summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/fontinst/base/fitrig.dtx
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/source/fontinst/base/fitrig.dtx')
-rw-r--r--Master/texmf-dist/source/fontinst/base/fitrig.dtx326
1 files changed, 326 insertions, 0 deletions
diff --git a/Master/texmf-dist/source/fontinst/base/fitrig.dtx b/Master/texmf-dist/source/fontinst/base/fitrig.dtx
new file mode 100644
index 00000000000..9d369b37720
--- /dev/null
+++ b/Master/texmf-dist/source/fontinst/base/fitrig.dtx
@@ -0,0 +1,326 @@
+% \CheckSum{209}
+% \iffalse meta-comment
+%
+% trig.dtx Copyright (C) 1993 1994 1995 1996 1997 1999 David Carlisle
+% Inlined as fitrig.dtc 2005 Lars Hellstr"om
+%
+% This file is part of the fontinst system version 1.9.
+% -----------------------------------------------------
+%
+% It may be distributed under the terms of the LaTeX Project Public
+% License, as described in lppl.txt in the base LaTeX distribution.
+% Either version 1.1 or, at your option, any later version.
+%
+%%% From file: fitrig.dtx
+%
+%<*driver>
+\documentclass{ltxdoc}
+\usepackage{fisource}
+\title{The \textsf{trig} package inlined into \package{fontinst}}
+\author{David Carlisle\\Edited by Lars Hellstr\"om}
+\begin{document}
+\maketitle
+\DocInput{fitrig.dtx}
+\end{document}
+%</driver>
+% \fi
+%
+%
+% The predecessor of this file is v\,1.09 of \texttt{trig.dtx}, the
+% source for the \package{trig} package in the standard \LaTeX\
+% ``graphics'' bundle. It has been inlined into the \package{fontinst}
+% source mainly because archive maintainers never seem to tire of
+% questioning the need to provide \texttt{trig.sty} with
+% \package{fontinst}.
+%
+% \changes{1.930}{2005/02/06}{Inlined the \package{trig} package into
+% \texttt{fontinst.sty} and friends. (LH)}
+%
+%
+% \section{Trigonometrical functions}
+%
+% These macros implement the trigonometric functions, sin, cos and tan.
+% In each case two commands are defined. For instance the command
+% |\CalculateSin{33}| may be isued at some point, and then anywhere
+% later in the document, the command |\UseSin{33}| will return the
+% decimal expansion of $\sin(33^\circ)$.
+%
+% The arguments to these macros do not have to be whole numbers,
+% although in the case of whole numbers, \LaTeX\ or plain \TeX\ counters
+% may be used. In \TeX{}Book syntax, arguments must be of type:
+% \meta{optional signs}\meta{factor}
+%
+% Some other examples are:\\
+% |\CalculateSin{22.5}|, |\UseTan{\int{myvar}}|,
+% |\UseCos{\count@}|.
+%
+% Note that unlike the psfig macros, these save all previously
+% computed values. This could easily be changed, but I thought that in
+% many applications one would want many instances of the
+% same value. (eg rotating all the headings of a table by the
+% \emph{same} amount).
+%
+% I don't really like this need to pre-calculate the values, I
+% originally implemented |\UseSin| so that it automatically calculated
+% the value if it was not pre-stored. This worked fine in testing, until
+% I remembered why one needs these values. You want to be able to say
+% |\dimen2=\UseSin{30}\dimen0|. Which means that |\UseSin| must
+% \emph{expand} to a \meta{factor}.
+%
+% \StopEventually{}
+%
+%
+% \subsection{The Macros}
+%
+% \begin{macrocode}
+%<*pkg>
+% \end{macrocode}
+%
+% \begin{macro}{\nin@ty}\begin{macro}{\@clxxx}
+% \changes{1.930}{2005/02/06}{Renamed this constant. There should be
+% three \texttt{x}s in \cs{romannumeral} 180, but \package{trig}
+% only had two. (LH)}
+% \begin{macro}{\@lxxi}\begin{macro}{\@mmmmlxviii}
+% Some useful constants for converting between degrees and radians.
