diff options
Diffstat (limited to 'Master/texmf-dist/doc')
8 files changed, 758 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/Changes b/Master/texmf-dist/doc/generic/pst-magneticfield/Changes new file mode 100644 index 00000000000..1238b04d333 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/Changes @@ -0,0 +1,2 @@ +pst-magneticfield.tex -------- +1.10 2010-05-16 - first CTAN version diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/README b/Master/texmf-dist/doc/generic/pst-magneticfield/README new file mode 100644 index 00000000000..a7776adf323 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/README @@ -0,0 +1,8 @@ +Save the files pst-magneticfield.sty|tex in a directory, which is part of your +local TeX tree. +Then do not forget to run texhash to update this tree. +For more information see the documentation of your LATEX distribution +on installing packages into your LATEX distribution or the +TeX Frequently Asked Questions: +(http://www.tex.ac.uk/cgi-bin/texfaq2html?label=instpackages). + diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.bib b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.bib new file mode 100644 index 00000000000..d02a96688b8 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.bib @@ -0,0 +1,70 @@ +%% -*-bibtex-*- +@STRING{tugboat = {TUGboat} } +@STRING{dtk = {{D}ie {\TeX}nische {K}om{\"o}die} } + +@Book{companion, + author = {Michel Goosens and Frank Mittelbach and Sebastian Rahtz and Dennis Roegel and Herbert Vo\ss}, + title = {The {\LaTeX} {G}raphics {C}ompanion}, + publisher = {{Addison-Wesley Publishing Company}}, + edition = {second}, + year = {2007}, + address = {Reading, Mass.} +} + +@Article{girou:01:, + author = {Denis Girou}, + title = {Pr\'esentation de {PST}ricks}, + journal = {Cahier {GUT}enberg}, + year = 1994, + volume = {16}, + month = apr, + pages = {21-70} +} + +@Article{girou:02:, + author = {{Timothy Van} Zandt and Denis Girou}, + title = {Inside {PST}ricks}, + journal = TUGboat, + year = 1994, + volume = {15}, + month = sep, + pages = {239-246} +} + +@Book{PostScript, + Author = {Kollock, Nikolai G.}, + Title = {Post{S}cript richtig eingesetzt: vom {K}onzept zum + praktischen {E}insatz}, + Publisher = {IWT}, + Address = {Vaterstetten}, + year = 1989, +} + +@Manual{multido, + Title = {\texttt{multido.tex} - a loop macro, that supports fixed-point addition}, + Author = {{Timothy Van} Zandt}, + Organization = {}, + Address = {\url{CTAN:/graphics/pstricks/generic/multido.tex}}, + Note = {}, + year = 1997 +} + +@Book{PSTricks2, + author = {Herbert Vo\ss{}}, + title = {\texttt{PSTricks} -- {G}rafik f\"ur \TeX{} und \LaTeX}, + edition = {fifth}, + publisher = {DANTE -- Lehmanns}, + year = {2008}, + address = {Heidelberg/Hamburg} +} + +@Book{abramowitz, + author = {M. Abramowitz and I. A. Stegun }, + year = 1964, + title = {Handbook of {M}athematical {F}unctions with {F}ormulas, {G}raphs, and + {M}athematical {T}ables}, + publisher = {National Bureau of Standards Applied Mathematics Series, + U.S. Government Printing Office}, + address = {Washington, D.C., USA}, + Note = { Corrections appeared in later printings up to the 10th Printing}, +} diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdf b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdf Binary files differnew file mode 100644 index 00000000000..8918afea004 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdf diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex new file mode 100644 index 00000000000..56d872d40af --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex @@ -0,0 +1,307 @@ +%% $Id: pst-magneticfield-docEN.tex 322 2010-05-16 08:07:26Z herbert $ +\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings + headexclude,footexclude,oneside]{pst-doc} +\usepackage[latin1]{inputenc} +\usepackage{pst-magneticfield} +\let\pstMFfv\fileversion +\lstset{pos=t,language=PSTricks, + morekeywords={psmagneticfield,psmagneticfieldThreeD},basicstyle=\footnotesize\ttfamily} +\newcommand\Cadre[1]{\psframebox[fillstyle=solid,fillcolor=black,linestyle=none,framesep=0]{#1}} +\def\bgImage{% +\psset{unit=0.5cm} +\begin{pspicture}(-7,-6)(7,6) +\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-8)(7,8) +\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}} +\end{pspicture} +} +% +\begin{document} + +\title{\texttt{pst-magneticfield}} +\subtitle{Magnetic field lines of a solenoid; v.\pstMFfv} +\author{Juergen Gilg\\ Manuel Luque\\Herbert Vo\ss} +%\docauthor{Juergen Gilg\\Manuel Luque\\Herbert Vo\ss} +\date{\today} +\maketitle + + +\clearpage% +\begin{abstract} +The package \LPack{pst-magneticfield} aims to trace the shape of field lines +af a solenoid. The physical parameters are the radius of the solenoid, the number of +turns and the length, the default values are given below: + +\begin{enumerate} + \item the number of turns: \LKeyset{N=6} ; + \item the radius : \LKeyset{R=2} ; + \item the length : \LKeyset{L=4}. +\end{enumerate} + +The line was calculated with the Runge-Kutta 2 algorithm, which, after several tries, +seems to be the best compromise between speed and accuracy of calculations of the path. +The calculation of elliptic integrals for the evaluation of magnetic field +was achieved by polynomial approximations from the "Handbook of Mathematical +Functions With Formulas, Graph, And Mathematical Tables" by Milton Abramowitz and +Irene.A. Stegun (\url{http://www.math.sfu.ca/~cbm/aands/}).~\cite{abramowitz} +\end{abstract} + +\clearpage +\tableofcontents + + +\clearpage + +\section{Introduction} + +The route options, with the default values are as follows: +\begin{enumerate} + \item The maximum number of points on each line of the entire coil: \LKeyset{pointsB=500}; + \item the maximum number of points on lines around turns selected: \LKeyset{pointsS=1000}; + \item the number of lines of the entire coil: \LKeyset{nL=8}; + \item not the route for the lines of the entire coil: \LKeyset{PasB=0.02}; + \item not the route for the lines around turns selected: \LKeyset{PasS=0.00275}; + \item the choice of individual coils to improve the rendering of + layout: \LKeyset{numSpires=\{\}}, we place following the sign "=" the numbers of turns \textsf{1 2 3 etc.