_use_none_stop_f:n} % This function removes an argument (typically a digit) and replaces % it by \cs{exp_stop_f:}, a marker which stops \texttt{f}-type % expansion. @@ -156,7 +156,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_use_s:n, \@@_use_s:nn} +% \begin{macro}[EXP]{\@@_use_s:n, \@@_use_s:nn} % Those functions place a semicolon after one or two arguments % (typically digits). % \begin{macrocode} @@ -165,7 +165,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int, EXP] +% \begin{macro}[EXP] % {\@@_use_none_until_s:w, \@@_use_i_until_s:nw, \@@_use_ii_until_s:nnw} % Those functions select specific arguments among a set of arguments % delimited by a semicolon. @@ -176,7 +176,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_reverse_args:Nww} +% \begin{macro}[EXP]{\@@_reverse_args:Nww} % Many internal functions take arguments delimited by semicolons, and % it is occasionally useful to swap two such arguments. % \begin{macrocode} @@ -184,7 +184,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_rrot:www} +% \begin{macro}[EXP]{\@@_rrot:www} % Rotate three arguments delimited by semicolons. This is the inverse % (or the square) of the Forth primitive |ROT|, hence the name. % \begin{macrocode} @@ -192,7 +192,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_use_i:ww, \@@_use_i:www} +% \begin{macro}[EXP]{\@@_use_i:ww, \@@_use_i:www} % Many internal functions take arguments delimited by semicolons, and % it is occasionally useful to remove one or two such arguments. % \begin{macrocode} @@ -203,7 +203,7 @@ % % \subsection{Constants, and structure of floating points} % -% \begin{macro}[int]{\s_@@, \@@_chk:w} +% \begin{macro}{\s_@@, \@@_chk:w} % Floating points numbers all start with \cs{s_@@} \cs{@@_chk:w}, % where \cs{s_@@} is equal to the \TeX{} primitive \tn{relax}, and % \cs{@@_chk:w} is protected. The rest of the floating point number @@ -221,7 +221,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int]{\s_@@_mark, \s_@@_stop} +% \begin{macro}{\s_@@_mark, \s_@@_stop} % Aliases of \cs{tex_relax:D}, used to terminate expressions. % \begin{macrocode} \__scan_new:N \s_@@_mark @@ -229,7 +229,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int] +% \begin{macro} % { % \s_@@_invalid, \s_@@_underflow, \s_@@_overflow, % \s_@@_division, \s_@@_exact @@ -273,7 +273,7 @@ % \end{macrocode} % \end{variable} % -% \begin{variable}[int]{\c_@@_minus_min_exponent_int, \c_@@_max_exponent_int} +% \begin{variable}{\c_@@_minus_min_exponent_int, \c_@@_max_exponent_int} % Normal floating point numbers have an exponent between $-$ % \texttt{minus_min_exponent} and \texttt{max_exponent} inclusive. % Larger numbers are rounded to $\pm\infty$. Smaller numbers are @@ -308,7 +308,7 @@ % \end{macrocode} % \end{variable} % -% \begin{macro}[int, EXP]{\@@_zero_fp:N, \@@_inf_fp:N} +% \begin{macro}[EXP]{\@@_zero_fp:N, \@@_inf_fp:N} % In case of overflow or underflow, we have to output % a zero or infinity with a given sign. % \begin{macrocode} @@ -319,7 +319,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_exponent:w} +% \begin{macro}[EXP]{\@@_exponent:w} % For normal numbers, the function expands to the exponent, otherwise % to $0$. This is used in \pkg{l3str-format}. % \begin{macrocode} @@ -335,7 +335,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_neg_sign:N} +% \begin{macro}[EXP]{\@@_neg_sign:N} % When appearing in an integer expression or after \cs{__int_value:w}, % this expands to the sign opposite to |#1|, namely $0$ (positive) is % turned to $2$ (negative), $1$ (\texttt{nan}) to $1$, and $2$ to $0$. @@ -349,8 +349,8 @@ % %^^A todo: the sign of exact zeros should depend on the rounding mode. % -% \begin{macro}[int, EXP]{\@@_sanitize:Nw, \@@_sanitize:wN} -% \begin{macro}[aux, EXP]{\@@_sanitize_zero:w} +% \begin{macro}[EXP]{\@@_sanitize:Nw, \@@_sanitize:wN} +% \begin{macro}[EXP]{\@@_sanitize_zero:w} % Expects the sign and the