summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc')
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/README.md16
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-FAQ.tex4
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-angles.tex3
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circleby.tex4
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circles.tex35
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-clipping.tex19
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-compass.tex2
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-documentation.tex3
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-drawing.tex26
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-elements.tex4
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-examples.tex25
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-filling.tex3
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-intersection.tex70
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-labelling.tex2
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-lines.tex36
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-lua.tex20
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-main.tex24
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-news.tex427
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-pointby.tex15
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-points.tex12
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-pointsSpc.tex122
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-polygons.tex4
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-presentation.tex72
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-show.tex10
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-styles.tex16
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-tools.tex17
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/tkz-euclide.pdfbin1116500 -> 1103289 bytes
27 files changed, 531 insertions, 460 deletions
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/README.md b/Master/texmf-dist/doc/latex/tkz-euclide/README.md
index d0bc9ec3e8a..a0b514e2b8d 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/README.md
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/README.md
@@ -1,5 +1,5 @@
# tkz-euclide — for euclidean geometry
-Release 5.06c 2024/02/04
+Release 5.10c 2024/04/27
## Description
@@ -9,7 +9,8 @@ It uses a Cartesian coordinate system orthogonormal (unit 1cm)
as well as tools to define the unique coordinates of points and to
manipulate them. The idea is to allow you to follow step by step a construction
that would be done by hand as naturally as possible.
-Now tkz-euclide introduces a "lua" option which allows to do most of the calculations using "lua".
+Now tkz-euclide introduces a `lua` option which allows to do most of the calculations using `lua`.
+A new option mini has been introduced. When one wishes to use tkz-euclide and tkz-elements together, it is recommended to load the package with this option. Thus, tkz-euclide will focus solely on the drawings.
## Licence
@@ -41,18 +42,20 @@ To use the package `tkz-euclide`, place the following lines in the preamble of
your LaTeX document:
```
-\usepackage{tkz-euclide} or \usepackage[lua]{tkz-euclide}
+\usepackage{tkz-euclide}
\begin{document}
\begin{tikzpicture}
your code
\end{tikzpicture}
```
+
+This code can be compiled using either `pdflatex` or `lualatex`. In the latter case, the `lua` option allows most calculations to be performed with `lua`. If you do the calculations with `tkz-elements` then you can load `tkz-euclide` with the `mini` option.
If you use the `xcolor` package, load that package before `tkz-euclide` to avoid
package conflicts.
## Documentation
-Documentation for `tkz-euclide` is available on `CTAN`.
+Documentation for `tkz-euclide` is available on `CTAN`. A french version of the documentation is now available on my website [http://altermundus.fr](http://altermundus.fr)
## Examples
@@ -63,6 +66,11 @@ Other examples, in French, are on my site.
## History
+
+- 5.10c
+ - tkz-tool-eu-angles.arc.tex has been extracted from the file tkz-tool-eu-angles.tex
+ - Added `mini` option
+ - Added french documentation on my site (altermundus.fr)
- 5.06c
- Correction of a bug with the macro \tkzLabelAngle and the option “angle”
- Added \tkzSetUpCircle
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-FAQ.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-FAQ.tex
index 97e137007e4..d0844abe81e 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-FAQ.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-FAQ.tex
@@ -8,7 +8,9 @@
\item Don't forget that since version 4 the unit is obligatorily the "cm" it is thus necessary to withdraw the unit like here \tkzcname{tkzDrawCircle[R](O,3cm)} which becomes \tkzcname{tkzDrawCircle[R](O,3)}. The traditional options of \tkzname{TikZ} keep their units example\tkzname{ below right = 12pt} on the other hand one will write \tkzname{size=1.2} to position an arc in \tkzcname{tkzMarkAngle};
- \item The following error still happens to me from time to time. A point that is created has its name in brackets while a point that is used either as an option or as a parameter has its name in braces. Example \tkzcname{tkzGetPoint(A)} When defining an object, use braces and not brackets, so write: \tkzcname{tkzGetPoint\{A\}};
+ \item The following error still happens to me from time to time. A point that is created has its name in brackets while a point that is used either as an option or as a parameter has its name in braces.
+
+ Example \tkzcname{tkzGetPoint(A)} When defining an object, use braces and not brackets, so write: \tkzcname{tkzGetPoint\{A\}};
\item The changes in obtaining the points of intersection between lines and circles sometimes exchange the solutions, this leads either to a bad figure or to an error.
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-angles.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-angles.tex
index 3ab43bd43e4..6ced16c2df3 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-angles.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-angles.tex
@@ -228,7 +228,8 @@ Here is another version of the construction of a mediator
\tkzCalcLength(A,B) \tkzGetLength{dAB}
\tkzFindSlopeAngle(A,B) \tkzGetAngle{tkzangle}
\begin{scope}[rotate=\tkzangle]
- \tkzSetUpArc[color=gray,line width=0.2pt,/tkzcompass/delta=10]
+ \tkzSetUpArc[color=gray,line width=0.2pt,%
+ /tkzcompass/delta=10]
\tkzDrawArc[R,arc](B,3/4*\dAB)(120,240)
\tkzDrawArc[R,arc](A,3/4*\dAB)(-45,60)
\tkzDrawLine(I,J) \tkzDrawSegment(A,B)
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circleby.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circleby.tex
index 7af83e2aa1c..fa38fb4cd13 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circleby.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circleby.tex
@@ -96,14 +96,14 @@ options & & examples \\
\subsubsection{\tkzname{Symmetry}}
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=1]
- \tkzDefPoint(0,0){A} \tkzDefPoint(3,1){B}
+ \tkzDefPoint(3,1){B}
\tkzDefPoint(3,2){C} \tkzDefPoint(4,3){D}
\tkzDefCircleBy[symmetry=center B](C,D)
\tkzGetPoints{C'}{D'}
\tkzDrawPoints[teal](B,C,D,C',D')
\tkzDrawLines[orange](C,C' D,D')
\tkzDrawCircles(C,D C',D')
- \tkzLabelPoints[color=teal](A,C,C')
+ \tkzLabelPoints[color=teal](C,C')
\tkzLabelPoints[color=teal,above](D)
\tkzLabelPoints[color=teal,below](D')
\end{tikzpicture}
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circles.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circles.tex
index 2a336d91af6..f36f2dd2a7f 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circles.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circles.tex
@@ -129,7 +129,8 @@ We want to define an excircle of a triangle relatively to point $C$
\tkzDrawPolygon(A,B,C)
\tkzDrawLines[add=0 and 1.5](C,A C,B)
\tkzDrawSegments(J_c,X_c I,D I,F J_c,Y_c)
- \tkzMarkRightAngles(A,F,I B,D,I J_c,X_c,A J_c,Y_c,B)
+ \tkzMarkRightAngles(A,F,I B,D,I J_c,X_c,A%
+ J_c,Y_c,B)
\tkzDrawPoints(B,C,A,I,D,F,X_c,J_c,Y_c)
\tkzLabelPoints(B,A,J_c,I,D)
\tkzLabelPoints[above](Y_c)
@@ -205,21 +206,22 @@ We verify that this circle passes through the middle of each side.
The incircle of the medial triangle $M_aM_bM_c$ is the Spieker circle:
\begin{tkzexample}[latex=6cm, small]
-\begin{tikzpicture}[scale=1]
+\begin{tikzpicture}[scale=1.25]
\tkzDefPoints{ 0/0/A,4/0/B,0.8/4/C}
- \tkzDefSpcTriangle[medial](A,B,C){M_a,M_b,M_c}
- \tkzDefTriangleCenter[spieker](A,B,C)
- \tkzGetPoint{S_p}
- \tkzDrawPolygon(A,B,C)
- \tkzDrawPolygon[cyan](M_a,M_b,M_c)
- \tkzDrawPoints(B,C,A)
- \tkzDefCircle[spieker](A,B,C)
- \tkzDrawPoints[new](M_a,M_b,M_c,S_p)
- \tkzDrawCircle[new](tkzFirstPointResult,tkzSecondPointResult)
- \tkzLabelPoints[right](M_a)
- \tkzLabelPoints[left](M_b)
- \tkzLabelPoints[below](A,B,M_c,S_p)
- \tkzLabelPoints[above](C)
+ \tkzDefSpcTriangle[medial](A,B,C){M_a,M_b,M_c}
+ \tkzDefTriangleCenter[spieker](A,B,C)
+ \tkzGetPoint{S_p}
+ \tkzDrawPolygon(A,B,C)
+ \tkzDrawPolygon[cyan](M_a,M_b,M_c)
+ \tkzDrawPoints(B,C,A)
+ \tkzDefCircle[spieker](A,B,C)
+ \tkzDrawPoints[new](M_a,M_b,M_c,S_p)
+ \tkzDrawCircle[new](tkzFirstPointResult,%
+ tkzSecondPointResult)
+ \tkzLabelPoints[right](M_a)
+ \tkzLabelPoints[left](M_b)
+ \tkzLabelPoints[below](A,B,M_c,S_p)
+ \tkzLabelPoints[above](C)
\end{tikzpicture}
\end{tkzexample}
@@ -266,7 +268,8 @@ arguments & default & definition \\
Jc,Xc Jc,Yc Jc,Zc
I,Ia I,Ib I,Ic)
\tkzMarkRightAngles[size=.2,fill=gray!15](Ja,Za,B Ja,Xa,B Ja,Ya,C Jb,Yb,C)
-\tkzMarkRightAngles[size=.2,fill=gray!15](Jb,Zb,B Jb,Xb,C Jc,Yc,A Jc,Zc,B Jc,Xc,C I,Ia,B I,Ib,C I,Ic,A)
+\tkzMarkRightAngles[size=.2,fill=gray!15](Jb,Zb,B Jb,Xb,C Jc,Yc,A Jc,Zc,B)
+\tkzMarkRightAngles[size=.2,fill=gray!15](Jc,Xc,C I,Ia,B I,Ib,C I,Ic,A)
\tkzDrawSegments[blue](Jc,C Ja,A Jb,B)
\tkzDrawPoints(A,B,C,Xa,Xb,Xc,Ja,Jb,Jc,Ia,Ib,Ic,Ya,Yb,Yc,Za,Zb,Zc)
\tkzLabelPoints(A,Ya,Yb,Ja,I)
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-clipping.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-clipping.tex
index 430c8605ccf..a0db97f7297 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-clipping.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-clipping.tex
@@ -1,5 +1,7 @@
\section{Controlling Bounding Box}
-From the \tkzimp{PgfManual} :"When you add the clip option, the current path is used for clipping subsequent drawings. Clipping never enlarges the clipping area. Thus, when you clip against a certain path and then clip again against another path, you clip against the intersection of both.
+From the \tkzimp{PgfManual} :
+
+"When you add the clip option, the current path is used for clipping subsequent drawings. Clipping never enlarges the clipping area. Thus, when you clip against a certain path and then clip again against another path, you clip against the intersection of both.
The only way to enlarge the clipping path is to end the {pgfscope} in which the clipping was done. At the end of a {pgfscope} the clipping path that was in force at the beginning of the scope is reinstalled."
@@ -10,7 +12,7 @@ The following command \tkzcname{pgfresetboundingbox} clears a bounding box and e
\subsection{Utility of \tkzcname{tkzInit}}
However, it is sometimes necessary to control the size of what will be displayed.
- To do this, you need to have prepared the bounding box you are going to work in, this is the role of the macro \tkzNameMacro{tkzInit}. For some drawings, it is interesting to fix the extreme values (xmin,xmax,ymin and ymax) and to "clip" the definition rectangle in order to control the size of the figure as well as possible.
+ To do this, you need to have prepared the bounding box you are going to work in, this is the role of the macro \tkzNameMacro{tkzInit}. For some drawings, it is interesting to fix the extreme values (xmin,xmax,ymin and ymax) and to \code{clip} the definition rectangle in order to control the size of the figure as well as possible.
The two macros that are useful for controlling the bounding box:
\begin{itemize}
@@ -39,7 +41,7 @@ options & default & definition \\
\medskip
The role of \tkzcname{tkzInit} is to define a \textcolor{red}{orthogonal} coordinates system and a rectangular part of the plane in which you will place your drawings using Cartesian coordinates.
-This macro allows you to define your working environment as with a calculator. With \tkzname{\tkznameofpack} 4 \tkzcname{xstep} and \tkzcname{ystep} are always 1. Logically it is no longer useful to use \tkzcname{tkzInit}, except for an action like "Clipping Out".
+This macro allows you to define your working environment as with a calculator. With \tkzname{\tkznameofpack} 4 \tkzcname{xstep} and \tkzcname{ystep} are always 1. Logically it is no longer useful to use \tkzcname{tkzInit}, except for an action like \code{Clipping Out}.
\end{NewMacroBox}
@@ -64,7 +66,7 @@ The role of the \tkzname{space} option is to enlarge the visible part of the dra
-The role of this macro is to "clip" the initial rectangle so that only the paths contained in this rectangle are drawn.
+The role of this macro is to \code{clip} the initial rectangle so that only the paths contained in this rectangle are drawn.
\begin{tkzexample}[latex=8cm,small]
\begin{tikzpicture}
@@ -83,7 +85,7 @@ It is possible to add a bit of space
\end{tkzltxexample}
\subsection{\tkzcname{tkzClip} and the option \tkzname{space}}
-This option allows you to add some space around the "clipped" rectangle.
+This option allows you to add some space around the \code{clipped} rectangle.
\begin{tkzexample}[latex=8cm,small]
\begin{tikzpicture}
\tkzInit[xmax=4, ymax=3]
@@ -94,7 +96,7 @@ This option allows you to add some space around the "clipped" rectangle.
\tkzDrawSegment(A,B)
\end{tikzpicture}
\end{tkzexample}
-The dimensions of the "clipped" rectangle are \tkzname{xmin-1}, \tkzname{ymin-1}, \tkzname{xmax+1} and \tkzname{ymax+1}.
+The dimensions of the \code{clipped} rectangle are \tkzname{xmin-1}, \tkzname{ymin-1}, \tkzname{xmax+1} and \tkzname{ymax+1}.
%<--------------------------------------------------------------------------->
% tkzShowBB
@@ -116,7 +118,8 @@ This macro displays the bounding box. A rectangular frame surrounds the bounding
\tkzClipBB
\tkzDefCircle[R](A,5) \tkzGetPoint{a}
\tkzDrawCircle(A,a)
- \tkzShowBB[line width = 4pt,fill=teal!10,opacity=.4]
+ \tkzShowBB[line width = 4pt,fill=teal!10,%
+ opacity=.4]
\end{scope}
\tkzDefCircle[R](A,4) \tkzGetPoint{b}
\tkzDrawCircle[red](A,b)
@@ -207,7 +210,7 @@ options & default & definition \\
\end{tikzpicture}
\end{tkzexample}
-\subsubsection{Example: use of "Clip" for Sangaku in a square}
+\subsubsection{Example: use of \code{Clip} for Sangaku in a square}
\begin{tkzexample}[latex=7cm, small]
\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B}
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-compass.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-compass.tex
index 088d39f8b00..3c042022625 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-compass.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-compass.tex
@@ -64,7 +64,7 @@ options & default & definition \\
% subsubsection use_tkzcname_tkzcompasss (end)
\begin{tkzexample}[latex=7cm,small]
-\begin{tikzpicture}[scale=.75]
+\begin{tikzpicture}[scale=.6]
\tkzDefPoint(2,2){A} \tkzDefPoint(5,-2){B}
\tkzDefPoint(3,4){C} \tkzDrawPoints(A,B)
\tkzDrawPoint[shape=cross out](C)
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-documentation.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-documentation.tex
index a24b7e63b47..b3e889b8174 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-documentation.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-documentation.tex
@@ -1,6 +1,6 @@
\section{About this documentation and the examples}
-It is obtained by compiling with "lualatex". I use a class \tkzname{doc.cls} based on \tkzname{scrartcl}.
