summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/scripts/texdoc/texdoclib-score.tlu
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/scripts/texdoc/texdoclib-score.tlu')
-rwxr-xr-xMaster/texmf-dist/scripts/texdoc/texdoclib-score.tlu86
1 files changed, 52 insertions, 34 deletions
diff --git a/Master/texmf-dist/scripts/texdoc/texdoclib-score.tlu b/Master/texmf-dist/scripts/texdoc/texdoclib-score.tlu
index 81e1be2a333..fdc2ef3467f 100755
--- a/Master/texmf-dist/scripts/texdoc/texdoclib-score.tlu
+++ b/Master/texmf-dist/scripts/texdoc/texdoclib-score.tlu
@@ -3,14 +3,14 @@
-- The TeX Live Team, GPLv3, see texdoclib.tlu for details
-- dependencies
+local md5 = require 'md5'
local texdoc = {
- util = require('texdoclib-util'),
- config = require('texdoclib-config'),
+ util = require 'texdoclib-util',
+ config = require 'texdoclib-config',
}
-- shortcuts
local M = {}
-local dbg_print = texdoc.util.dbg_print
-- shared variables
local global_adjscore, spec_adjscore = {}, {}
@@ -73,18 +73,19 @@ local function has_bad_basename(file)
end
-- compute a heuristic score -10 <= s < 10
-local function heuristic_score(file, pat)
- dbg_print('score', 'Start heuristic scoring with pattern: ' .. pat)
+local function heuristic_score(file, pat, dbg_score)
+ dbg_score('Start heuristic scoring with pattern: ' .. pat)
+
-- score management
local score = -10
local function upscore(s, reason, force)
if s > score or force then
score = s
- dbg_print('score',
- 'New heuristic score: %.1f. Reason: %s', s, reason)
+ dbg_score('New heuristic score: %.1f. Reason: %s', s, reason)
end
end
local slash = not not string.find(pat, '/', 1, true)
+
-- look for exact or subword match
if M.is_exact_locale(file, pat) then
upscore(5, 'exact match with correct locale')
@@ -93,104 +94,121 @@ local function heuristic_score(file, pat)
elseif is_subword(file, pat) then
upscore(1, 'subword match')
end
+
-- try derivatives unless pat contains a slash
if not slash then
for _, suffix in ipairs(texdoc.config.get_value('suffix_list')) do
- local deriv = pat..suffix
+ local deriv = pat .. suffix
if M.is_exact(file, deriv) then
- upscore(3, 'exact match for derived pattern: ' .. deriv)
+ upscore(4.5, 'exact match for derived pattern: ' .. deriv)
elseif is_subword(file, deriv) then
- upscore(2, 'subword match for derived pattern: ' .. deriv)
+ upscore(3.5, 'subword match for derived pattern: ' .. deriv)
end
end
end
+
-- if extension is bad, score becomes an epsilon
local ext = texdoc.config.get_value('ext_list')[M.ext_pos(file)]
if ext and texdoc.config.get_value('badext_list_inv')[ext] and score > 0 then
upscore(0.1, 'bad extension', true)
end
+
-- if basename is bad, score becomes an epsilon
if has_bad_basename(file) and score > 0 then
upscore(0.1, 'bad basename', true)
end
+
-- bonus for being in the right directory
if string.find('/' .. file, '/' .. pat .. '/', 1, true) and not slash then
upscore(score + 1.5, 'directory bonus')
end
+
-- done
- dbg_print('score', 'Final heuristic score: %.1f', score)
+ dbg_score('Final heuristic score: %.1f', score)
return score
end
-- set the score of a docfile
local function set_score(df, original_kw)
-- scoring is case-insensitive (patterns are already lowercased)
- local name = string.lower(df.shortname)
- dbg_print('score', '----------')
- dbg_print('score', 'Start scoring ' .. df.realpath)
- dbg_print('score', 'Name used: ' .. name)
+ local name = string.lower(df.normname)
+ local df_id = string.sub(md5.sumhexa(name), 1, 7)
+
+ -- special debugging function
+ local function dbg_score(msg, ...)
+ -- add the hash id prefix to make the outputs grep-friendly
+ local msg = string.format('(%s) ', df_id) .. msg
+ texdoc.util.dbg_print('score', msg, ...)
+ end
+
+ dbg_score('Start scoring ' .. df.realpath)
+ dbg_score('Name used: ' .. name)
+
-- get score from patterns
local score = -10
for _, pat in ipairs(df.matches) do
local s = -10
local p = string.lower(pat.name)
- if pat.original then
- s = df.tree > -1 and heuristic_score(name, p) or 1
- elseif M.is_exact(name, p) then
+ if pat.original then -- non-alias
+ s = df.tree > -1 and heuristic_score(name, p, dbg_score) or 1
+ elseif M.is_exact(name, p) then -- alias
local bonus, note = 0, ''
if pat.locale then
bonus, note = 5, ', (language-based)'
end
- s = (pat.score or 10) + bonus -- default alias score is 10
- dbg_print('score',
- 'Matching alias "%s", score: %.1f%s', pat.name, s, note)
+ s = (pat.score or 10) + bonus -- default alias score is 10
+ dbg_score('Matching alias "%s", score: %.1f%s', pat.name, s, note)
end
if s > score then score = s end
end
- dbg_print('score', 'Max pattern score: %.1f', score)
+ dbg_score('Max pattern score: %.1f', score)
+
-- get score from tlp associations
if score == -10 and df.tlptodoc then
score = -1
- dbg_print('score',
- 'New score: %.1f from package name association', score)
+ dbg_score('New score: %.1f from package name association', score)
end
+
if score == -10 and df.runtodoc then
score = -5
- dbg_print('score',
- 'New score: %.1f from sty/cls association', score)
+ dbg_score('New score: %.1f from sty/cls association', score)
end
+
-- bonus for metadata
if df.details then
if string.find(string.lower(df.details), 'readme') then
score = score + 0.1
- dbg_print('score', 'Catalogue "readme" bonus: +0.1')
+ dbg_score('Catalogue "readme" bonus: +0.1')
else
score = score + 1.5
- dbg_print('score', 'Catalogue details bonus: +1.5')
+ dbg_score('Catalogue details bonus: +1.5')
end
end
+
-- adjust from keyword-specific tables
if df.tree > -1 and spec_adjscore[original_kw] then
for pat, val in pairs(spec_adjscore[original_kw]) do
if val and is_subword('/' .. name, pat) then
score = score + val
- dbg_print('score',
- 'Adjust by %.1f from specific pattern "%s"', val, pat)
+ dbg_score('Adjust by %.1f from specific pattern "%s"', val, pat)
end
end
end
+
-- adjust from global tables
if df.tree > -1 then
for pat, val in pairs(global_adjscore) do
if val and is_subword('/' .. name, pat) then
if score > -10 or val < 0 then score = score + val end
- dbg_print('score',
- 'Adjust by %.1f from global pattern "%s"', val, pat)
+ dbg_score('Adjust by %.1f from global pattern "%s"', val, pat)
end
end
end
- dbg_print('score', 'Final score: %.1f', score)
- df.score = score
+
+ dbg_score('Final score: %.1f', score)
+
+ -- the final score should be a float value
+ df.score = score + 0.0
end
-- set the scores for a doclist