diff options
Diffstat (limited to 'Master/texmf-dist/doc')
-rw-r--r-- | Master/texmf-dist/doc/fonts/newcomputermodern/README | 12 | ||||
-rw-r--r-- | Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.pdf | bin | 88072 -> 131468 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex | 28 |
3 files changed, 26 insertions, 14 deletions
diff --git a/Master/texmf-dist/doc/fonts/newcomputermodern/README b/Master/texmf-dist/doc/fonts/newcomputermodern/README index 1140c5d27ed..fdb1f52bebc 100644 --- a/Master/texmf-dist/doc/fonts/newcomputermodern/README +++ b/Master/texmf-dist/doc/fonts/newcomputermodern/README @@ -1,6 +1,7 @@ New Computer Modern Fonts - (Package version 2.0, GustFLv1 or later) + + (Package version 2.1, GustFLv1 or later) Antonis Tsolomitis Samos, Greece, 2019--2020 @@ -107,6 +108,15 @@ high resolution printing. --------------------------------------------------- +Version 2.1 fixes bugs thanks to Manuel Boni. It also introduces Old Italic +(u10300--u1032F) in the Sans font. The Serif font now includes additional +ligatures fb ffb ffh ffj ffk fft fh fj ft fk and the same with longs instead of f +in the default liga table (in addition to the default fi fl ffi ffl ff). +It also includes an alternative k (in the cv01 table) and sp ch ck ct st +in the dlig table. Finally it also inludes "end" versions of the letters +a, e, m, n and r in the cv02 table. + +--------------------------------------------------- Antonis Tsolomitis Professor diff --git a/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.pdf b/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.pdf Binary files differindex e6e87d94375..e669cc7d171 100644 --- a/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.pdf +++ b/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.pdf diff --git a/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex b/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex index a461d165f37..a01749d963b 100644 --- a/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex +++ b/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex @@ -8,23 +8,23 @@ \RequirePackage{fontspec} \RequirePackage{unicode-math} \setmainfont[% -ItalicFont=NewCM10-Italic.otf,% +ItalicFont=NewCM10-BookItalic.otf,% BoldFont=NewCM10-Bold.otf,% BoldItalicFont=NewCM10-BoldItalic.otf,% -SmallCapsFeatures={Numbers=OldStyle}]{NewCM10-Regular.otf} +SmallCapsFeatures={Numbers=OldStyle}]{NewCM10-Book.otf} \setsansfont[% -ItalicFont=NewCMSans10-Oblique.otf,% +ItalicFont=NewCMSans10-BookOblique.otf,% BoldFont=NewCMSans10-Bold.otf,% BoldItalicFont=NewCMSans10-BoldOblique.otf,% -SmallCapsFeatures={Numbers=OldStyle}]{NewCMSans10-Regular.otf} +SmallCapsFeatures={Numbers=OldStyle}]{NewCMSans10-Book.otf} -\setmonofont[ItalicFont=NewCMMono10-Italic.otf,% +\setmonofont[ItalicFont=NewCMMono10-BookItalic.otf,% BoldFont=NewCMMono10-Bold.otf,% BoldItalicFont=NewCMMono10-BoldOblique.otf,% -SmallCapsFeatures={Numbers=OldStyle}]{NewCMMono10-Regular.otf} +SmallCapsFeatures={Numbers=OldStyle}]{NewCMMono10-Book.otf} -\setmathfont{NewCMMath-Regular.otf} +\setmathfont{NewCMMath-Book.otf} \newcommand{\tttextsc}[1]{{\ttscshape#1}} @@ -34,10 +34,12 @@ SmallCapsFeatures={Numbers=OldStyle}]{NewCMMono10-Regular.otf} \begin{document} + + \begin{theorem}[Dominated convergence of Lebesgue] Assume that $g$ is an -in\-te\-grable func\-tion defined on the measurable set $E$ and hat - $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that +in\-te\-grable func\-tion defined on the measurable set $E$ and that + $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able functions so that $|f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere then $$\lim_{n\to\infty}\int f_n=\int f.$$ \end{theorem} @@ -82,8 +84,8 @@ $$\lim \int f_n =\int f.$$ \begin{theorem}[Dominated convergence of Lebesgue] Assume that $g$ is an -in\-te\-grable func\-tion defined on the measurable set $E$ and hat - $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that +in\-te\-grable func\-tion defined on the measurable set $E$ and that + $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able functions so that $|f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere then $$\lim_{n\to\infty}\int f_n=\int f.$$ \end{theorem} @@ -128,8 +130,8 @@ $$\lim \int f_n =\int f.$$ \begin{theorem}[Dominated convergence of Lebesgue] Assume that $g$ is an -in\-te\-grable func\-tion defined on the measurable set $E$ and hat - $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that +in\-te\-grable func\-tion defined on the measurable set $E$ and that + $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able functions so that $|f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere then $$\lim_{n\to\infty}\int f_n=\int f.$$ \end{theorem} |