+It is obtained by compiling with \code{lualatex}. I use a class \tkzname{doc.cls} based on \tkzname{scrartcl}.
Below the list of styles used in the documentation. To understand how to use the styles see the section \ref{custom}
@@ -25,5 +25,4 @@ Below the list of styles used in the documentation. To understand how to use the
Some examples use predefined styles like
-
|\tikzset{new/.style={color=orange,line width=.2pt}} | \ No newline at end of file
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-drawing.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-drawing.tex
index 0017d4390e3..d5116379684 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-drawing.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-drawing.tex
@@ -85,7 +85,7 @@ options & default & definition \\
\end{tabular}
\medskip
-\tkzHandBomb\ Beware of the final "s", an oversight leads to cascading errors if you try to draw multiple points. The options are the same as for the previous macro.
+\tkzHandBomb\ Beware of the final \code{s}, an oversight leads to cascading errors if you try to draw multiple points. The options are the same as for the previous macro.
\end{NewMacroBox}
\subsubsection{Example}
@@ -283,18 +283,20 @@ I'll let you look at the examples to see what you can do with these styles.
\tkzCalcLength(B,C)\tkzGetLength{BCl}
\tkzCalcLength(A,C)\tkzGetLength{ACl}
\begin{scope}[dim style/.style={dashed,sloped,teal}]
- \tkzDrawSegment[dim={\pgfmathprintnumber\BCl,6pt,
- text=red}](C,B)
- \tkzDrawSegment[dim={\pgfmathprintnumber\ACl,6pt,}](A,C)
- \tkzDrawSegment[dim={\pgfmathprintnumber\ABl,-6pt,}](A,B)
+ \tkzDrawSegment[dim={\pgfmathprintnumber\BCl,6pt,%
+ text=red}](C,B)
+ \tkzDrawSegment[dim={\pgfmathprintnumber\ACl,%
+ 6pt,}](A,C)
+ \tkzDrawSegment[dim={\pgfmathprintnumber\ABl,%
+ -6pt,}](A,B)
\end{scope}
\tkzLabelPoints(A,B) \tkzLabelPoints[above](C)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Adding dimensions with option \tkzname{dim} part II}
-\begin{tkzexample}[latex=7cm,small]
-\begin{tikzpicture}[scale=.75]
+\begin{tkzexample}[latex=6cm,small]
+\begin{tikzpicture}[scale=.5]
\tkzDefPoints{0/0/O,-2/0/A,2/0/B,
-2/4/C,2/4/D,2/-4/E,-2/-4/F}
\tkzDrawPolygon(C,...,F)
@@ -699,7 +701,7 @@ arguments & example & explanation \\
\toprule
arguments & example & explanation \\
\midrule
-\TAline{\parg{C,a,b,An}}{\parg{C,4,2,45}} {C center 4 and 2 lengths of long axis and small axis} \\
+\TAline{\parg{C,a,b,An}}{\parg{C,4,2,45}} {C center; 4 and 2 lengths of half-axis} \\
& & 45 slope of main axis \\
\bottomrule
\end{tabular}
@@ -708,9 +710,9 @@ arguments & example & explanation \\
Of course, you have to add all the styles of \TIKZ\ for the tracings...
\end{NewMacroBox}
-\subsubsection{Option \tkzname{towards}}
-\begin{tkzexample}[latex=7cm,small]
- \begin{tikzpicture}
+\subsubsection{Example of drawing an ellipse }
+\begin{tkzexample}[latex=6cm,small]
+ \begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,4){C}
\tkzDrawEllipse[blue](C,4,2,45)
\tkzLabelPoints(C)
@@ -879,7 +881,7 @@ This option allows a bit like \tkzcname{tkzCompass} to place an arc and overflow
\subsubsection{Option \tkzname{angles}: example 2}
-\begin{tkzexample}[latex=6cm,small]
+\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}
\tkzDefPoint(0,0){O}
\tkzDefPoint(5,0){I}
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-elements.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-elements.tex
index 4d01262ccba..ad4db728170 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-elements.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-elements.tex
@@ -2,7 +2,7 @@
To work with my package, you need to have notions of \LATEX\ as well as \TIKZ.
-In this paragraph, we start looking at the "rules" and "symbols" used to create a figure with \tkzname{\tkznameofpack}.
+In this paragraph, we start looking at the \code{rules} and \code{symbols} used to create a figure with \tkzname{\tkznameofpack}.
\subsection{Objects and language}
@@ -15,7 +15,7 @@ The used points are passed as parameters between parentheses while the created p
The code of the figures is placed in an environment \tkzimp{tikzpicture}
-Contrary to \TIKZ, you should not end a macro with ";". We thus lose the important notion which is the \tkzimp{path}. However, it is possible to place some code between the macros \tkzname{\tkznameofpack}.
+Contrary to \TIKZ, you should not end a macro with “;”. We thus lose the important notion which is the \tkzimp{path}. However, it is possible to place some code between the macros \tkzname{\tkznameofpack}.
Among the first category, |\tkzDefPoint| allows you to define fixed points. It will be studied in detail later. Here we will see in detail the macro |\tkzDefTriangle|.
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-examples.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-examples.tex
index e436c406fe4..ec8982331bd 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-examples.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-examples.tex
@@ -955,19 +955,18 @@ From Wikipedia {\emph{In geometry, the Pappus chain is a ring of circles betwee
\end{tikzpicture}%
\begin{tkzexample}[latex=7cm,small]
-\begin{tikzpicture}
- \tkzDefPoints{0/0/O_1,0/1/O_2,0/3/A}
- \tkzDefPoint(15:3){F}
- \tkzInterLC(F,O_1)(O_1,A) \tkzGetSecondPoint{E}
- \tkzDefLine[parallel=through O_2](E,F)
- \tkzGetPoint{x}
- \tkzInterLC(x,O_2)(O_2,A) \tkzGetPoints{D}{C}
- \tkzDrawCircles(O_1,A O_2,A)
- \tkzDrawSegments[new](O_1,A E,F C,D)
- \tkzDrawSegments[purple](A,E A,F)
- \tkzDrawPoints(A,O_1,O_2,E,F,C,D)
- \tkzLabelPoints(A,O_1,O_2,E,F,C,D)
-\end{tikzpicture}
+ \begin{tikzpicture}[scale=.75]
+ \tkzDefPoints{0/0/O_1,0/1/O_2,0/3/A}
+ \tkzDefPoint(15:3){F}
+ \tkzDefPointBy[symmetry=center O_1](F) \tkzGetPoint{E}
+ \tkzDefLine[parallel=through O_2](E,F) \tkzGetPoint{x}
+ \tkzInterLC(x,O_2)(O_2,A) \tkzGetPoints{D}{C}
+ \tkzDrawCircles(O_1,A O_2,A)
+ \tkzDrawSegments[orange](O_1,A E,F C,D)
+ \tkzDrawSegments[purple](A,E A,F)
+ \tkzDrawPoints(A,O_1,O_2,E,F,x,C,D)
+ \tkzLabelPoints(A,O_1,O_2,E,F,x,C,D)
+ \end{tikzpicture}
\end{tkzexample}
$(CD) \parallel (EF)$ $(AO_1)$ is secant to these two lines so
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-filling.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-filling.tex
index c8f1ea14f1b..f7fc8883fe0 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-filling.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-filling.tex
@@ -41,7 +41,8 @@ You don't need to put \tkzname{radius} because that's the default option. Of cou
\tkzDefMidPoint(A,D) \tkzGetPoint{F}
\tkzDefMidPoint(B,C) \tkzGetPoint{E}
\tkzDefMidPoint(B,D) \tkzGetPoint{Q}
- \tkzDefLine[tangent from = B](F,A) \tkzGetPoints{H}{G}
+ \tkzDefLine[tangent from = B](F,A)
+ \tkzGetPoints{H}{G}
\tkzInterLL(F,G)(C,D) \tkzGetPoint{J}
\tkzInterLL(A,J)(F,E) \tkzGetPoint{K}
\tkzDefPointBy[projection=onto B--A](K)
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-intersection.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-intersection.tex
index 1583f91e2b2..64bfe6ecfa7 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-intersection.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-intersection.tex
@@ -109,7 +109,7 @@ In the following example, the drawing of the circle uses two points and the inte
\subsubsection{Line passing through the center option \tkzname{common}}
This case is special. You cannot compare the angles. In this case, the option \tkzname{near} must be used. \tkzname{tkzFirstPoint} is assigned to the point closest to the first point given for the line. Here we want $A$ to be closest to $Lb$.
-\begin{tkzexample}[latex=7cm,small]
+\begin{tkzexample}[latex=8cm,small]
\begin{tikzpicture}
\tkzDefPoints{% x y name
0 /1 /D,
@@ -170,12 +170,14 @@ As you can see $\widehat{BCO} < \widehat{BEO} $. To tell the truth,$ \widehat{BE
\tkzDefPoint(0,1){J}
\tkzDefPoint(0,0){O}
\foreach \i in {0,-5,-10,...,-90}{
- \tkzDefPoint({2.5*cos(\i*pi/180)},{1+2.5*sin(\i*pi/180)}){P}
+ \tkzDefPoint({2.5*cos(\i*pi/180)},%
+ {1+2.5*sin(\i*pi/180)}){P}
\tkzInterLC[R](P,J)(O,1)\tkzGetPoints{N}{M}
\tkzDrawSegment[color=orange](J,N)
\tkzDrawPoints[red](N)}
\foreach \i in {-90,-95,...,-175,-180}{
- \tkzDefPoint({2.5*cos(\i*pi/180)},{1+2.5*sin(\i*pi/180)}){P}
+ \tkzDefPoint({2.5*cos(\i*pi/180)},%
+ {1+2.5*sin(\i*pi/180)}){P}
\tkzInterLC[R](P,J)(O,1)\tkzGetPoints{N}{M}
\tkzDrawSegment[color=orange](J,M)
\tkzDrawPoints[red](M)}
@@ -212,14 +214,14 @@ $D$ is the point closest to $b$.
\subsubsection{More complex example of a line-circle intersection}
Figure from \url{http://gogeometry.com/problem/p190_tangent_circle}
-\begin{tkzexample}[latex=7cm,small]
+\begin{tkzexample}[latex=6.5cm,small]
\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){A}
\tkzDefPoint(8,0){B}
- \tkzDefMidPoint(A,B) \tkzGetPoint{O}
- \tkzDefMidPoint(O,B) \tkzGetPoint{O'}
- \tkzDefLine[tangent from=A](O',B) \tkzGetFirstPoint{E}
- \tkzInterLC(A,E)(O,B) \tkzGetFirstPoint{D}
+ \tkzDefMidPoint(A,B) \tkzGetPoint{O}
+ \tkzDefMidPoint(O,B) \tkzGetPoint{O'}
+ \tkzDefLine[tangent from=A](O',B)\tkzGetFirstPoint{E}
+ \tkzInterLC(A,E)(O,B) \tkzGetFirstPoint{D}
\tkzDefPointBy[projection=onto A--B](D)
\tkzGetPoint{F}
\tkzDrawCircles(O,B O',B)
@@ -284,7 +286,7 @@ With \tkzname{xfp} and \tkzcname{fpeval}:
\end{tkzexample}
-\subsubsection{Option "with nodes"}
+\subsubsection{Option \code{with nodes}}
\begin{tkzexample}[latex=8cm,small]
\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/A,4/0/B,1/1/D,2/0/E}
@@ -315,7 +317,7 @@ options & default & definition \\
\end{tabular}
\medskip
-This macro defines the intersection point(s) $I$ and $J$ of the two center circles $O$ and $O'$. If the two circles do not have a common point then the macro ends with an error that is not handled. If the centers are $O$ and $O'$ and the intersections are $A$ and $B$ then the angles $\widehat{O,A,O'}$ and $\widehat{O,B,O'}$ are in opposite directions. \tkzname{tkzFirstPoint} is assigned to the point that forms the "clockwise" angle.
+This macro defines the intersection point(s) $I$ and $J$ of the two center circles $O$ and $O'$. If the two circles do not have a common point then the macro ends with an error that is not handled. If the centers are $O$ and $O'$ and the intersections are $A$ and $B$ then the angles $\widehat{O,A,O'}$ and $\widehat{O,B,O'}$ are in opposite directions. \tkzname{tkzFirstPoint} is assigned to the point that forms the \code{clockwise} angle.