+% $$
+% \frac{\pi}{180}\simeq\frac{355}{113\times180}=\frac{71}{4068}
+% $$
+% \begin{macrocode}
+\chardef\nin@ty=90
+\chardef\@clxxx=180
+\chardef\@lxxi=71
+\mathchardef\@mmmmlxviii=4068
+% \end{macrocode}
+% \end{macro}\end{macro}\end{macro}\end{macro}
+%
+% The approximation to $\sin$. I experimented with various
+% approximations based on Tchebicheff polynomials, and also some
+% approximations from a SIAM handbook `Computer Approximations' However
+% the standard Taylor series seems sufficiently accurate, and used by
+% far the fewest \TeX\ tokens, as the coefficients are all rational.
+% \begin{eqnarray*}
+% \sin(x)& \simeq&
+% x - (1/3!)x^3 + (1/5!)x^5 - (1/7!)x^7 + (1/9!)x^9\\
+% &\simeq&
+% \frac{((((7!/9!x^2-7!/7!)x^2+7!/5!)x^2 +7!/3!)x^2+7!/1!)x}{7!}\\
+% &=& \frac{ ((((1/72x^2-1)x^2+42)x^2 +840)x^2+5040)x }{5040}
+% \end{eqnarray*}
+% The nested form used above reduces the number of operations required.
+% In order to further reduce the number of operations, and more
+% importantly reduce the number of tokens used, we can precompute the
+% coefficients. Note that we cannot use $9!$ as the denominator as
+% this would cause overflow of \TeX's arithmetic.
+%
+% \begin{macro}{\@coeffz}
+% \begin{macro}{\@coeffa}
+% \begin{macro}{\@coeffb}
+% \begin{macro}{\@coeffc}
+% \begin{macro}{\@coeffd}
+% Save the coefficients as |\|(|math|)|char|s.
+% \begin{macrocode}
+\chardef\@coeffz=72
+%\chardef\@coefa=1
+\chardef\@coefb=42
+\mathchardef\@coefc=840
+\mathchardef\@coefd=5040
+% \end{macrocode}
+% \end{macro}\end{macro}\end{macro}\end{macro}\end{macro}
+%
+% \begin{macro}{\TG@rem@pt}
+% The standard trick of getting a real number out of a \meta{dimen}.
+% This gives a maximum accuracy of approx.\ 5 decimal places, which
+% should be sufficient. It puts a space after the number, perhaps it
+% shouldn't.
+% \changes{1.930}{2005/02/06}{Using \cs{lose_measure}. (LH)}
+% \begin{macrocode}
+\def\TG@rem@pt#1{\expandafter\lose_measure\the#1\space}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\TG@term}
+% Compute one term of the above nested series. Multiply the previous
+% sum by $x^2$ (stored in |\@tempb|, then add the next coefficient,
+% |#1|.
+% \begin{macrocode}
+\def\TG@term#1{
+ \dimen@\@tempb\dimen@
+ \advance\dimen@ #1\p@
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\TG@series}
+% Compute the above series. The value in degrees will be in
+% |\dimen@| before this is called.
+% \begin{macrocode}
+\def\TG@series{
+ \dimen@\@lxxi\dimen@
+ \divide \dimen@ \@mmmmlxviii
+% \end{macrocode}
+% |\dimen@| now contains the angle in radians, as a \meta{dimen}.
+% We need to remove the units, so store the same value as a
+% \meta{factor} in |\@tempa|.
+% \begin{macrocode}
+ \edef\@tempa{\TG@rem@pt\dimen@}
+% \end{macrocode}
+% Now put $x^2$ in |\dimen@| and |\@tempb|.
+% \begin{macrocode}
+ \dimen@\@tempa\dimen@
+ \edef\@tempb{\TG@rem@pt\dimen@}
+% \end{macrocode}
+% The first coefficient is $1/72$.
+% \begin{macrocode}
+ \divide\dimen@\@coeffz
+ \advance\dimen@\m@ne\p@
+ \TG@term\@coefb
+ \TG@term{-\@coefc}%
+ \TG@term\@coefd
+% \end{macrocode}
+% Now the cubic in $x^2$ is completed, so we need to multiply by
+% $x$ and divide by $7!$.
+% \begin{macrocode}
+ \dimen@\@tempa\dimen@
+ \divide\dimen@ \@coefd
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \changes{1.930}{2005/02/06}{Use \cs{x_cs} and \cs{if_undefined} where
+% appropriate. (LH)}
+%
+% \begin{macro}{\CalculateSin}
+% If this angle has already been computed, do nothing, else store
+% the angle, and call |\TG@@sin|. Computed sines are stored in
+% control sequences with names of the form
+% \describecsfamily{sin(\meta{number})}|\sin(|\meta{number}|)|.