exponent in some order, then the % significand (which we don't touch). Outputs the corresponding % floating point number, possibly underflowed to $\pm 0$ or overflowed @@ -378,8 +378,8 @@ % % \subsection{Expanding after a floating point number} % -% \begin{macro}[int, EXP]{\@@_exp_after_o:w} -% \begin{macro}[int, EXP]{\@@_exp_after_f:nw} +% \begin{macro}[EXP]{\@@_exp_after_o:w} +% \begin{macro}[EXP]{\@@_exp_after_f:nw} % \begin{syntax} % \cs{@@_exp_after_o:w} \meta{floating point} % \cs{@@_exp_after_f:nw} \Arg{tokens} \meta{floating point} @@ -417,7 +417,7 @@ % \end{macro} % \end{macro} % -% \begin{macro}[aux, EXP]{\@@_exp_after_special:nNNw} +% \begin{macro}[EXP]{\@@_exp_after_special:nNNw} % \begin{syntax} % \cs{@@_exp_after_special:nNNw} \Arg{after} \meta{case} \meta{sign} \meta{scan mark} |;| % \end{syntax} @@ -437,7 +437,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[aux, EXP]{\@@_exp_after_normal:nNNw} +% \begin{macro}[EXP]{\@@_exp_after_normal:nNNw} % For normal floating point numbers, life is slightly harder, since we % have many tokens to jump over. Here it would be slightly better if % the digits were not braced but instead were delimited arguments (for @@ -459,8 +459,8 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_exp_after_array_f:w} -% \begin{macro}[aux, EXP]{\@@_exp_after_stop_f:nw} +% \begin{macro}[EXP]{\@@_exp_after_array_f:w} +% \begin{macro}[EXP]{\@@_exp_after_stop_f:nw} % \begin{syntax} % \cs{@@_exp_after_array_f:w} % \meta{fp_1} |;| @@ -540,8 +540,8 @@ % provide different sets of packing functions and shifts, depending on % ranges of input. % -% \begin{macro}[int, EXP]{\@@_pack:NNNNNw} -% \begin{variable}[int] +% \begin{macro}[EXP]{\@@_pack:NNNNNw} +% \begin{variable} % { % \c_@@_trailing_shift_int , % \c_@@_middle_shift_int , @@ -559,8 +559,8 @@ % \end{variable} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_pack_big:NNNNNNw} -% \begin{variable}[int] +% \begin{macro}[EXP]{\@@_pack_big:NNNNNNw} +% \begin{variable} % { % \c_@@_big_trailing_shift_int , % \c_@@_big_middle_shift_int , @@ -583,8 +583,8 @@ % \end{macro} % % ^^A \@@_pack_Bigg:NNNNNNw = \@@_pack_big:NNNNNNw ? -% \begin{macro}[int, EXP]{\@@_pack_Bigg:NNNNNNw} -% \begin{variable}[int] +% \begin{macro}[EXP]{\@@_pack_Bigg:NNNNNNw} +% \begin{variable} % { % \c_@@_Bigg_trailing_shift_int , % \c_@@_Bigg_middle_shift_int , @@ -604,7 +604,7 @@ % \end{variable} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_pack_twice_four:wNNNNNNNN} +% \begin{macro}[EXP]{\@@_pack_twice_four:wNNNNNNNN} % \begin{syntax} % \cs{@@_pack_twice_four:wNNNNNNNN} \meta{tokens} |;| \meta{$\geq 8$ digits} % \end{syntax} @@ -618,7 +618,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_pack_eight:wNNNNNNNN} +% \begin{macro}[EXP]{\@@_pack_eight:wNNNNNNNN} % \begin{syntax} % \cs{@@_pack_eight:wNNNNNNNN} \meta{tokens} |;| \meta{$\geq 8$ digits} % \end{syntax} @@ -632,7 +632,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[aux, EXP] +% \begin{macro}[EXP] % { % \@@_basics_pack_low:NNNNNw, % \@@_basics_pack_high:NNNNNw, @@ -663,7 +663,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[aux, EXP] +% \begin{macro}[EXP] % { % \@@_basics_pack_weird_low:NNNNw, % \@@_basics_pack_weird_high:NNNNNNNNw @@ -687,7 +687,7 @@ % \subsection{Decimate (dividing by a power of 10)} % % ^^A begin[todo] -% \begin{macro}[int, EXP]{\@@_decimate:nNnnnn} +% \begin{macro}[EXP]{\@@_decimate:nNnnnn} % \begin{syntax} % \cs{@@_decimate:nNnnnn} \Arg{shift} \meta{f_1} % ~~\Arg{X_1} \Arg{X_2} \Arg{X_3} \Arg{X_4} @@ -742,7 +742,7 @@ % followed by $4$ blocks of $4$ digits. % \end{macro} % -% \begin{macro}[aux, EXP]{\@@_decimate_:Nnnnn, \@@_decimate_tiny:Nnnnn} +% \begin{macro}[EXP]{\@@_decimate_:Nnnnn, \@@_decimate_tiny:Nnnnn} % If the \meta{shift} is zero, or too big, life is very easy. % \begin{macrocode} \cs_new:Npn \@@_decimate_:Nnnnn #1 #2#3#4#5 @@ -752,7 +752,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[aux, EXP] +% \begin{macro}[EXP] % { % \@@_decimate_auxi:Nnnnn, \@@_decimate_auxii:Nnnnn, % \@@_decimate_auxiii:Nnnnn, \@@_decimate_auxiv:Nnnnn, @@ -812,7 +812,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[EXP, aux]{\@@_decimate_pack:nnnnnnnnnnw} +% \begin{macro}[EXP]{\@@_decimate_pack:nnnnnnnnnnw} % The computation of the \meta{rounding} digit leaves an unfinished % \cs{__int_value:w}, which expands the following functions. This % allows us to repack nicely the digits we keep. Those digits come @@ -864,7 +864,7 @@ % other operation on the \meta{floating point}. We provide similar % functions with two trailing \meta{floating points}. % -% \begin{macro}[int, EXP]{\@@_case_use:nw} +% \begin{macro}[EXP]{\@@_case_use:nw} % This function ends a \TeX{} conditional, removes junk until the next % floating point, and places its first argument before that floating % point, to perform some operation on the floating point. @@ -873,7 +873,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_case_return:nw} +% \begin{macro}[EXP]{\@@_case_return:nw} % This function ends a \TeX{} conditional, removes junk and a floating % point, and places its first argument in the input stream. A quirk % is that we don't define this function requiring a floating point to @@ -884,7 +884,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_case_return_o:Nw} +% \begin{macro}[EXP]{\@@_case_return_o:Nw} % This function ends a \TeX{} conditional, removes junk and a floating % point, and returns its first argument (an \meta{fp~var}) then expands % once after it. @@ -894,7 +894,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_case_return_same_o:w} +% \begin{macro}[EXP]{\@@_case_return_same_o:w} % This function ends a \TeX{} conditional, removes junk, and returns % the following floating point, expanding once after it. % \begin{macrocode} @@ -903,7 +903,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_case_return_o:Nww} +% \begin{macro}[EXP]{\@@_case_return_o:Nww} % Same as \cs{@@_case_return_o:Nw} but with two trailing floating % points. % \begin{macrocode} @@ -912,7 +912,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_case_return_i_o:ww, \@@_case_return_ii_o:ww} +% \begin{macro}[EXP]{\@@_case_return_i_o:ww, \@@_case_return_ii_o:ww} % Similar to \cs{@@_case_return_same_o:w}, but this returns the first % or second of two trailing floating point numbers, expanding once % after the result. @@ -926,7 +926,7 @@ % % \subsection{Integer floating points} % -% \begin{macro}[int, EXP, pTF]{\@@_int:w} +% \begin{macro}[EXP, pTF]{\@@_int:w} % Tests if the floating point argument is an integer. For normal % floating point numbers, this holds if the rounding digit resulting % from \cs{@@_decimate:nNnnnn} is~$0$. @@ -952,8 +952,8 @@ % % \subsection{Small integer floating points} % -% \begin{macro}[int, EXP]{\@@_small_int:wTF} -% \begin{macro}[aux, EXP] +% \begin{macro}[EXP]{\@@_small_int:wTF} +% \begin{macro}[EXP] % { % \@@_small_int_true:wTF, % \@@_small_int_normal:NnwTF, @@ -1013,8 +1013,8 @@ % % \subsection{Length of a floating point array} % -% \begin{macro}[int, EXP]{\@@_array_count:n} -% \begin{macro}[aux, EXP]{\@@_array_count_loop:Nw} +% \begin{macro}[EXP]{\@@_array_count:n} +% \begin{macro}[EXP]{\@@_array_count_loop:Nw} % Count the number of items in an array of floating points. The % technique is very similar to \cs{tl_count:n}, but with the loop % built-in. Checking for the end of the loop is done with the @@ -1035,8 +1035,8 @@ % % \subsection{\texttt{x}-like expansion expandably} % -% \begin{macro}[int, EXP]{\@@_expand:n} -% \begin{macro}[aux, EXP]{\@@_expand_loop:nwnN} +% \begin{macro}[EXP]{\@@_expand:n} +% \begin{macro}[EXP]{\@@_expand_loop:nwnN} % This expandable function behaves in a way somewhat similar to % \cs{use:x}, but much less robust. The argument is % \texttt{f}-expanded, then the leading item (often a single character |