\end{NewMacroBox}
\begin{NewMacroBox}{tkzTestInterCC}{\parg{$O,A$}\parg{$O',B$}}%
@@ -346,14 +348,15 @@ So the arguments are two couples which define two circles with a center and a po
\subsubsection{circle-circle intersection with \tkzname{common} point.}
\begin{tkzexample}[latex=7cm,small]
- \begin{tikzpicture}[scale=.5]
- \tkzDefPoints{0/0/O,5/-1/A,2/2/B}
- \tkzDrawPoints(O,A,B)
- \tkzDrawCircles(O,B A,B)
- \tkzInterCC[common=B](O,B)(A,B)\tkzGetFirstPoint{C}
- \tkzDrawPoint(C)
- \tkzLabelPoints[above](O,A,B,C)
- \end{tikzpicture}
+\begin{tikzpicture}[scale=.5]
+ \tkzDefPoints{0/0/O,5/-1/A,2/2/B}
+ \tkzDrawPoints(O,A,B)
+ \tkzDrawCircles(O,B A,B)
+ \tkzInterCC[common=B](O,B)(A,B)
+ \tkzGetFirstPoint{C}
+ \tkzDrawPoint(C)
+ \tkzLabelPoints[above](O,A,B,C)
+\end{tikzpicture}
\end{tkzexample}
\subsubsection{circle-circle intersection order of points.}
@@ -361,9 +364,10 @@ The idea is to compare the angles formed with the first center, a resultant poin
As you can see $\widehat{ODB} < \widehat{OBE} $
-\begin{tkzexample}[latex=7cm,small]
+\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}[scale=.5]
- \pgfkeys{/pgf/number format/.cd,fixed relative,precision=4}
+ \pgfkeys{/pgf/number format/.cd,fixed relative,
+ precision=4}
\tkzDefPoints{0/0/O,5/-1/A,2/2/B,2/-1/C}
\tkzDrawPoints(O,A,B)
\tkzDrawCircles(O,A B,C)
@@ -382,8 +386,6 @@ As you can see $\widehat{ODB} < \widehat{OBE} $
\end{tikzpicture}
\end{tkzexample}
-
-
\subsubsection{Construction of an equilateral triangle.}
$\widehat{A,C,B}$ is a clockwise angle
\begin{tkzexample}[latex=7cm,small]
@@ -410,13 +412,13 @@ $\widehat{A,C,B}$ is a clockwise angle
\begin{tikzpicture}[scale=.6]
\tkzDefPoint(0,0){A}
\tkzDefPoint(3,2){B}
- \tkzInterCC(A,B)(B,A) \tkzGetSecondPoint{D}
- \tkzInterCC(D,B)(B,A) \tkzGetPoints{A}{C}
- \tkzInterCC(D,B)(A,B) \tkzGetPoints{E}{B}
- \tkzInterLC[common=D](C,D)(E,D) \tkzGetFirstPoint{F}
- \tkzInterLL(A,F)(B,C) \tkzGetPoint{O}
- \tkzInterLL(O,D)(A,B) \tkzGetPoint{H}
- \tkzInterLL(O,E)(A,B) \tkzGetPoint{G}
+ \tkzInterCC(A,B)(B,A) \tkzGetSecondPoint{D}
+ \tkzInterCC(D,B)(B,A) \tkzGetPoints{A}{C}
+ \tkzInterCC(D,B)(A,B) \tkzGetPoints{E}{B}
+ \tkzInterLC[common=D](C,D)(E,D)\tkzGetFirstPoint{F}
+ \tkzInterLL(A,F)(B,C) \tkzGetPoint{O}
+ \tkzInterLL(O,D)(A,B) \tkzGetPoint{H}
+ \tkzInterLL(O,E)(A,B) \tkzGetPoint{G}
\tkzDrawCircles(D,E A,B B,A E,A)
\tkzDrawSegments[](O,F O,B O,D O,E)
\tkzDrawPoints(A,...,H)
@@ -425,7 +427,7 @@ $\widehat{A,C,B}$ is a clockwise angle
\end{tikzpicture}
\end{tkzexample}
-\subsubsection{With the option "\tkzimp{with nodes}"}
+\subsubsection{With the option \code{with nodes}}
\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}[scale=.5]
\tkzDefPoints{0/0/A,0/5/B,5/0/C}
@@ -449,17 +451,17 @@ $\widehat{A,C,B}$ is a clockwise angle
\subsubsection{Mix of intersections}
\begin{tkzexample}[latex=8cm,small]
-\begin{tikzpicture}[scale = .75]
+\begin{tikzpicture}[scale = .7]
\tkzDefPoint(2,2){A}
\tkzDefPoint(0,0){B}
\tkzDefPoint(-2,2){C}
\tkzDefPoint(0,4){D}
\tkzDefPoint(4,2){E}
\tkzCircumCenter(A,B,C)\tkzGetPoint{O}
- \tkzInterCC[R](O,2)(D,2) \tkzGetPoints{M1}{M2}
+ \tkzInterCC[R](O,2)(D,2)\tkzGetPoints{M1}{M2}
\tkzInterCC(O,A)(D,O) \tkzGetPoints{1}{2}
- \tkzInterLC(A,E)(B,M1) \tkzGetSecondPoint{M3}
- \tkzInterLC(O,C)(M3,D) \tkzGetSecondPoint{L}
+ \tkzInterLC(A,E)(B,M1)\tkzGetSecondPoint{M3}
+ \tkzInterLC(O,C)(M3,D)\tkzGetSecondPoint{L}
\tkzDrawSegments(C,L)
\tkzDrawPoints(A,B,C,D,E,M1,M2,M3,O,L)
\tkzDrawSegments(O,E)
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-labelling.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-labelling.tex
index f3c8a0b3dab..6fe0133db1f 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-labelling.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-labelling.tex
@@ -330,7 +330,7 @@ options & default & definition \\
\end{tabular}
\medskip
-\emph{ We can use the styles from \TIKZ. The label is created and therefore "passed" between braces.}
+\emph{ We can use the styles from \TIKZ. The label is created and therefore \code{passed} between braces.}
\end{NewMacroBox}
\subsubsection{Example}
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-lines.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-lines.tex
index cc4177dd9ff..4d42e3d571a 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-lines.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-lines.tex
@@ -25,9 +25,9 @@ arguments & example & explanation \\
\toprule
options & default & definition \\
\TOline{mediator}{}{perpendicular bisector of a line segment}
-\TOline{perpendicular=through\dots}{mediator}{perpendicular to a straight line passing through a point}
+\TOline{perpendicular=through\dots}{mediator}{perpendicular to a line passing through a point}
\TOline{orthogonal=through\dots}{mediator}{see above }
-\TOline{parallel=through\dots}{mediator}{parallel to a straight line passing through a point}
+\TOline{parallel=through\dots}{mediator}{parallel to a line passing through a point}
\TOline{bisector}{mediator}{bisector of an angle defined by three points}
\TOline{bisector out}{mediator}{exterior angle bisector}
\TOline{symmedian}{mediator}{symmedian from a vertex }
@@ -59,7 +59,7 @@ options & default & definition \\
Based on a figure from O. Reboux with pst-eucl by D Rodriguez.
\begin{tkzexample}[latex=7cm,small]
-\begin{tikzpicture}[scale=.6]
+\begin{tikzpicture}[scale=.75]
% necessary
\tkzInit[xmin=-6,ymin=-4,xmax=6,ymax=6]
\tkzClip
@@ -80,7 +80,7 @@ Based on a figure from O. Reboux with pst-eucl by D Rodriguez.
Based on a figure from O. Reboux with pst-eucl by D Rodriguez.
It is not necessary to name the two points that define the mediator.
-\begin{tkzexample}[latex=7cm,small]
+\begin{tkzexample}[latex=8cm,small]
\begin{tikzpicture}[scale=.6]
\tkzInit[xmin=-6,ymin=-4,xmax=6,ymax=6]
\tkzClip
@@ -112,11 +112,13 @@ It is not necessary to name the two points that define the mediator.
Archimedes' Book of Lemmas proposition 1
\begin{tkzexample}[latex=7cm,small]
- \begin{tikzpicture}[scale=.75]
+ \begin{tikzpicture}
\tkzDefPoints{0/0/O_1,0/1/O_2,0/3/A}
\tkzDefPoint(15:3){F}
- \tkzInterLC(F,O_1)(O_1,A) \tkzGetSecondPoint{E}
- \tkzDefLine[parallel=through O_2](E,F) \tkzGetPoint{x}
+ \tkzDefPointBy[symmetry=center O_1](F)
+ \tkzGetPoint{E}
+ \tkzDefLine[parallel=through O_2](E,F)
+ \tkzGetPoint{x}
\tkzInterLC(x,O_2)(O_2,A) \tkzGetPoints{D}{C}
\tkzDrawCircles(O_1,A O_2,A)
\tkzDrawSegments[new](O_1,A E,F C,D)
@@ -169,10 +171,12 @@ Archimedes' Book of Lemmas proposition 1
\subsubsection{ With option \tkzname{euler}} % (fold)
\label{sub:eulerline}
\begin{tkzexample}[latex=7 cm,small]
-\begin{tikzpicture}
+\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
-\tkzDefLine[euler](A,B,C) \tkzGetPoints{h}{e}
-\tkzDefTriangleCenter[circum](A,B,C) \tkzGetPoint{o}
+\tkzDefLine[euler](A,B,C)
+\tkzGetPoints{h}{e}
+\tkzDefTriangleCenter[circum](A,B,C)
+\tkzGetPoint{o}
\tkzDrawPolygon[teal](A,B,C)
\tkzDrawPoints[red](A,B,C,h,e,o)
\tkzDrawLine[add= 2 and 2](h,e)
@@ -205,18 +209,22 @@ The tangent is not drawn. With option \tkzname{at}, a point of the tangent is g
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=1,rotate=-30]
\tkzDefPoints{0/0/Q,0/2/A,6/-1/O}
-\tkzDefLine[tangent from = O](Q,A) \tkzGetPoints{R}{S}
-\tkzInterLC[near](O,Q)(Q,A) \tkzGetPoints{M}{N}
+\tkzDefLine[tangent from = O](Q,A)
+\tkzGetPoints{R}{S}
+\tkzInterLC[near](O,Q)(Q,A)
+\tkzGetPoints{M}{N}
\tkzDrawCircle(Q,M)
\tkzDrawSegments[new,add = 0 and .2](O,R O,S)
\tkzDrawSegments[gray](N,O R,Q S,Q)
\tkzDrawPoints(O,Q,R,S,M,N)
\tkzMarkAngle[gray,-stealth,size=1](O,R,Q)
\tkzFindAngle(O,R,Q) \tkzGetAngle{an}
-\tkzLabelAngle(O,R,Q){$\pgfmathprintnumber{\an}^\circ$}
+\tkzLabelAngle(O,R,Q){%
+ $\pgfmathprintnumber{\an}^\circ$}
\tkzMarkAngle[gray,-stealth,size=1](O,S,Q)
\tkzFindAngle(O,S,Q) \tkzGetAngle{an}
-\tkzLabelAngle(O,S,Q){$\pgfmathprintnumber{\an}^\circ$}
+\tkzLabelAngle(O,S,Q){%
+ $\pgfmathprintnumber{\an}^\circ$}
\tkzLabelPoints(Q,O,M,N,R)
\tkzLabelPoints[above,text=red](S)
\end{tikzpicture}
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-lua.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-lua.tex
index 88a2c293ecf..714ce64bc0d 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-lua.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-lua.tex
@@ -1,7 +1,11 @@
\newpage
-\section{Working with lua : option \tkzname{lua}} \label{calc_with_lua}
+\section{Working with lua} \label{calc_with_lua}
-You can now use the "lua" option with \tkzname{\tkznameofpack} version 5.
+\subsubsection{Option \code{lua}} % (fold)
+\label{ssub:option_code_lua}
+
+% subsubsection option_code_lua (end)
+You can now use the \ItkzPopt{tkz-euclide}{lua} option with \tkzname{\tkznameofpack} version 5.
You just have to write in your preamble
|usepackage[lua]{tkz-euclide}|.
@@ -11,12 +15,18 @@ Without the option you can use \tkzname{\tkznameofpack} with the proposed code o
This version is not yet finalized although the documentation you are currently reading has been compiled with this option.
-Some information about the method used and the results obtained. Concerning the method, I considered two possibilities. The first one was simply to replace everywhere I could the calculations made by "xfp" or sometimes by "lua". This is how I went from "fp" to "xfp" and now to "lua". The second and more ambitious possibility would have been to associate to each point a complex number and to make the calculations on the complexes with "lua". Unfortunately for that I have to use libraries for which I don't know the license.
+Some information about the method used and the results obtained. Concerning the method, I considered two possibilities. The first one was simply to replace everywhere I could the calculations made by \code{xfp} or sometimes by \code{lua}. This is how I went from \code{fp} to \code{xfp} and now to \code{lua}. The second and more ambitious possibility would have been to associate to each point a complex number and to make the calculations on the complexes with \code{lua}. Unfortunately for that I have to use libraries for which I don't know the license.
-Otherwise the results are good. This documentation with "LualaTeX" and "xfp" compiles in 47s while with "lua" it takes only 30s for 236 pages.
+Otherwise the results are good. This documentation with \code{LualaTeX} and \code{xfp} compiles in 47s while with \code{lua} it takes only 30s for 236 pages.
-Another document of 61 pages is compiled 16s with "pdflaTeX" and "xfp" and 13s with "LualaTeX" and "xfp".
+Another document of 61 pages is compiled 16s with \code{pdflaTeX} and \code{xfp} and 13s with \code{LualaTeX} and \code{xfp}.
This documentation compiles with |\usepackage{tkz-base}| and |\usepackage[lua]{tkz-euclide}| but I didn't test all the interactions thoroughly.
+\subsubsection{Option \code{mini}} % (fold)
+\label{ssub:option_code_mini}
+
+When you use \tkzNamePack{tkz-elements} solely to determine the points in your figures, it is not necessary to load all the modules of \tkzname{\tkznameofpack}. In this case, by using the \ItkzPopt{tkz-euclide}{mini} option |\usepackage[mini]{tkz-euclide}| , you will only load the modules necessary for the drawings.
+
+% subsubsection option_code_mini (end)
\endinput \ No newline at end of file
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-main.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-main.tex
index 806d740884b..42ce13693b1 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-main.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-main.tex
@@ -18,13 +18,13 @@
index = totoc,
twoside,
cadre,
- headings = small
+ headings = small,
]{tkz-doc}
\gdef\tkznameofpack{tkz-euclide}
-\gdef\tkzversionofpack{5.06c}
+\gdef\tkzversionofpack{5.10c}
\gdef\tkzdateofpack{\today}
\gdef\tkznameofdoc{doc-tkz-euclide}
-\gdef\tkzversionofdoc{5.06c}
+\gdef\tkzversionofdoc{5.10c}
\gdef\tkzdateofdoc{\today}
\gdef\tkzauthorofpack{Alain Matthes}
\gdef\tkzadressofauthor{}
@@ -110,6 +110,9 @@
\tikzset{new/.style={color=orange,line width=.2pt}}
\AtBeginDocument{\MakeShortVerb{\|}} % link to shortvrb
+\def\code{\texttt}
+\newcommand*{\ItkzPopt}[2]{\texttt{#2}\index{#1_3@\texttt{#1: options}!\texttt{#2}}}
+
\begin{document}
\parindent=0pt
@@ -117,9 +120,10 @@
\clearpage
\defoffile{\lefthand\
-\tkzname{\tkznameofpack} passes in version 5 with the possibility of carrying out part of the calculations using \tkzname{lua}. See the "news" and "lua" sections for more information.\\
-\tkzname{\tkznameofpack} is a set of convenient macros for drawing in a plane (fundamental two-dimensional object) with a Cartesian coordinate system. It handles the most classic situations in Euclidean Geometry. \tkzname{\tkznameofpack} is built on top of PGF and its associated front-end \TIKZ\ and is a (La)TeX-friendly drawing package. The aim is to provide a high-level user interface to build graphics relatively simply. The idea is to allow you to follow step by step a construction that would be done by hand as naturally as possible.\\
-English is not my native language so there might be some errors.
+
+\tkzname{\tkznameofpack} is a set of convenient macros for drawing in a plane (fundamental two-dimensional object) with a Cartesian coordinate system. It handles the most classic situations in Euclidean Geometry. \tkzname{\tkznameofpack} is built on top of PGF and its associated front-end \TIKZ\ and is a (La)TeX-friendly drawing package. The aim is to provide a high-level user interface to build graphics relatively effortlessly. The goal is to guide users through constructing diagrams step by step, mirroring the natural process of manual construction as closely as possible.\\
+Version 5 of \tkzname{\tkznameofpack} includes the option to utilize Lua for performing certain calculations, refer to the \code{news} and \code{lua} sections.\\
+Please note: English is not my native language, so there may be some errors.
}
\presentation
@@ -128,7 +132,13 @@ English is not my native language so there might be some errors.
\lefthand\ Firstly, I would like to thank \textbf{Till Tantau} for the beautiful \LaTeX{} package, namely \href{http://sourceforge.net/projects/pgf/}{\TIKZ}.