+% \begin{macrocode}
+\def\CalculateSin#1{{%
+ \if_undefined{sin(\number#1)}\then
+ \dimen@=#1\p@
+ \TG@@sin
+ \x_cs\xdef{sin(\number#1)}{\TG@rem@pt\dimen@}
+ \fi
+}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\CalculateCos}
+% As above, but use the relation $\cos(x) = \sin(90-x)$. Computed
+% cosines are stored in control sequences with names of the form
+% \describecsfamily{cos(\meta{number})}|\cos(|\meta{number}|)|.
+% \begin{macrocode}
+\def\CalculateCos#1{{%
+ \if_undefined{cos(\number#1)}\then
+ \dimen@=\nin@ty\p@
+ \advance \dimen@ -#1\p@
+ \TG@@sin
+ \x_cs\xdef{cos(\number#1)}{\TG@rem@pt\dimen@}
+ \fi
+}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\TG@@sin}
+% Repeatedly use one of the the relatations
+% $\sin(x)=\sin(180-x)=\sin(-180-x)$ to get $x$ in the range
+% $-90 \leq x\leq 90$. Then call |\TG@series|.
+% \begin{macrocode}
+\def\TG@@sin{%
+ \ifdim\TG@reduce>+%
+ \else\ifdim\TG@reduce<-%
+ \else\TG@series\fi\fi
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\TG@reduce}
+% Slightly cryptic, but it seems to work\ldots\space
+% The first line is the condition for an |\ifdim|, the remaining
+% lines constitutes the `then' branch of that conditional.
+% \begin{macrocode}
+\def\TG@reduce#1#2{
+ \dimen@#1#2\nin@ty\p@
+ \advance\dimen@#2-\@clxxx\p@
+ \dimen@-\dimen@
+ \TG@@sin
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\UseSin}
+% \begin{macro}{\UseCos}
+% Use a pre-computed value.
+% \begin{macrocode}
+\def\UseSin#1{\csname sin(\number#1)\endcsname}
+\def\UseCos#1{\csname cos(\number#1)\endcsname}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% A few shortcuts to save space.
+% \begin{macrocode}
+\chardef\z@num\z@
+\x_cs\let{sin(0)} \z@num
+\x_cs\let{cos(0)} \@ne
+\x_cs\let{sin(90)} \@ne
+\x_cs\let{cos(90)} \z@num
+\x_cs\let{sin(-90)}\m@ne
+\x_cs\let{cos(-90)}\z@num
+\x_cs\let{sin(180)}\z@num
+\x_cs\let{cos(180)}\m@ne
+% \end{macrocode}
+%
+% \begin{macro}{\CalculateTan}
+% Originally I coded the Taylor series for tan, but it seems to
+% be more accurate to just take the ratio of the sine and cosine.
+% This is accurate to 4 decimal places for angles up to
+% $50^\circ$, after that the accuracy tails off, giving
+% $57.47894$ instead of $57.2900$ for $89^\circ$.
+%
+% Computed tangents are stored in control sequences with names of the
+% form \describecsfamily{tan(\meta{number})}|\tan(|\meta{number}|)|.
+% \begin{macrocode}
+\def\CalculateTan#1{{%
+ \if_undefined{tan(\number#1)}\then
+ \CalculateSin{#1}%
+ \CalculateCos{#1}%
+ \a_dimen\UseCos{#1}\p@
+ \divide \a_dimen \@iv
+ \b_dimen\UseSin{#1}\p@
+ \b_dimen\two@fourteen\b_dimen
+ \divide\b_dimen\a_dimen
+ \x_cs\xdef{tan(\number#1)}{\TG@rem@pt\b_dimen}
+ \fi
+}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\UseTan}
+% Just like |\UseSin|.
+% \begin{macrocode}
+\def\UseTan#1{\csname tan(\number#1)\endcsname}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\two@fourteen}
+% \begin{macro}{\@iv}
+% Two constants needed to keep the division within \TeX's range.
+% \begin{macrocode}
+\mathchardef\two@fourteen=16384
+\chardef\@iv=4
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% Predefine $\tan(\pm90)$ to be an error.
+% \begin{macrocode}
+\x_cs\def{tan(90)}{\errmessage{Infinite tan !}}
+\expandafter\let
+ \csname tan(-90)\expandafter\endcsname \csname tan(90)\endcsname
+%</pkg>
+% \end{macrocode}
+%
+% \Finale
+%
+\endinput
+