summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc')
-rw-r--r--Master/texmf-dist/doc/fonts/newcomputermodern/README12
-rw-r--r--Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.pdfbin88072 -> 131468 bytes
-rw-r--r--Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex28
3 files changed, 26 insertions, 14 deletions
diff --git a/Master/texmf-dist/doc/fonts/newcomputermodern/README b/Master/texmf-dist/doc/fonts/newcomputermodern/README
index 1140c5d27ed..fdb1f52bebc 100644
--- a/Master/texmf-dist/doc/fonts/newcomputermodern/README
+++ b/Master/texmf-dist/doc/fonts/newcomputermodern/README
@@ -1,6 +1,7 @@
New Computer Modern Fonts
- (Package version 2.0, GustFLv1 or later)
+
+ (Package version 2.1, GustFLv1 or later)
Antonis Tsolomitis
Samos, Greece, 2019--2020
@@ -107,6 +108,15 @@ high resolution printing.
---------------------------------------------------
+Version 2.1 fixes bugs thanks to Manuel Boni. It also introduces Old Italic
+(u10300--u1032F) in the Sans font. The Serif font now includes additional
+ligatures fb ffb ffh ffj ffk fft fh fj ft fk and the same with longs instead of f
+in the default liga table (in addition to the default fi fl ffi ffl ff).
+It also includes an alternative k (in the cv01 table) and sp ch ck ct st
+in the dlig table. Finally it also inludes "end" versions of the letters
+a, e, m, n and r in the cv02 table.
+
+---------------------------------------------------
Antonis Tsolomitis
Professor
diff --git a/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.pdf b/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.pdf
index e6e87d94375..e669cc7d171 100644
--- a/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.pdf
+++ b/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex b/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex
index a461d165f37..a01749d963b 100644
--- a/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex
+++ b/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex
@@ -8,23 +8,23 @@
\RequirePackage{fontspec}
\RequirePackage{unicode-math}
\setmainfont[%
-ItalicFont=NewCM10-Italic.otf,%
+ItalicFont=NewCM10-BookItalic.otf,%
BoldFont=NewCM10-Bold.otf,%
BoldItalicFont=NewCM10-BoldItalic.otf,%
-SmallCapsFeatures={Numbers=OldStyle}]{NewCM10-Regular.otf}
+SmallCapsFeatures={Numbers=OldStyle}]{NewCM10-Book.otf}
\setsansfont[%
-ItalicFont=NewCMSans10-Oblique.otf,%
+ItalicFont=NewCMSans10-BookOblique.otf,%
BoldFont=NewCMSans10-Bold.otf,%
BoldItalicFont=NewCMSans10-BoldOblique.otf,%
-SmallCapsFeatures={Numbers=OldStyle}]{NewCMSans10-Regular.otf}
+SmallCapsFeatures={Numbers=OldStyle}]{NewCMSans10-Book.otf}
-\setmonofont[ItalicFont=NewCMMono10-Italic.otf,%
+\setmonofont[ItalicFont=NewCMMono10-BookItalic.otf,%
BoldFont=NewCMMono10-Bold.otf,%
BoldItalicFont=NewCMMono10-BoldOblique.otf,%
-SmallCapsFeatures={Numbers=OldStyle}]{NewCMMono10-Regular.otf}
+SmallCapsFeatures={Numbers=OldStyle}]{NewCMMono10-Book.otf}
-\setmathfont{NewCMMath-Regular.otf}
+\setmathfont{NewCMMath-Book.otf}
\newcommand{\tttextsc}[1]{{\ttscshape#1}}
@@ -34,10 +34,12 @@ SmallCapsFeatures={Numbers=OldStyle}]{NewCMMono10-Regular.otf}
\begin{document}
+
+
\begin{theorem}[Dominated convergence of Lebesgue]
Assume that $g$ is an
-in\-te\-grable func\-tion defined on the measurable set $E$ and hat
- $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that
+in\-te\-grable func\-tion defined on the measurable set $E$ and that
+ $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able functions so that
$|f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere
then $$\lim_{n\to\infty}\int f_n=\int f.$$
\end{theorem}
@@ -82,8 +84,8 @@ $$\lim \int f_n =\int f.$$
\begin{theorem}[Dominated convergence of Lebesgue]
Assume that $g$ is an
-in\-te\-grable func\-tion defined on the measurable set $E$ and hat
- $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that
+in\-te\-grable func\-tion defined on the measurable set $E$ and that
+ $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able functions so that
$|f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere
then $$\lim_{n\to\infty}\int f_n=\int f.$$
\end{theorem}
@@ -128,8 +130,8 @@ $$\lim \int f_n =\int f.$$
\begin{theorem}[Dominated convergence of Lebesgue]
Assume that $g$ is an
-in\-te\-grable func\-tion defined on the measurable set $E$ and hat
- $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that
+in\-te\-grable func\-tion defined on the measurable set $E$ and that
+ $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able functions so that
$|f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere
then $$\lim_{n\to\infty}\int f_n=\int f.$$
\end{theorem}