\vspace*{12pt}
-\lefthand\ Acknowledgements : I received much valuable advice, remarks, corrections and examples from \tkzimp{Jean-Côme Charpentier}, \tkzimp{Josselin Noirel}, \tkzimp{Manuel Pégourié-Gonnard}, \tkzimp{Franck Pastor}, \tkzimp{David Arnold}, \tkzimp{Ulrike Fischer}, \tkzimp{Stefan Kottwitz}, \tkzimp{Christian Tellechea}, \tkzimp{Nicolas Kisselhoff}, \tkzimp{David Arnold}, \tkzimp{Wolfgang Büchel}, \tkzimp{John Kitzmiller}, \tkzimp{Dimitri Kapetas}, \tkzimp{Gaétan Marris}, \tkzimp{Mark Wibrow}, \tkzimp{Yves Combe} for his work on a protractor, \tkzimp{Paul Gaborit}, \tkzimp{Laurent Van Deik} for all his corrections, remarks and questions and \tkzimp{Muzimuzhi Z} for the code about the option "dim". A big thank you to \tkzimp{Chetan Shirore} and \tkzimp{Dr. Ajit Kumar} because their work on complex numbers in their package \tkzimp{luamaths} helped me a lot.
+\lefthand\ Acknowledgements : I received much valuable advices, remarks, corrections and examples from
+
+\tkzimp{Jean-Côme Charpentier}, \tkzimp{Josselin Noirel}, \tkzimp{Manuel Pégourié-Gonnard}, \tkzimp{Franck Pastor}, \tkzimp{David Arnold},
+
+\tkzimp{Ulrike Fischer}, \tkzimp{Stefan Kottwitz}, \tkzimp{Christian Tellechea}, \tkzimp{Nicolas Kisselhoff}, \tkzimp{David Arnold}, \tkzimp{Wolfgang Büchel},
+
+\tkzimp{John Kitzmiller}, \tkzimp{Dimitri Kapetas}, \tkzimp{Gaétan Marris}, \tkzimp{Mark Wibrow}, \tkzimp{Yves Combe}, \tkzimp{Paul Gaborit}, \tkzimp{Laurent Van Deik} and \tkzimp{Muzimuzhi Z}.
\vspace*{12pt}
\lefthand\ I would also like to thank Eric Weisstein, creator of MathWorld:
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-news.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-news.tex
index 6667d5bcda7..9a21f266371 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-news.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-news.tex
@@ -1,218 +1,227 @@
\section*{News and compatibility}
-\subsection{With 5.06 version}
- \begin{itemize}
- \item Correction of a bug with the macro |\tkzLabelAngle| and the option “angle”
- \item Added |\tkzSetUpCircle|
- \item Correction of some typos
- \item Remove some french texts
- \end{itemize}
-
-
-\subsection{With 5.05 version}
-
- Correction of the documentation in Complete but minimal example.
-
-\subsection{With 5.03 version}
+\subsection{With 5.10 version}
\begin{itemize}
+ \item Added french documentation
- \item Correction of a bug in the macro |\tkzDefBarycentricPointTwo| of the file tkz-obj-lua-points-spc.tex ;
-
- \item Add macro |\tkzDrawEllipse|;
-
- \item Deleting macros |\tkzDrawSectorAngles| and |\tkzDrawSectorRwithNodesAngles|.
-\end{itemize}
-
-
-\subsection{With 5.0 version} % (fold)
-
-\begin{itemize}
-
- \item Finally, I added the "lua" option for the package \tkzname{\tkznameofpack}. This allows to do the calculations for the main functions using lua; (see \ref{calc_with_lua}). The syntax is unchanged. Nothing changes for the user;
-
- \item The "xfp" option has become "veclen" see \ref{opt-veclen}.
-
-\end{itemize}
-
-\subsection{With 4.2 version} % (fold)
-\label{sub:with_4_2_version}
-
-Some changes have been made to make the syntax more homogeneous and especially to distinguish the definition and search for coordinates from the rest, i.e. drawing, marking and labelling.
-Now the definition macros are isolated, it will be easier to introduce a phase of coordinate calculations using \tkzimp{Lua}.
-
-Here are some of the changes.
-\vspace{1cm}
- \begin{itemize}\setlength{\itemsep}{10pt}
-
-
-\item I recently discovered a problem when using the "scale" option. When plotting certain figures with certain tools, extensive use of |pgfmathreciprocal| involves small computational errors but can add up and render the figures unfit. Here is how to proceed to avoid these problems:
-\begin{enumerate}
-
- \item On my side I introduced a patch proposed by Muzimuzhi that modifies
-|pgfmathreciprocal|;
-
-\item Another idea proposed by Muzimuzhi is to pass as an option for the |tikzpicture| environment this |/pgf/fpu/install only={reciprocal}| after loading of course the |fpu| library;
-
-\item I have in the methods chosen to define my macros tried to avoid as much as possible the use of |pgfmathreciprocal|;
-
-\item There is still a foolproof method which consists in avoiding the use of |scale = ...|. It's quite easy if, like me, you only work with fixed points fixed at the beginning of your code. The size of your figure depends only on these fixed points so you just have to adapt the coordinates of these.
-\end{enumerate}
-
-\item Now |\tkzDefCircle| gives two points as results: the center of the circle and a point of the circle. When a point of the circle is known, it is enough to use |\tkzGetPoint| or |\tkzGetFirstPoint|
-to get the center, otherwise |\tkzGetPoints| will give you the center and a point of the circle. You can always get the length of the radius with |\tkzGetLength|. I wanted to favor working with nodes and banish the appearance of numbers in the code.
-
-\item In order to isolate the definitions, I deleted or modified certain macros which are: |\tkzDrawLine|, |\tkzDrawTriangle|, |\tkzDrawCircle|, |\tkzDrawSemiCircle| and |\tkzDrawRectangle|;
-
-Thus |\tkzDrawSquare(A,B)| becomes |\tkzDefSquare(A,B)||\tkzGetPoints{C}{D}| then
-
- |\tkzDrawPolygon(A,B,C,D)|;
-
-If you want to draw a circle, you can't do so |\tkzDrawCircle[R](A,1)|. First you have to define the point through which the circle passes, so you have to do
-|\tkzDefCircle[R](A,1)| |\tkzGetPoint{a}| and finally |\tkzDrawCircle(A,a)|. Another possibilty is to define a point on the circle |\tkzDefShiftPoint[A](1,O){a}|;
-
-
-\item The following macros |tkzDefCircleBy[orthogonal through]| and |\tkzDefCircleBy[orthogonal from]| become |tkzDefCircle[orthogonal through]| and |\tkzDefCircle[orthogonal from]| ;
-
-
-\item |\tkzDefLine[euler](A,B,C)| is a macro that allows you to obtain the line of \tkzname{Euler} when possible. |\tkzDefLine[altitude](A,B,C)| is possible again, as well as |\tkzDefLine[tangent at=A](O)| and |\tkzDefLine[tangent from=P](O,A)| which did not works;
-
-
-\item | \tkzDefTangent| is replaced by |\tkzDefLine[tangent from = ...]| or |\tkzDefLine[tangent at = ...]|;
-
-
-\item I added the macro |\tkzPicAngle[tikz options](A,B,C)| for those who prefer to use \TIKZ ;
-
-
-\item The macro |\tkzMarkAngle| has been corrected;
-
-\item The macro linked to the \tkzname{apollonius} option of the |\tkzDefCircle| command has been rewritten;
-
-\item (4.23) The macro |\tkzDrawSemiCircle| has been corrected;
-
-\item
-The order of the arguments of the macro \tkzcname{tkzDefPointOnCircle} has changed: now it is center, angle and point or radius.
-I have added two options for working with radians which are \tkzname{through in rad} and \tkzname{R in rad}.
-
-
-\item I added the option \tkzname{reverse} to the arcs paths. This allows to reverse the path and to reverse if necessary the arrows that would be present.
-
-
-\item I have unified the styles for the labels. There is now only \tkzname{label style} left which is valid for points, segments, lines, circles and angles. I have deleted \tkzname{label seg style} \tkzname{label line style} and \tkzname{label angle style}
-
-\item I added the macro |tkzFillAngles| to use several angles.
-
-\item Correction option \tkzname{return} witk \tkzcname{tkzProtractor}
-
-As a reminder, the following changes have been made previously:
-
- \item |\tkzDrawMedian|, |\tkzDrawBisector|, |\tkzDrawAltitude|, |\tkzDrawMedians|, |\tkzDrawBisectors| and |\tkzDrawAltitudes| do not exist anymore. The creation and drawing separation is not respected so it is preferable to first create the coordinates of these points with |\tkzDefSpcTriangle[median]| and then to choose the ones you are going to draw with |\tkzDrawSegments| or |\tkzDrawLines|;
-
-\item |\tkzDrawTriangle| has been deleted. |\tkzDrawTriangle[equilateral]| was handy but it is better to get the third point with |\tkzDefTriangle[equilateral]| and then draw with |\tkzDrawPolygon|; idem for |\tkzDrawSquare| and |\tkzDrawGoldRectangle|;
-
-
-\item The circle inversion was badly defined so I rewrote the macro. The input arguments are always the center and a point of the circle, the output arguments are the center of the image circle and a point of the image circle or two points of the image line if the antecedent circle passes through the pole of the inversion. If the circle passes the inversion center, the image is a straight line, the validity of the procedure depends on the choice of the point on the antecedent circle;
-
-\item Correct allocation for gold sublime and euclide triangles;
-
-
-\item I added the option " next to" for the intersections LC and CC;
-
-
-\item Correction option isoceles right;
-
-\item (4.22 and 4.23) Correction of the macro |\tkzMarkAngle|;
-
-
-\item |\tkzDefMidArc(O,A,B)| gives the middle of the arc center $O$ from $A$ to $B$;
-
-\item Good news : Some useful tools have been added. They are present on an experimental basis and will undoubtedly need to be improved;
-
-
-\item The options "orthogonal from and through" depend now of \tkzcname{tkzDefCircleBy}
-
-\begin{enumerate}
-
- \item |\tkzDotProduct(A,B,C)| computes the scalar product in an orthogonal reference system of the vectors $\overrightarrow{A,B}$ and $\overrightarrow{A,C}$.
-
- |\tkzDotProduct(A,B,C)=aa'+bb' if vec{AB} =(a,b) and vec{AC} =(a',b')|
-
-
- \item |\tkzPowerCircle(A)(B,C)| power of point $A$ with respect to the circle of center $B$ passing through $C$;
-
-
- \item |\tkzDefRadicalAxis(A,B)(C,D)| Radical axis of two circles of center $A$ and $C$;
-
-
-\item (4.23) The macro |tkzDefRadicalAxis| has been completed
-
- \item Some tests : |\tkzIsOrtho(A,B,C)| and |\tkzIsLinear(A,B,C)| The first indicates whether the lines $(A,B)$ and $(A,C)$ are orthogonal. The second indicates whether the points $A$, $B$ and $C$ are aligned;
-
- |\tkzIsLinear(A,B,C)| if $A$,$B$,$C$ are aligned then |\tkzLineartrue|
- you can use |\iftkzLinear| (idem for |\tkzIsOrtho|);
-
-\item A style for vectors has been added that you can of course modify
-
-|tikzset{vector style/.style={>=Latex,->}}|;
-
-
-\item Now it's possible to add an arrow on a line or a circle with the option |tkz arrow|.
-\end{enumerate}
+ \item Added the \code{mini} option. You can use this option with the \tkzNamePack{tkz-elements} package. Only the modules required for tracing will be loaded. This option is currently only available if you are using \tkzNamePack{tkz-elements}.
\end{itemize}
-% subsection with_4_2_version (end)
-\subsection{Changes with previous versions} % (fold)
-\label{sub:changes_with_previous_versions}
-
-\vspace{1cm}
- \begin{itemize}\setlength{\itemsep}{10pt}
-
-\item I remind you that an important novelty is the recent replacement of the \tkzNamePack{fp} package by \tkzNamePack{xfp}. This is to improve the calculations a little bit more and to make it easier to use;
-
-\item First of all, you don’t have to deal with \TIKZ\ the size of the bounding box. Early versions of \tkzname{\tkznameofpack} did not control the size of the bounding box, The bounding box is now controlled in each macro (hopefully) to avoid the use of \tkzcname{tkzInit} followed by \tkzcname{tkzClip};
-
-\item With \tkzimp{tkz-euclide} loads all objects, so there's no need to place \tkzcname{usetkzobj\{all\}};
-
-\item Added macros for the bounding box: \tkzcname{tkzSaveBB} \tkzcname{tkzClipBB} and so on;
-
-\item Logically most macros accept \TIKZ\ options. So I removed the "duplicate" options when possible thus the "label options" option is removed;
-
-\item The unit is now the cm;
-
-\item |\tkzCalcLength| |\tkzGetLength| gives result in cm;
-
-\item |\tkzMarkArc| and |\tkzLabelArc| are new macros;
-
-\item Now |\tkzClipCircle| and |\tkzClipPolygon| have an option \tkzimp{out}. To use this option you must have a Bounding Box that contains the object on which the Clip action will be performed. This can be done by using an object that encompasses the figure or by using the macro \tkzcname{tkzInit};
-
-
-\item The options \tkzname{end} and \tkzname{start} which allowed to give a label to a straight line are removed. You now have to use the macro \tkzcname{tkzLabelLine};
-
-\item Introduction of the libraries \NameLib{quotes} and \NameLib{angles}; it allows to give a label to a point, even if I am not in favour of this practice;
-
-\item The notion of vector disappears, to draw a vector just pass "->" as an option to \tkzcname{tkzDrawSegment};
-
-
-\item |\tkzDefIntSimilitudeCenter| and |\tkzDefExtSimilitudeCenter| do not exist anymore, now you need to use |\tkzDefSimilitudeCenter[int]| or |\tkzDefSimilitudeCenter[ext]|;
-
-\item |\tkzDefRandPointOn| is replaced by |\tkzGetRandPointOn|;
-
-
-\item An option of the macro \tkzcname{tkzDefTriangle} has changed, in the previous version the option was "euclide" with an "e". Now it's "euclid";
-
-\item Random points are now in \tkzname{\tkznameofpack} and the macro \tkzcname{tkzGetRandPointOn} is replaced by
-
- \tkzcname{tkzDefRandPointOn}. For homogeneity reasons, the points must be retrieved with \tkzcname{tkzGetPoint};
-
-\item New macros have been added : \tkzcname{tkzDrawSemiCircles}, \tkzcname{tkzDrawPolygons}, \tkzcname{tkzDrawTriangles};
-
-
-\item Option "isosceles right" is a new option of the macro \tkzcname{tkzDefTriangle};
-
-\item Appearance of the macro \tkzcname{usetkztool} which allows to load new "tools";
-
-\item The styles can be modified with the help of the following macros : \tkzcname{tkzSetUpPoint}, \tkzcname{tkzSetUpLine}, \tkzcname{tkzSetUpArc}, \tkzcname{tkzSetUpCompass}, \tkzcname{tkzSetUpLabel} and \tkzcname{tkzSetUpStyle}. The last one allows you to create a new style.
-\end{itemize}
-% subsection changes_with_previous_versions (end)
+% \subsection{With 5.06 version}
+% \begin{itemize}
+% \item Correction of a bug with the macro |\tkzLabelAngle| and the option \code{angle}.
+% \item Added |\tkzSetUpCircle|.
+% \item Correction of some typos.
+% \item Remove some french texts.
+% \end{itemize}
+%
+%
+% \subsection{With 5.05 version}
+%
+% Correction of the documentation in Complete but minimal example.
+%
+% \subsection{With 5.03 version}
+%
+% \begin{itemize}
+%
+% \item Correction of a bug in the macro |\tkzDefBarycentricPointTwo| of the file tkz-obj-lua-points-spc.tex.
+%
+% \item Add macro |\tkzDrawEllipse|.
+%
+% \item Deleting macros |\tkzDrawSectorAngles| and |\tkzDrawSectorRwithNodesAngles|.
+% \end{itemize}
+%
+%
+% \subsection{With 5.0 version} % (fold)
+%
+% \begin{itemize}
+%
+% \item Finally, I added the \code{lua} option for the package \tkzname{\tkznameofpack}. This allows to do the calculations for the main functions using lua; (see \ref{calc_with_lua}). The syntax is unchanged. Nothing changes for the user.
+%
+% \item The \code{xfp} option has become \code{veclen} see \ref{opt-veclen}.
+%
+% \end{itemize}
+%
+% \subsection{With 4.2 version} % (fold)
+% \label{sub:with_4_2_version}
+%
+% Some changes have been made to make the syntax more homogeneous and especially to distinguish the definition and search for coordinates from the rest, i.e. drawing, marking and labelling.
+% Now the definition macros are isolated, it will be easier to introduce a phase of coordinate calculations using \tkzimp{Lua}.
+%
+% Here are some of the changes.
+% \vspace{1cm}
+% \begin{itemize}\setlength{\itemsep}{10pt}
+%
+%
+% \item I recently discovered a problem when using the \code{scale} option. When plotting certain figures with certain tools, extensive use of |pgfmathreciprocal| involves small computational errors but can add up and render the figures unfit. Here is how to proceed to avoid these problems:
+% \begin{enumerate}
+%
+% \item On my side I introduced a patch proposed by Muzimuzhi that modifies
+% |pgfmathreciprocal|;
+%
+% \item Another idea proposed by Muzimuzhi is to pass as an option for the |tikzpicture| environment this |/pgf/fpu/install only={reciprocal}| after loading of course the |fpu| library;
+%
+% \item I have in the methods chosen to define my macros tried to avoid as much as possible the use of |pgfmathreciprocal|;
+%
+% \item There is still a foolproof method which consists in avoiding the use of |scale = ...|. It's quite easy if, like me, you only work with fixed points fixed at the beginning of your code. The size of your figure depends only on these fixed points so you just have to adapt the coordinates of these.
+% \end{enumerate}
+%
+% \item Now |\tkzDefCircle| gives two points as results: the center of the circle and a point of the circle. When a point of the circle is known, it is enough to use |\tkzGetPoint| or |\tkzGetFirstPoint|
+% to get the center, otherwise |\tkzGetPoints| will give you the center and a point of the circle. You can always get the length of the radius with |\tkzGetLength|. I wanted to favor working with nodes and banish the appearance of numbers in the code.
+%
+% \item In order to isolate the definitions, I deleted or modified certain macros which are: |\tkzDrawLine|, |\tkzDrawTriangle|, |\tkzDrawCircle|, |\tkzDrawSemiCircle| and |\tkzDrawRectangle|;
+%
+% Thus |\tkzDrawSquare(A,B)| becomes |\tkzDefSquare(A,B)||\tkzGetPoints{C}{D}| then
+%
+% |\tkzDrawPolygon(A,B,C,D)|;
+%
+% If you want to draw a circle, you can't do so |\tkzDrawCircle[R](A,1)|. First you have to define the point through which the circle passes, so you have to do
+% |\tkzDefCircle[R](A,1)| |\tkzGetPoint{a}| and finally |\tkzDrawCircle(A,a)|. Another possibilty is to define a point on the circle |\tkzDefShiftPoint[A](1,O){a}|;
+%
+%
+% \item The following macros |tkzDefCircleBy[orthogonal through]| and |\tkzDefCircleBy[orthogonal from]| become |tkzDefCircle[orthogonal through]| and |\tkzDefCircle[orthogonal from]| ;
+%
+%
+% \item |\tkzDefLine[euler](A,B,C)| is a macro that allows you to obtain the line of \tkzname{Euler} when possible. |\tkzDefLine[altitude](A,B,C)| is possible again, as well as |\tkzDefLine[tangent at=A](O)| and |\tkzDefLine[tangent from=P](O,A)| which did not works;
+%
+%
+% \item | \tkzDefTangent| is replaced by |\tkzDefLine[tangent from = ...]| or |\tkzDefLine[tangent at = ...]|;
+%
+%
+% \item I added the macro |\tkzPicAngle[tikz options](A,B,C)| for those who prefer to use \TIKZ ;
+%
+%
+% \item The macro |\tkzMarkAngle| has been corrected;
+%
+% \item The macro linked to the \tkzname{apollonius} option of the |\tkzDefCircle| command has been rewritten;
+%
+% \item (4.23) The macro |\tkzDrawSemiCircle| has been corrected;
+%
+% \item
+% The order of the arguments of the macro \tkzcname{tkzDefPointOnCircle} has changed: now it is center, angle and point or radius.
+% I have added two options for working with radians which are \tkzname{through in rad} and \tkzname{R in rad}.
+%
+%
+% \item I added the option \tkzname{reverse} to the arcs paths. This allows to reverse the path and to reverse if necessary the arrows that would be present.
+%
+%
+% \item I have unified the styles for the labels. There is now only \tkzname{label style} left which is valid for points, segments, lines, circles and angles. I have deleted \tkzname{label seg style} \tkzname{label line style} and \tkzname{label angle style}
+%
+% \item I added the macro |tkzFillAngles| to use several angles.
+%
+% \item Correction option \tkzname{return} witk \tkzcname{tkzProtractor}
+%
+% As a reminder, the following changes have been made previously:
+%
+% \item |\tkzDrawMedian|, |\tkzDrawBisector|, |\tkzDrawAltitude|, |\tkzDrawMedians|, |\tkzDrawBisectors| and |\tkzDrawAltitudes| do not exist anymore. The creation and drawing separation is not respected so it is preferable to first create the coordinates of these points with |\tkzDefSpcTriangle[median]| and then to choose the ones you are going to draw with |\tkzDrawSegments| or |\tkzDrawLines|;
+%
+% \item |\tkzDrawTriangle| has been deleted. |\tkzDrawTriangle[equilateral]| was handy but it is better to get the third point with |\tkzDefTriangle[equilateral]| and then draw with |\tkzDrawPolygon|; idem for |\tkzDrawSquare| and |\tkzDrawGoldRectangle|;
+%
+%
+% \item The circle inversion was badly defined so I rewrote the macro. The input arguments are always the center and a point of the circle, the output arguments are the center of the image circle and a point of the image circle or two points of the image line if the antecedent circle passes through the pole of the inversion. If the circle passes the inversion center, the image is a straight line, the validity of the procedure depends on the choice of the point on the antecedent circle;
+%
+% \item Correct allocation for gold sublime and euclide triangles;
+%
+%
+% \item I added the option \code{next to} for the intersections LC and CC;
+%
+%
+% \item Correction option isoceles right;
+%
+% \item (4.22 and 4.23) Correction of the macro |\tkzMarkAngle|;
+%
+%
+% \item |\tkzDefMidArc(O,A,B)| gives the middle of the arc center $O$ from $A$ to $B$;
+%
+% \item Good news : Some useful tools have been added. They are present on an experimental basis and will undoubtedly need to be improved;
+%
+%
+% \item The options \code{orthogonal from} and \code{through} depend now of \tkzcname{tkzDefCircleBy}
+%
+% \begin{enumerate}
+%
+% \item |\tkzDotProduct(A,B,C)| computes the scalar product in an orthogonal reference system of the vectors $\overrightarrow{A,B}$ and $\overrightarrow{A,C}$.
+%
+% |\tkzDotProduct(A,B,C)=aa'+bb' if vec{AB} =(a,b) and vec{AC} =(a',b')|
+%
+%
+% \item |\tkzPowerCircle(A)(B,C)| power of point $A$ with respect to the circle of center $B$ passing through $C$;
+%
+%
+% \item |\tkzDefRadicalAxis(A,B)(C,D)| Radical axis of two circles of center $A$ and $C$;
+%
+%
+% \item (4.23) The macro |tkzDefRadicalAxis| has been completed
+%
+% \item Some tests : |\tkzIsOrtho(A,B,C)| and |\tkzIsLinear(A,B,C)| The first indicates whether the lines $(A,B)$ and $(A,C)$ are orthogonal. The second indicates whether the points $A$, $B$ and $C$ are aligned;
+%
+% |\tkzIsLinear(A,B,C)| if $A$,$B$,$C$ are aligned then |\tkzLineartrue|
+% you can use |\iftkzLinear| (idem for |\tkzIsOrtho|);
+%
+% \item A style for vectors has been added that you can of course modify
+%
+% |tikzset{vector style/.style={>=Latex,->}}|;
+%
+%
+% \item Now it's possible to add an arrow on a line or a circle with the option |tkz arrow|.
+% \end{enumerate}
+% \end{itemize}
+%
+% % subsection with_4_2_version (end)
+% \subsection{Changes with previous versions} % (fold)
+% \label{sub:changes_with_previous_versions}
+%
+% \vspace{1cm}
+% \begin{itemize}\setlength{\itemsep}{10pt}
+%
+% \item I remind you that an important novelty is the recent replacement of the \tkzNamePack{fp} package by \tkzNamePack{xfp}. This is to improve the calculations a little bit more and to make it easier to use;
+%
+%
+% \item First of all, you don’t have to deal with \TIKZ\ the size of the bounding box. Early versions of \tkzname{\tkznameofpack} did not control the size of the bounding box, The bounding box is now controlled in each macro (hopefully) to avoid the use of \tkzcname{tkzInit} followed by \tkzcname{tkzClip};
+%
+% \item With \tkzimp{tkz-euclide} loads all objects, so there's no need to place \tkzcname{usetkzobj\{all\}};
+%
+% \item Added macros for the bounding box: \tkzcname{tkzSaveBB} \tkzcname{tkzClipBB} and so on;
+%
+% \item Logically most macros accept \TIKZ\ options. So I removed the \code{duplicate} options when possible thus the \code{label options} option is removed;
+%
+% \item The unit is now the cm;
+%
+% \item |\tkzCalcLength| |\tkzGetLength| gives result in cm;
+%
+% \item |\tkzMarkArc| and |\tkzLabelArc| are new macros;
+%
+% \item Now |\tkzClipCircle| and |\tkzClipPolygon| have an option \tkzimp{out}. To use this option you must have a Bounding Box that contains the object on which the Clip action will be performed. This can be done by using an object that encompasses the figure or by using the macro \tkzcname{tkzInit};
+%
+%
+% \item The options \tkzname{end} and \tkzname{start} which allowed to give a label to a straight line are removed. You now have to use the macro \tkzcname{tkzLabelLine};
+%
+% \item Introduction of the libraries \NameLib{quotes} and \NameLib{angles}; it allows to give a label to a point, even if I am not in favour of this practice;
+%
+% \item The notion of vector disappears, to draw a vector just pass "->" as an option to \tkzcname{tkzDrawSegment};
+%
+%
+% \item |\tkzDefIntSimilitudeCenter| and |\tkzDefExtSimilitudeCenter| do not exist anymore, now you need to use |\tkzDefSimilitudeCenter[int]| or |\tkzDefSimilitudeCenter[ext]|;
+%
+% \item |\tkzDefRandPointOn| is replaced by |\tkzGetRandPointOn|;
+%
+%
+% \item An option of the macro \tkzcname{tkzDefTriangle} has changed, in the previous version the option was \code{euclide} with an \code{e}. Now it's \code{euclid};
+%
+% \item Random points are now in \tkzname{\tkznameofpack} and the macro \tkzcname{tkzGetRandPointOn} is replaced by
+%
+% \tkzcname{tkzDefRandPointOn}. For homogeneity reasons, the points must be retrieved with \tkzcname{tkzGetPoint};
+%
+% \item New macros have been added : \tkzcname{tkzDrawSemiCircles}, \tkzcname{tkzDrawPolygons}, \tkzcname{tkzDrawTriangles};
+%
+%
+% \item Option \code{isosceles right} is a new option of the macro \tkzcname{tkzDefTriangle};
+%
+% \item Appearance of the macro \tkzcname{usetkztool} which allows to load new \code{tools};
+%
+% \item The styles can be modified with the help of the following macros : \tkzcname{tkzSetUpPoint}, \tkzcname{tkzSetUpLine}, \tkzcname{tkzSetUpArc}, \tkzcname{tkzSetUpCompass}, \tkzcname{tkzSetUpLabel} and \tkzcname{tkzSetUpStyle}. The last one allows you to create a new style.
+% \end{itemize}
+% % subsection changes_with_previous_versions (end)
\endinput \ No newline at end of file
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-pointby.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-pointby.tex
index 67e357c625f..407d7a3b670 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-pointby.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-pointby.tex
@@ -104,7 +104,7 @@ options & & examples \\
\subsubsection{\tkzname{projection}}
\begin{tkzexample}[latex=7cm,small]
-\begin{tikzpicture}[scale=1.5]
+\begin{tikzpicture}[scale=1.25]
\tkzDefPoints{0/0/A,0/4/B}
\tkzDefTriangle[pythagore](B,A) \tkzGetPoint{C}
\tkzDefLine[bisector](B,C,A) \tkzGetPoint{c}
@@ -116,7 +116,7 @@ options & & examples \\
\tkzDrawSegment(C,D)
\tkzDrawCircle(D,A)
\tkzDrawSegment[new](D,G)
- \tkzMarkRightAngle[fill=orange!10,opacity=.4](D,G,B)
+ \tkzMarkRightAngle[fill=orange!10](D,G,B)
\tkzDrawPoints(A,C,F) \tkzLabelPoints(A,C,F)
\tkzDrawPoints(B,D,E,G)
\tkzLabelPoints[above right](B,D,E)
@@ -143,7 +143,7 @@ options & & examples \\
\subsubsection{\tkzname{rotation} }
\begin{tkzexample}[latex=7cm,small]
-\begin{tikzpicture}[scale=0.5]
+\begin{tikzpicture}[scale=0.75]
\tkzDefPoints{0/0/A,5/0/B}
\tkzDrawSegment(A,B)
\tkzDefPointBy[rotation=center A angle 60](B)
@@ -199,6 +199,7 @@ options & & examples \\
Inversion is the process of transforming points to a corresponding set of points known as their inverse points. Two points $P$ and $P'$ are said to be inverses with respect to an inversion circle having inversion center $O$ and inversion radius $k$ if $P'$ is the perpendicular foot of the altitude of $OQP$, where $Q$ is a point on the circle such that $OQ$ is perpendicular to $PQ$.\\
The quantity $k^2$ is known as the circle power (Coxeter 1969, p. 81).
+
(\url{https://mathworld.wolfram.com/Inversion.html})
Some propositions :
@@ -273,7 +274,7 @@ Directly
\subsubsection{\tkzname{inversion of lines} ex 2}
\begin{tkzexample}[latex=6cm,small]
-\begin{tikzpicture}[scale=.5]
+\begin{tikzpicture}[scale=.8]
\tkzDefPoints{0/0/O,3/0/I,3/2/P,3/-2/Q}
\tkzDrawCircle(O,I)
\tkzDefPointBy[projection= onto P--Q](O) \tkzGetPoint{A}
@@ -292,7 +293,7 @@ Directly
\subsubsection{\tkzname{inversion of lines} ex 3}
\begin{tkzexample}[latex=6cm,small]
-\begin{tikzpicture}[scale=.5]
+\begin{tikzpicture}[scale=.8]
\tkzDefPoints{0/0/O,3/0/I,2/1/P,2/-2/Q}
\tkzDrawCircle(O,I)
\tkzDefPointBy[projection= onto P--Q](O) \tkzGetPoint{A}
@@ -311,7 +312,7 @@ Directly
\subsubsection{\tkzname{inversion} of circle and \tkzname{homothety} }
\begin{tkzexample}[latex=7cm,small]
-\begin{tikzpicture}[scale=.75]
+\begin{tikzpicture}[scale=.7]
\tkzDefPoints{0/0/O,3/2/A,2/1/P}
\tkzDefLine[tangent from = O](A,P) \tkzGetPoints{T}{X}
\tkzDefPointsBy[homothety = center O%
@@ -319,7 +320,7 @@ Directly
\tkzInterCC(A,P)(A',P') \tkzGetPoints{C}{D}
\tkzCalcLength(A,P)
\tkzGetLength{rAP}
-\tkzDefPointOnCircle[R= center A angle 190 radius \rAP]
+\tkzDefPointOnCircle[R=center A angle 190 radius \rAP]
\tkzGetPoint{M}
\tkzDefPointBy[inversion = center O through C](M)
\tkzGetPoint{M'}
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-points.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-points.tex
index 2741872f8c0..c8a45d5ea4a 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-points.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-points.tex
@@ -6,7 +6,7 @@ The general idea is to avoid manipulating coordinates and to prefer to use the r
\tkzname{\tkznameofpack} uses macros and vocabulary specific to geometric construction. It is of course possible to use the tools of \TIKZ\ but it seems more logical to me not to mix the different syntaxes.
-A point in \tkzname{\tkznameofpack} is a particular "node" for \TIKZ. In the next section we will see how to define points using coordinates. The style of the points (color and shape) will not be discussed. You will find some indications in some examples; for more information you can read the following section \ref{custom}.
+A point in \tkzname{\tkznameofpack} is a particular \code{node} for \TIKZ. In the next section we will see how to define points using coordinates. The style of the points (color and shape) will not be discussed. You will find some indications in some examples; for more information you can read the following section \ref{custom}.
\section{Definition of a point : \tkzcname{tkzDefPoint} or \tkzcname{tkzDefPoints}}
@@ -36,7 +36,7 @@ A point is defined if it has a name linked to a unique pair of decimal numbers.
\tkzNameMacro{coordinate}, a macro of \TIKZ. It can use \TIKZ-specific options such as \tkzname{shift}. If calculations are required then the \tkzNamePack{xfp} package is chosen. We can use Cartesian or polar coordinates.
-\begin{minipage}[t]{0.45\textwidth}
+\begin{minipage}[t]{0.48\textwidth}
Cartesian coordinates
\begin{tkzexample}[code only,small]
\begin{tikzpicture}[scale=1]
@@ -48,7 +48,7 @@ A point is defined if it has a name linked to a unique pair of decimal numbers.
\tkzDefPoints{0/0/O,1/0/I,0/1/J}
\tkzDefPoint(3,4){A}
\tkzDrawPoints(O,A)
- \tkzLabelPoint[above](A){$A_1 (x_1,y_1)$}
+ \tkzLabelPoint[above](A){$A_1(x_1,y_1)$}
\tkzShowPointCoord[xlabel=$x_1$,
ylabel=$y_1$](A)
\tkzLabelPoints(O,I)
@@ -60,7 +60,7 @@ A point is defined if it has a name linked to a unique pair of decimal numbers.
\begin{minipage}[t]{0.45\textwidth}
Polar coordinates
\begin{tkzexample}[code only,small]
-\begin{tikzpicture}[,scale=1]
+\begin{tikzpicture}[scale=1]
\tkzInit[xmax=5,ymax=5]
\tkzDrawX[>=latex]
\tkzDrawY[>=latex]
@@ -73,7 +73,7 @@ A point is defined if it has a name linked to a unique pair of decimal numbers.
\tkzFillAngle[opacity=.5](I,O,P)
\tkzLabelAngle[pos=1.25](I,O,P){%
$\alpha$}
- \tkzLabelPoint[right](P){$P (\alpha : d )$}
+ \tkzLabelPoint[right](P){$P(\alpha:d)$}
\tkzDrawPoints[shape=cross](I,J)
\tkzLabelPoints(O,I)
\tkzLabelPoints[left](J)
@@ -143,7 +143,7 @@ options & default & definition \\
\subsubsection{Cartesian coordinates }
-\begin{tkzexample}[latex=5cm,small]
+\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}
\tkzInit[xmax=5,ymax=5] % limits the size of the axes
\tkzDrawX[>=latex]
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-pointsSpc.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-pointsSpc.tex
index 15529b33eb7..7d0b23f4c92 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-pointsSpc.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-pointsSpc.tex
@@ -1,6 +1,6 @@
Now that the fixed points are defined, we can with their references using macros from the package or macros that you will create get new points. The calculations may not be apparent but they are usually done by the package.
You may need to use some mathematical constants, here is the list of constants defined by the package.
-You may need to use some mathematical constants, here is the list of constants defined by the package.
+
\section{Auxiliary tools}
\subsection{Constants}
@@ -34,10 +34,10 @@ arguments & default & example \\
\end{tabular}
\end{NewMacroBox}
-Sometimes you need to get two points. It's possible with
+Sometimes you need to get two points. It's possible with
\begin{NewMacroBox}{tkzGetPoints}{\marg{ref1}\marg{ref2}}%
-The result is in \tkzname{tkzPointFirstResult} and \tkzname{tkzPointSecondResult}.
+The result is in \tkzname{tkzPointFirstResult} and \tkzname{tkzPointSecondResult}.
\medskip
\begin{tabular}{lll}%
@@ -51,7 +51,7 @@ arguments & default & example \\
If you need only the first or the second point you can also use :
\begin{NewMacroBox}{tkzGetFirstPoint}{\marg{ref1}}%
-
+
\medskip
\begin{tabular}{lll}%
\toprule
@@ -75,7 +75,7 @@ arguments & default & example \\
Sometimes the results consist of a point and a dimension. You get the point with \tkzcname{tkzGetPoint} and the dimension with \tkzcname{tkzGetLength}.
\begin{NewMacroBox}{tkzGetLength}{\marg{name of a macro}}%
-
+
\medskip
\begin{tabular}{lll}%
\toprule
@@ -112,7 +112,7 @@ Review the use of \tkzcname{tkzDefPoint}.
\begin{tikzpicture}[scale=1]
\tkzDefPoint(2,3){A}
\tkzDefPoint(6,2){B}
- \tkzDefMidPoint(A,B)
+ \tkzDefMidPoint(A,B)
\tkzGetPoint{M}
\tkzDrawSegment(A,B)
\tkzDrawPoints(A,B,M)
@@ -146,7 +146,7 @@ $AB=a$, $BC=b$ and $\dfrac{AC}{AB} = \dfrac{AB}{BC} =\phi$
\begin{tikzpicture}
\tkzDefPoints{0/0/A,6/0/C}
\tkzDefMidPoint(A,C) \tkzGetPoint{I}
- %\tkzDefPointWith[linear,K=\tkzInvPhi](A,C)
+ %\tkzDefPointWith[linear,K=\tkzInvPhi](A,C)
\tkzDefGoldenRatio(A,C) \tkzGetPoint{B}
\tkzDrawSegments(A,C)
\tkzDrawPoints(A,B,C)
@@ -242,30 +242,35 @@ The centers of the two homotheties in which two circles correspond are called ex
arguments & example & explanation \\
\midrule
\TAline{\parg{pt1,pt2}\parg{pt3,pt4}}{$(O,A)(O',B)$} {$r=OA,r'=O'B$}
-\end{tabular}
-
+\end{tabular}
+
\medskip
\begin{tabular}{lll}%
\toprule
-options & default & definition \\
+options & default & definition \\
\midrule
\TOline{ext}{ext}{external center}
\TOline{int}{ext}{internal center}
\end{tabular}
-\end{NewMacroBox}
+\end{NewMacroBox}
\subsubsection{Internal and external with \tkzname{node}}
-\begin{tkzexample}[latex=7cm,small]
-\begin{tikzpicture}[scale=.75]
+\begin{tkzexample}[latex=7.5cm,small]
+\begin{tikzpicture}[scale=.7]
\tkzDefPoints{0/0/O,4/-5/A,3/0/B,5/-5/C}
-\tkzDefSimilitudeCenter[int](O,B)(A,C) \tkzGetPoint{I}
- \tkzDefSimilitudeCenter[ext](O,B)(A,C) \tkzGetPoint{J}
- \tkzDefLine[tangent from = I](O,B) \tkzGetPoints{D}{E}
- \tkzDefLine[tangent from = I](A,C) \tkzGetPoints{D'}{E'}
- \tkzDefLine[tangent from = J](O,B) \tkzGetPoints{F}{G}
- \tkzDefLine[tangent from = J](A,C)
+ \tkzDefSimilitudeCenter[int](O,B)(A,C)
+ \tkzGetPoint{I}
+ \tkzDefSimilitudeCenter[ext](O,B)(A,C)
+ \tkzGetPoint{J}
+ \tkzDefLine[tangent from = I](O,B)
+ \tkzGetPoints{D}{E}
+ \tkzDefLine[tangent from = I](A,C)
+ \tkzGetPoints{D'}{E'}
+ \tkzDefLine[tangent from = J](O,B)
+ \tkzGetPoints{F}{G}
+ \tkzDefLine[tangent from = J](A,C)
\tkzGetPoints{F'}{G'}
- \tkzDrawCircles(O,B A,C)
+ \tkzDrawCircles(O,B A,C)
\tkzDrawSegments[add = .5 and .5,new](D,D' E,E')
\tkzDrawSegments[add= 0 and 0.25,new](J,F J,G)
\tkzDrawPoints(O,A,I,J,D,E,F,G,D',E',F',G')
@@ -304,10 +309,10 @@ You can use \tkzcname{tkzDefBarycentricPoint} to find a homothetic center
\begin{tikzpicture}[rotate=60,scale=.5]
\tkzDefPoints{0/0/A,5/0/C}
\tkzDefGoldenRatio(A,C) \tkzGetPoint{B}
- \tkzDefSimilitudeCenter(A,B)(C,B) \tkzGetPoint{J}
- \tkzDefTangent[from = J](A,B) \tkzGetPoints{F}{G}
- \tkzDefTangent[from = J](C,B) \tkzGetPoints{F'}{G'}
- \tkzDrawCircles(A,B C,B)
+ \tkzDefSimilitudeCenter(A,B)(C,B)\tkzGetPoint{J}
+ \tkzDefTangent[from = J](A,B) \tkzGetPoints{F}{G}
+ \tkzDefTangent[from = J](C,B) \tkzGetPoints{F'}{G'}
+ \tkzDrawCircles(A,B C,B)
\tkzDrawSegments[add= 0 and 0.25,cyan](J,F J,G)
\tkzDrawPoints(A,J,F,G,F',G')
\end{tikzpicture}
@@ -318,15 +323,15 @@ You can use \tkzcname{tkzDefBarycentricPoint} to find a homothetic center
%<---------------------------------------------------------------------->
\begin{NewMacroBox}{tkzDefHarmonic}{\oarg{options}\parg{pt1,pt2,pt3} or \parg{pt1,pt2,k}}%
-
+
\begin{tabular}{lll}%
-options & default & definition \\
+options & default & definition \\
\midrule
\TOline{both}{both}{\parg{A,B,2} we look for C and D such that $(A,B;C,D) = -1$ and CA=2CB }
\TOline{ext}{both}{\parg{A,B,C} we look for D such that $(A,B;C,D) = -1$}
\TOline{int}{both}{\parg{A,B,D} we look for C such that $(A,B;C,D) = -1$}
\end{tabular}
-\end{NewMacroBox}
+\end{NewMacroBox}
\subsubsection{options \tkzname{ext} and \tkzname{int}}
\begin{tkzexample}[vbox,small]
@@ -448,7 +453,7 @@ arguments & default & definition \\
\tkzInterLL(B,Q)(A,P) \tkzGetPoint{S}
\tkzDefMidPoint(P_2',P_1') \tkzGetPoint{o}
\tkzDefPointBy[inversion = center A through D](S) \tkzGetPoint{S'}
- \tkzDrawArc[cyan,delta=0](Q,A)(P_1)
+ \tkzDrawArc[cyan,delta=0](Q,A)(P_1)
\tkzDrawArc[cyan,delta=0](P,P_1)(B)
\tkzDrawSemiCircles[teal](O_1,B O_2,C O_3,B)
\tkzDrawCircles[new](o,P O_4,P_1)
@@ -531,7 +536,7 @@ options & default & examples definition \\
\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}[scale=.4]
\tkzDefPoints{0/0/P,5/0/Q,3/2/I}
-\tkzDefCircle[orthogonal from=P](Q,I)
+\tkzDefCircle[orthogonal from=P](Q,I)
\tkzGetFirstPoint{E}
\tkzDrawCircles(P,E Q,E)
\tkzInterCC[common=E](P,E)(Q,E) \tkzGetFirstPoint{F}
@@ -546,18 +551,18 @@ options & default & examples definition \\
\tkzLabelPoints(P,Q,F,C,D)
\tkzLabelPoints[above](E,A)
\end{tikzpicture}
-\end{tkzexample}
-
+\end{tkzexample}
+
\subsubsection{Use of \tkzcname{tkzDefPointOnCircle}}
-\begin{tkzexample}[latex=7cm,small]
+\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}
-\tkzDefPoints{0/0/A,4/0/B,0.8/3/C}
+\tkzDefPoints{0/0/A,4/0/B,0.8/3/C}
\tkzDefPointOnCircle[R = center B angle 90 radius 1]
\tkzGetPoint{I}
\tkzDefCircle[circum](A,B,C)
\tkzGetPoints{G}{g}
-\tkzDefPointOnCircle[through = center G angle 30 point g]
+\tkzDefPointOnCircle[through = center G angle 30 point g]
\tkzGetPoint{J}
\tkzDefCircle[R](B,1) \tkzGetPoint{b}
\tkzDrawCircle[teal](B,b)
@@ -620,7 +625,7 @@ options & default & definition \\
\tkzGetPoint{H}
\tkzDefSpcTriangle[orthic,name=H](A,B,C){a,b,c}
\tkzDrawPolygon(A,B,C)
- \tkzDrawSegments[new](A,Ha B,Hb C,Hc)
+ \tkzDrawSegments[new](A,Ha B,Hb C,Hc)
\tkzDrawPoints(A,B,C,H)
\tkzLabelPoint(H){$H$}
\tkzLabelPoints[below](A,B)
@@ -659,16 +664,16 @@ options & default & definition \\
In geometry, the incircle or inscribed circle of a triangle is the largest circle contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter.
The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex $A$, for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex $A$, or the excenter of $A$. Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of the incircle together with the three excircle centers form an orthocentric system.\\
(Article on \href{https://en.wikipedia.org/wiki/Incircle_and_excircles_of_a_triangle}{Wikipedia})
-
+
\medskip
We get the center of the inscribed circle of the triangle. The result is of course in \tkzname{tkzPointResult}. We can retrieve it with \tkzcname{tkzGetPoint}.
-\begin{tkzexample}[latex=8cm,small]
+\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
-\tkzDefTriangleCenter[in](A,B,C)
+\tkzDefTriangleCenter[in](A,B,C)
\tkzGetPoint{I}
-\tkzDrawLines(A,B B,C C,A)
+\tkzDrawLines(A,B B,C C,A)
\tkzDefCircle[in](A,B,C) \tkzGetPoints{I}{i}
\tkzDrawCircle(I,i)
\tkzDrawPoint[red](I)
@@ -702,11 +707,11 @@ An excircle or escribed circle of the triangle is a circle lying outside the tri
\subsubsection{Option \tkzname{euler}}
This macro allows to obtain the center of the circle of the nine points or euler's circle or Feuerbach's circle. The nine-point circle, also called Euler's circle or the Feuerbach circle, is the circle that passes through the perpendicular feet $H_A$, $H_B$, and $H_C$ dropped from the vertices of any reference triangle $ABC$ on the sides opposite them. Euler showed in 1765 that it also passes through the midpoints $M_A$, $M_B$, $M_C$ of the sides of $ABC$. By Feuerbach's theorem, the nine-point circle also passes through the midpoints $E_A$, $E_B$, and $E_C$ of the segments that join the vertices and the orthocenter $H$. These points are commonly referred to as the Euler points.\\ (\url{https://mathworld.wolfram.com/Nine-PointCircle.html})
-\begin{tkzexample}[latex=5cm,small]
-\begin{tikzpicture}[scale=1,rotate=90]
+\begin{tkzexample}[latex=6cm,small]
+\begin{tikzpicture}[scale=1.2,rotate=90]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefSpcTriangle[medial,name=M](A,B,C){_A,_B,_C}
- \tkzDefTriangleCenter[euler](A,B,C)\tkzGetPoint{N}
+ \tkzDefTriangleCenter[euler](A,B,C)\tkzGetPoint{N}
% I= N nine points
\tkzDefTriangleCenter[ortho](A,B,C)\tkzGetPoint{H}
\tkzDefMidPoint(A,H) \tkzGetPoint{E_A}
@@ -721,7 +726,8 @@ This macro allows to obtain the center of the circle of the nine points or euler
\tkzDrawPoints( H_A,H_B,H_C)
\tkzDrawPoints[green](E_A,E_B,E_C)
\tkzAutoLabelPoints[center=N,
- font=\scriptsize](A,B,C,M_A,M_B,M_C,H_A,H_B,H_C,E_A,E_B,E_C)
+ font=\scriptsize](A,B,C,M_A,M_B,M_C,H_A,H_B,H_C,%
+ E_A,E_B,E_C)
\tkzLabelPoints[font=\scriptsize](H,N)
\tkzMarkSegments[mark=s|,size=3pt,
color=blue,line width=1pt](B,E_B E_B,H)
@@ -732,15 +738,17 @@ This macro allows to obtain the center of the circle of the nine points or euler
\subsubsection{Option \tkzname{symmedian}}
The point of concurrence $K$ of the symmedians, sometimes also called the Lemoine point (in England and France) or the Grebe point (in Germany).\\
-\href{https://mathworld.wolfram.com/SymmedianPoint.html}{Weisstein, Eric W. "Symmedian Point." From MathWorld--A Wolfram Web Resource.}
+\href{https://mathworld.wolfram.com/SymmedianPoint.html}{Weisstein, Eric W. "Symmedian Point." From MathWorld--A Wolfram Web Resource.}
-\begin{tkzexample}[latex=6cm,small]
+\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,0){B}
\tkzDefPoint(1,4){C}
- \tkzDefTriangleCenter[symmedian](A,B,C)\tkzGetPoint{K}
- \tkzDefTriangleCenter[median](A,B,C)\tkzGetPoint{G}
+ \tkzDefTriangleCenter[symmedian](A,B,C)
+ \tkzGetPoint{K}
+ \tkzDefTriangleCenter[median](A,B,C)
+ \tkzGetPoint{G}
\tkzDefTriangleCenter[in](A,B,C)\tkzGetPoint{I}
\tkzDefSpcTriangle[centroid,name=M](A,B,C){a,b,c}
\tkzDefSpcTriangle[incentral,name=I](A,B,C){a,b,c}
@@ -762,9 +770,9 @@ The Spieker center is the center $Sp$ of the Spieker circle, i.e., the incenter
\begin{tikzpicture}
\tkzDefPoints{0/0/A,6/0/B,5/5/C}
\tkzDefSpcTriangle[medial](A,B,C){Ma,Mb,Mc}
- \tkzDefTriangleCenter[centroid](A,B,C)
+ \tkzDefTriangleCenter[centroid](A,B,C)
\tkzGetPoint{G}
- \tkzDefTriangleCenter[spieker](A,B,C)
+ \tkzDefTriangleCenter[spieker](A,B,C)
\tkzGetPoint{Sp}
\tkzDrawPolygon[](A,B,C)
\tkzDrawPolygon[new](Ma,Mb,Mc)
@@ -780,13 +788,13 @@ The Spieker center is the center $Sp$ of the Spieker circle, i.e., the incenter
\subsubsection{Option \tkzname{gergonne}}
-The Gergonne Point is the point of concurrency which results from connecting the vertices of a triangle to the opposite points of tangency of the triangle's incircle.
+The Gergonne Point is the point of concurrency which results from connecting the vertices of a triangle to the opposite points of tangency of the triangle's incircle.
(Joseph Gergonne French mathematician )
\begin{tkzexample}[latex=8cm,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/B,3.6/0/C,2.8/4/A}
-\tkzDefTriangleCenter[gergonne](A,B,C)
+\tkzDefTriangleCenter[gergonne](A,B,C)
\tkzGetPoint{Ge}
\tkzDefSpcTriangle[intouch](A,B,C){C_1,C_2,C_3}
\tkzDefCircle[in](A,B,C) \tkzGetPoints{I}{i}
@@ -809,7 +817,7 @@ Let $Ta$ be the point at which the excircle with center $Ja$ meets the side $BC$
\tkzDefPoints{0/0/A,6/0/B,4/6/C}
\tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc}
\tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc}
- \tkzDefTriangleCenter[nagel](A,B,C)
+ \tkzDefTriangleCenter[nagel](A,B,C)
\tkzGetPoint{Na}
\tkzDrawPolygon[blue](A,B,C)
\tkzDrawLines[add=0 and 1](A,Ta B,Tb C,Tc)
@@ -829,7 +837,7 @@ Let $Ta$ be the point at which the excircle with center $Ja$ meets the side $BC$
\end{tkzexample}
-\subsubsection{Option \tkzname{mittenpunkt}}
+\subsubsection{Option \tkzname{mittenpunkt}}
The mittenpunkt (also called the middlespoint) of a triangle $ABC$ is the symmedian point of the excentral triangle, i.e., the point of concurrence M of the lines from the excenters through the corresponding triangle side midpoints.\\
\href{https://mathworld.wolfram.com/Mittenpunkt.html}{Weisstein, Eric W. "Mittenpunkt." From MathWorld--A Wolfram Web Resource.}
@@ -841,12 +849,12 @@ The mittenpunkt (also called the middlespoint) of a triangle $ABC$ is the symmed
\tkzDefSpcTriangle[centroid](A,B,C){Ma,Mb,Mc}
\tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc}
\tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc}
- \tkzDefTriangleCenter[mittenpunkt](A,B,C)
+ \tkzDefTriangleCenter[mittenpunkt](A,B,C)
\tkzGetPoint{Mi}
\tkzDrawPoints[new](Ma,Mb,Mc,Ja,Jb,Jc)
\tkzClipBB
\tkzDrawPolygon[blue](A,B,C)
- \tkzDrawLines[add=0 and 1](Ja,Ma
+ \tkzDrawLines[add=0 and 1](Ja,Ma
Jb,Mb Jc,Mc)
\tkzDrawLines[add=1 and 1](A,B A,C B,C)
\tkzDrawCircles[new](Ja,Ta Jb,Tb Jc,Tc)
@@ -867,9 +875,9 @@ The Gergonne point $Ge$, triangle centroid $G$, and mittenpunkt $M$ are collinea
\begin{tikzpicture}
\tkzDefPoints{0/0/A,2/2/B,8/0/C}
\tkzDefTriangleCenter[gergonne](A,B,C) \tkzGetPoint{Ge}
-\tkzDefTriangleCenter[centroid](A,B,C)
+\tkzDefTriangleCenter[centroid](A,B,C)
\tkzGetPoint{G}
-\tkzDefTriangleCenter[mittenpunkt](A,B,C)
+\tkzDefTriangleCenter[mittenpunkt](A,B,C)
\tkzGetPoint{M}
\tkzDrawLines[add=.25 and .25,teal](A,B A,C B,C)
\tkzDrawLines[add=.25 and .25,new](Ge,M)
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-polygons.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-polygons.tex
index 95df8ef0601..b5bbbcc91f0 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-polygons.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-polygons.tex
@@ -191,8 +191,8 @@ From the number of sides, depending on the options, this macro determines a regu
\toprule
arguments & example & explanation \\
\midrule
-\TAline{\parg{pt1,pt2}}{\parg{O,A}}{with option "center", $O$ is the center of the polygon.}
-\TAline{\parg{pt1,pt2}}{\parg{A,B}}{with option "side", $[AB]$ is a side.}
+\TAline{\parg{pt1,pt2}}{\parg{O,A}}{with option \code{center}, $O$ is the center of the polygon.}
+\TAline{\parg{pt1,pt2}}{\parg{A,B}}{with option \code{side}, $[AB]$ is a side.}
\end{tabular}
\medskip
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-presentation.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-presentation.tex
index 0073d788032..027cb7ea0dd 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-presentation.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-presentation.tex
@@ -51,27 +51,27 @@ Here are some comparisons between \tkzname{\TIKZ } and \tkzname{\tkznameofpack}
Explanation :
-The fourth tutorial of the \emph{PgfManual} is about geometric constructions. \emph{T. Tantau} proposes to get the drawing with its beautiful tool Ti\emph{k}Z. Here I propose the same construction with \emph{tkz-elements}. The color of the Ti\emph{k}Z code is orange and that of \emph{tkz-elements} is red.
+The fourth tutorial of the \emph{PgfManual} is about geometric constructions. \emph{T. Tantau} proposes to get the drawing with its beautiful tool Ti\emph{k}Z. Here I propose the same construction with \emph{tkz-elements}. The color of the Ti\emph{k}Z code is green!50!black and that of \emph{tkz-elements} is red.
\medskip
-\hspace*{1cm}\vbox{\color{orange} |\usepackage{tikz}|\\
+\vbox{\color{green!50!black} |\usepackage{tikz}|\\
|\usetikzlibrary{calc,intersections,through,backgrounds}|}
\medskip
-\hspace*{1cm}\vbox{\color{red} |\usepackage{tkz-euclide}|}
+\vbox{\color{red} |\usepackage{tkz-euclide}|}
\medskip
How to get the line AB ? To get this line, we use two fixed points.\\
\medskip
-\hspace*{1cm}\vbox{\color{orange}
+\vbox{\color{green!50!black}
|\coordinate [label=left:$A$] (A) at (0,0);|\\
|\coordinate [label=right:$B$] (B) at (1.25,0.25);|\\
|\draw (A) -- (B);|}
\medskip
-\hspace*{1cm}\vbox{\color{red}
+\vbox{\color{red}
|\tkzDefPoint(0,0){A}|\\
|\tkzDefPoint(1.25,0.25){B}|\\
|\tkzDrawSegment(A,B)|\\
@@ -81,14 +81,14 @@ How to get the line AB ? To get this line, we use two fixed points.\\
We want to draw a circle around the points $A$ and $B$ whose radius is given by the length of the line AB.
\medskip
-\hspace*{1cm}\vbox{\color{orange}
+\vbox{\color{green!50!black}
|\draw let \p1 = ($ (B) - (A) $),|\\
|\n2 = {veclen(\x1,\y1)} in|\\
| (A) circle (\n2)|\\
| (B) circle (\n2);|}
\medskip
-\hspace*{1cm}\vbox{\color{red}
+\vbox{\color{red}
|\tkzDrawCircles(A,B B,A)|
}
@@ -96,27 +96,27 @@ The intersection of the circles $\mathcal{D}$ and $\mathcal{E}$
\medskip
-\hspace*{1cm}\vbox{\color{orange}
+\vbox{\color{green!50!black}
|draw [name path=A--B] (A) -- (B);|\\
|node (D) [name path=D,draw,circle through=(B),label=left:$D$] at (A) {}; |\\
|node (E) [name path=E,draw,circle through=(A),label=right:$E$] at (B) {};|\\
-|path [name intersections={of=D and E, by={[label=above:$C$]C, [label=below:$C'$]C'}}]; |\\
+|path [name intersections={of=D and E, by={[label=above:$C$]C,[label=below:$C'$]C'}}]; |\\
|draw [name path=C--C',red] (C) -- (C');|\\
|path [name intersections={of=A--B and C--C',by=F}];|\\
|node [fill=red,inner sep=1pt,label=-45:$F$] at (F) {};|\\}
\medskip
-\hspace*{1cm}\vbox{\color{red} |\tkzInterCC(A,B)(B,A) \tkzGetPoints{C}{X}|\\}
+\vbox{\color{red} |\tkzInterCC(A,B)(B,A) \tkzGetPoints{C}{X}|\\}
How to draw points :
\medskip
-\hspace*{1cm}\vbox{\color{orange} |\foreach \point in {A,B,C}|\\
+\vbox{\color{green!50!black} |\foreach \point in {A,B,C}|\\
|\fill [black,opacity=.5] (\point) circle (2pt);|\\}
\medskip
-\hspace*{1cm}\vbox{\color{red}| \tkzDrawPoints[fill=gray,opacity=.5](A,B,C)|\\}
+\vbox{\color{red}| \tkzDrawPoints[fill=gray,opacity=.5](A,B,C)|\\}
\subsubsection{Complete code with \pkg{tkz-euclide}}
@@ -124,12 +124,12 @@ We need to define colors
|\colorlet{input}{red!80!black} |\\
|\colorlet{output}{red!70!black}|\\
-|\colorlet{triangle}{orange!40} |
+|\colorlet{triangle}{green!50!black!40} |
\begin{tkzexample}[vbox,small]
\colorlet{input}{red!80!black}
\colorlet{output}{red!70!black}
- \colorlet{triangle}{orange!40}
+ \colorlet{triangle}{green!50!black!40}
\begin{tikzpicture}[scale=1.25,thick,help lines/.style={thin,draw=black!50}]
\tkzDefPoint(0,0){A}
\tkzDefPoint(1.25+rand(),0.25+rand()){B}
@@ -164,7 +164,7 @@ Explanation
In the first part, we need to find the midpoint of the straight line $AB$. With \TIKZ\ we can use the calc library
\medskip
-\hspace*{1cm}\vbox{\color{orange} |\coordinate [label=left:$A$] (A) at (0,0);|\\
+\vbox{\color{green!50!black} |\coordinate [label=left:$A$] (A) at (0,0);|\\
|\coordinate [label=right:$B$] (B) at (1.25,0.25);|\\
|\draw (A) -- (B);|\\
|\node [fill=red,inner sep=1pt,label=below:$X$] (X) at ($ (A)!.5!(B) $) {};|\\}
@@ -173,40 +173,40 @@ With \pkg{tkz-euclide} we have a macro \tkzcname{tkzDefMidPoint}, we get the poi
\medskip
-\hspace*{1cm}\vbox{\red |\tkzDefPoints{0/0/A,0.75/0.25/B,1/1.5/C}|\\
-|\tkzDefMidPoint(A,B) \tkzGetPoint{X}|}\\
+\vbox{\red |\tkzDefPoints{0/0/A,0.75/0.25/B,1/1.5/C}|\\
+|\tkzDefMidPoint(A,B) \tkzGetPoint{X}|}
\medskip
Then we need to construct a triangle equilateral. It's easy with \pkg{tkz-euclide} . With TikZ you need some effort because you need to use the midpoint $X$ to get the point $D$ with trigonometry calculation.
\medskip
-\hspace*{1cm}\vbox{\color{orange}
+\vbox{\color{green!50!black}
|\node [fill=red,inner sep=1pt,label=below:$X$] (X) at ($ (A)!.5!(B) $) {}; | \\
|\node [fill=red,inner sep=1pt,label=above:$D$] (D) at | \\
|($ (X) ! {sin(60)*2} ! 90:(B) $) {}; | \\
|\draw (A) -- (D) -- (B); | \\
-} \\
+}
\medskip
-\hspace*{1cm}\vbox{\color{red} |\tkzDefTriangle[equilateral](A,B) \tkzGetPoint{D}|}\\
+\vbox{\color{red} |\tkzDefTriangle[equilateral](A,B) \tkzGetPoint{D}|}
We can draw the triangle at the end of the picture with
\medskip
-\hspace*{1cm}\vbox{\color{red} |\tkzDrawPolygon{A,B,C}|}
+\vbox{\color{red} |\tkzDrawPolygon{A,B,C}|}
\medskip
We know how to draw the circle $\mathcal{H}$ around $B$ through $C$ and how to place the points $E$ and $F$
\medskip
-\hspace*{1cm}\vbox{\color{orange}
+\vbox{\color{green!50!black}
|\node (H) [label=135:$H$,draw,circle through=(C)] at (B) {};| \\
|\draw (D) -- ($ (D) ! 3.5 ! (B) $) coordinate [label=below:$F$] (F);| \\
-|\draw (D) -- ($ (D) ! 2.5 ! (A) $) coordinate [label=below:$E$] (E);|} \\
+|\draw (D) -- ($ (D) ! 2.5 ! (A) $) coordinate [label=below:$E$] (E);|}
\medskip
-\hspace*{1cm}\vbox{\color{red} |\tkzDrawCircle(B,C)|\\
+\vbox{\color{red} |\tkzDrawCircle(B,C)|\\
|\tkzDrawLines[add=0 and 2](D,A D,B)|}
\medskip
@@ -216,32 +216,32 @@ Intersecting a Line and a Circle : here we search the intersection of the circle
The infinite straight line $DB$ intercepts the circle but with \TIKZ\ we need to extend the lines $DB$ and that can be done using partway calculations. We get the point $F$ and $BF$ or $DF$ intercepts the circle
\medskip
-\hspace*{1cm}\vbox{\color{orange}| \node (H) [label=135:$H$,draw,circle through=(C)] at (B) {}; | \\
+\vbox{\color{green!50!black}| \node (H) [label=135:$H$,draw,circle through=(C)] at (B) {}; | \\
|\path let \p1 = ($ (B) - (C) $) in| \\
| coordinate [label=left:$G$] (G) at ($ (B) ! veclen(\x1,\y1) ! (F) $); | \\
-|\fill[red,opacity=.5] (G) circle (2pt);|} \\
+|\fill[red,opacity=.5] (G) circle (2pt);|}
\medskip
Like the intersection of two circles, it's easy to find the intersection of a line and a circle with \pkg{tkz-euclide}. We don't need $F$
\medskip
-\hspace*{1cm}\vbox{\color{red} | \tkzInterLC(B,D)(B,C)\tkzGetFirstPoint{G}|}
+\vbox{\color{red} | \tkzInterLC(B,D)(B,C)\tkzGetFirstPoint{G}|}
\medskip
There are no more difficulties. Here the final code with some simplications.
We draw the circle $\mathcal{K}$ with center $D$ and passing through $G$. It intersects the line $AD$ at point $L$. $AL = BC$.
-\hspace*{1cm}\vbox{\color{red} | \tkzDrawCircle(D,G)|}
-\hspace*{1cm}\vbox{\color{red} | \tkzInterLC(D,A)(D,G)\tkzGetSecondPoint{L}|}
+\vbox{\color{red} | \tkzDrawCircle(D,G)|}
+\vbox{\color{red} | \tkzInterLC(D,A)(D,G)\tkzGetSecondPoint{L}|}
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=1.5]
\tkzDefPoint(0,0){A}
\tkzDefPoint(0.75,0.25){B}
\tkzDefPoint(1,1.5){C}
-\tkzDefTriangle[equilateral](A,B) \tkzGetPoint{D}
-\tkzInterLC[near](D,B)(B,C) \tkzGetSecondPoint{G}
-\tkzInterLC[near](A,D)(D,G) \tkzGetFirstPoint{L}
+\tkzDefTriangle[equilateral](A,B)\tkzGetPoint{D}
+\tkzInterLC[near](D,B)(B,C) \tkzGetSecondPoint{G}
+\tkzInterLC[near](A,D)(D,G) \tkzGetFirstPoint{L}
\tkzDrawCircles(B,C D,G)
\tkzDrawLines[add=0 and 2](D,A D,B)
\tkzDrawSegment(A,B)
@@ -399,7 +399,7 @@ Let's analyze the figure
\[\widehat{BCA}=90^\circ -\alpha/2 \]
\item Finally \[\widehat{CBD}=\alpha=36^\circ \]
- the triangle $CBD$ is a "golden" triangle.
+ the triangle $CBD$ is a \code{golden} triangle.
\end{enumerate}
\vspace*{24pt}
@@ -448,7 +448,7 @@ After building the golden triangle $BCD$, we build the point $A$ by noticing tha
\subsubsection{Part II: two others methods with golden and euclid triangle}
-\tkzname{\tkznameofpack} knows how to define a "golden" or "euclide" triangle. We can define $BCD$ and $BCA$ like gold triangles.
+\tkzname{\tkznameofpack} knows how to define a \code{golden} or \code{euclide} triangle. We can define $BCD$ and $BCA$ like gold triangles.
\begin{center}
@@ -529,7 +529,7 @@ $IB=a$, $AI=1$
\tkzDefMidPoint(A,B) \tkzGetPoint{M}
\tkzDefPointWith[orthogonal](I,M) \tkzGetPoint{H}
\tkzInterLC(I,H)(M,B) \tkzGetFirstPoint{C}
- \tkzDrawSegment[style=orange](I,C)
+ \tkzDrawSegment[style=purple](I,C)
\tkzDrawArc(M,B)(A)
\tkzDrawSegment[dim={$1$,-16pt,}](A,I)
\tkzDrawSegment[dim={$(a-1)/2$,-10pt,}](I,M)
@@ -587,7 +587,7 @@ The following code consists of several parts:
\item The third one includes the different drawings;
\begin{tkzltxexample}[]
- \tkzDrawSegment[style=orange](I,H)
+ \tkzDrawSegment[style=purple](I,H)
\tkzDrawPoints(O,I,A,B,M)
\tkzDrawArc(M,A)(O)
\tkzDrawSegment[dim={$1$,-16pt,}](A,I)
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-show.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-show.tex
index e1f84630c88..13f6e06ebff 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-show.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-show.tex
@@ -39,12 +39,14 @@ You have to add, of course, all the styles of \TIKZ\ for tracings\dots
\end{tkzexample}
\subsubsection{Example of \tkzcname{tkzShowLine} and \tkzname{perpendicular}}
-\begin{tkzexample}[latex=5cm,small]
+\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A, 3/2/B, 2/2/C}
-\tkzDefLine[perpendicular=through C,K=-.5](A,B) \tkzGetPoint{c}
+\tkzDefLine[perpendicular=through C,K=-.5](A,B)
+\tkzGetPoint{c}
\tkzShowLine[perpendicular=through C,K=-.5,gap=3](A,B)
-\tkzDefPointBy[projection=onto A--B](c)\tkzGetPoint{h}
+\tkzDefPointBy[projection=onto A--B](c)
+\tkzGetPoint{h}
\tkzMarkRightAngle[fill=lightgray](A,h,C)
\tkzDrawLines[add=.5 and .5](A,B C,c)
\tkzDrawPoints(A,B,C,h,c)
@@ -109,7 +111,7 @@ options & default & definition \\
\subsubsection{Example of the use of \tkzcname{tkzShowTransformation}}
\begin{tkzexample}[latex=6cm,small]
-\begin{tikzpicture}[scale=.6]
+\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){O} \tkzDefPoint(2,-2){A}
\tkzDefPoint(70:4){B} \tkzDrawPoints(A,O,B)
\tkzLabelPoints(A,O,B)
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-styles.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-styles.tex
index b81098e5ab1..5d1930584e1 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-styles.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-styles.tex
@@ -381,21 +381,21 @@ This library is used to produce different styles of arrow heads. The next examp
\tkzname{Stealth}, \tkzname{Triangle}, \tkzname{To}, \tkzname{Latex} and \dots which can be combined with \tkzname{reversed}. That's easy to place an arrow at one or two endpoints.
\begin{enumerate}
-\item \tkzname{Triangle} and \tkzname{Ray}
+\item \tkzname{-Triangle} and \tkzname{Segment}
\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDrawSegment[-Triangle](A,B)
\end{tikzpicture}
\end{tkzexample}
-\item \tkzname{Stealth} and \tkzname{Segment}
+\item \tkzname{Stealth-Stealth} and \tkzname{Segment}
\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDrawSegment[Stealth-Stealth](A,B)
\end{tikzpicture}
\end{tkzexample}
-\item \tkzname{Latex} and \tkzname{Line}
+\item \tkzname{Latex-Latex} and \tkzname{Line}
\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
@@ -403,28 +403,28 @@ This library is used to produce different styles of arrow heads. The next examp
\tkzDrawPoints(A,B)
\end{tikzpicture}
\end{tkzexample}
-\item \tkzname{To} and \tkzname{Segment}
+\item \tkzname{To-To} and \tkzname{Segment}
\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDrawSegment[To-To](A,B)
\end{tikzpicture}
\end{tkzexample}
-\item \tkzname{Latex} and \tkzname{Segment}
+\item \tkzname{Latex-Late} and \tkzname{Segment}
\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDrawSegment[Latex-Latex](A,B)
\end{tikzpicture}
\end{tkzexample}
-\item \tkzname{Latex} and \tkzname{Ray}
+\item \tkzname{Latex-} and \tkzname{Segment}
\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDrawSegment[Latex-](A,B)
\end{tikzpicture}
\end{tkzexample}
-\item \tkzname{Latex} and \tkzname{Several rays}
+\item \tkzname{-Latex} and \tkzname{Segments}
\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B,5/-2/C}
@@ -455,7 +455,7 @@ You can redefine this style.
\subsection{Arrows on middle point of a line segment}
-Arrows on lines are used to indicate that those lines are parallel. It depends on the country, in France we prefer to indicate outside the figure that $(A,B) \parallel (D,C)$. The code is an adaptation of an answer by \tkzname{muzimuzhi Z} on the site \href{https://tex.stackexchange.com/questions/632596/how-to-manage-argument-pattern-keys-and-subways}{tex.stackexchange.com}.
+Arrows on lines are used to indicate that those lines are parallel. It depends on the country, in France we prefer to indicate outside the figure that $(A,B) \parallel (D,C)$. The code is an adaptation of an answer by \tkzname{Muzimuzhi Z} on the site \href{https://tex.stackexchange.com/questions/632596/how-to-manage-argument-pattern-keys-and-subways}{tex.stackexchange.com}.
\medskip
Syntax: \\
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-tools.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-tools.tex
index 1123d86a2fc..d51cfbb0216 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-tools.tex
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-tools.tex
@@ -329,8 +329,8 @@ arguments & example & explanation \\
\node at (1,-3) {%
$\overrightarrow{PA}\cdot \overrightarrow{PB} =
\overrightarrow{PC}\cdot \overrightarrow{PD}$};
- \node at (1,-4)%
- {$\overrightarrow{PA}\cdot \overrightarrow{PB} =\pab$};
+ \node at (1,-4)%
+ {$\overrightarrow{PA}\cdot \overrightarrow{PB}=\pab$};
\node at (1,-5){%
$\overrightarrow{PC}\cdot \overrightarrow{PD} =\pcd$};
\end{tikzpicture}
@@ -361,9 +361,12 @@ In this example, the radical axis $(EF)$ has been drawn. A point $H$ has been ch
\tkzDrawCircles(A,B C,D)
\tkzDefRadicalAxis(A,B)(C,D) \tkzGetPoints{E}{F}
\tkzDrawLine[add=1 and 2](E,F)
- \tkzDefPointOnLine[pos=1.5](E,F) \tkzGetPoint{H}
- \tkzDefLine[tangent from = H](A,B)\tkzGetPoints{T}{T'}
- \tkzDefLine[tangent from = H](C,D)\tkzGetPoints{S}{S'}
+ \tkzDefPointOnLine[pos=1.5](E,F)
+ \tkzGetPoint{H}
+ \tkzDefLine[tangent from = H](A,B)
+ \tkzGetPoints{T}{T'}
+ \tkzDefLine[tangent from = H](C,D)
+ \tkzGetPoints{S}{S'}
\tkzDrawSegments(H,T H,T' H,S H,S')
\tkzDrawPoints(A,B,C,D,E,F,H,T,T',S,S')
\tkzPowerCircle(H)(A,B) \tkzGetResult{pw}
@@ -415,7 +418,7 @@ arguments & example & explanation \\
\tkzGetPoints{E}{F}
\tkzDrawPoints(A,B,C,D,E,F)
\tkzLabelPoints(A,B,C,D,E,F)
- \tkzDrawLine[add=.5 and 1](E,F)
+ \tkzDrawLine[add=.25 and .5](E,F)
\tkzDrawLine[add=.25 and .25](A,B)
\end{tikzpicture}
\end{tkzexample}
@@ -460,7 +463,7 @@ arguments & example & explanation \\
-\begin{tkzexample}[small,latex=8cm]
+\begin{tkzexample}[small,latex=7cm]
\begin{tikzpicture}[scale=.4]
\tkzDefPoints{0/0/A,5/0/a,7/-1/B,3/-1/b,5/-4/C,2/-4/c}
\tkzDrawCircles(A,a B,b C,c)
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/tkz-euclide.pdf b/Master/texmf-dist/doc/latex/tkz-euclide/tkz-euclide.pdf
index cbafb94f7a5..aeb4428c81c 100644
--- a/Master/texmf-dist/doc/latex/tkz-euclide/tkz-euclide.pdf
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/tkz-euclide.pdf
Binary files differ