} + starting from the top of the spire. By default, all the turns are targeted. + \item The number of field lines around the turns selected: \LKeyset{nS=1}. + \item We may decide not to represent the solenoid with the option \LKeyset{drawSelf=false} + is useful for 3D representation. + \item the route options of the turns (color, thickness, arrows) are: + \begin{enumerate} + \item The color and thickness of the coils: \Lkeyset{styleSpire=styleSpire}; + \item the current direction signs: \Lkeyset{styleCourant=sensCourant}. + \end{enumerate} +\begin{verbatim} +\newpsstyle{styleSpire}{linecap=1,linecolor=red,linewidth=2\pslinewidth} +\newpsstyle{sensCourant}{linecolor=red,linewidth=2\pslinewidth,arrowinset=0.1} +\end{verbatim} + + \item The color and thickness of the field lines can be adjusted with the parameters + usual \LPack{pstricks}: \Lkeyword{linecolor} and \Lkeyword{linewidth} +\end{enumerate} + +A command \Lcs{psmagneticfieldThreeD} allows 3D visualization of the solenoid and +field lines. + +\clearpage +\section{Influence of physical parameters on the map magnetic field} +\subsection{The length of the solenoid} + +\begin{LTXexample}[pos=t] +\psset{unit=0.5cm} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,nS=1] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,nS=1]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]} +\end{pspicture*} +\end{LTXexample} + +\textbf{Note:} To refine the layout of the second solenoid, we had to increase the +points and lower the pitch of the route: \Cadre{\textcolor{white}{pointsB=5500,PasB=0.0025}}, which +lengthens the calculations. + + + +\clearpage + +\subsection{The number of turns} +\begin{LTXexample}[pos=t] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2] +\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8) +\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]} +\end{pspicture*} +\end{LTXexample} + +\begin{LTXexample}[pos=t] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,nS=2 3 4] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]} +\end{pspicture*} +\end{LTXexample} + + +\clearpage +\section{The three route options} +\subsection{The number of field lines} + +Due to the symmetry of the problem the number of field lines given +\Lkeyword{nL} option is half the number actually represented with an added line +confused with the axis of revolution. We must also add the lines around the turns \Lkeyword{nS}, +these turns can be selected individually \Lkeyword{numSpires}. + + + +\begin{LTXexample}[pos=t] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2] +\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12] +\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]} +\end{pspicture*} +\end{LTXexample} + +\clearpage +\subsection{The number of points for the path} + The plot of field lines is achieved by a numerical method (RK2) and +follows the step of the route and the number of selected points affect the accuracy of the route, +as in the two examples below: + + +\begin{LTXexample}[pos=t] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100] +\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) +\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} +\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100] +\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) +\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} +\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]} +\end{pspicture*} +\end{LTXexample} + + +If the defaults do not suit it must be found by testing the +values that give a correct path. + + + +\clearpage + +\section{The parameter \nxLkeyword{numSpires}} +\begin{LTXexample}[pos=t,wide] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-8,-10)(8,10) +\psset{linecolor=blue} +\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075] +\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9) +\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]} +\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} +\end{pspicture*}\quad +\begin{pspicture*}[showgrid](0,-10)(16,10) +\psset{linecolor=blue} +\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075] +\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9) +\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]} +\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} +\end{pspicture*} +\end{LTXexample} + +\clearpage +\section{The parameter \nxLkeyword{AntiHelmholtz}} +\begin{LTXexample}[pos=t] +\psset{unit=0.75,AntiHelmholtz, + R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, + nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} +\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} +\newpsstyle{cadre}{linecolor=yellow!50} +\begin{pspicture*}[showgrid](-7,-6)(7,6) +\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) +\psmagneticfield[linecolor={[HTML]{660066}}] +\end{pspicture*} +\end{LTXexample} + + + +\clearpage +\section{3D views} +3D views are possible with the macros + +\begin{BDef} +\Lcs{psmagneticfield}\OptArgs\coord1\coord2\\ +\Lcs{psmagneticfieldThreeD}\OptArgs\coord1\coord2 +\end{BDef} + +in which options are settings \Lcs{psmagneticfield} and \verb+(x1,y1)(x2,y2)+ +coordinates of bottom left corner and upper right framework +is encapsulated as the field map for \Lcs{psframe}. We can use the option +\Lkeyword{viewpoint} of \LPack{pst-3d} package to change the view. + The options framework are by default, the following: +\begin{verbatim} +\newpsstyle{grille}{subgriddiv=0,gridcolor=lightgray,griddots=10} +\newpsstyle{cadre}{linecolor=green!20} +\end{verbatim} + + So it is that they must change if we want change, as in +Example below. +\begin{LTXexample}[pos=t] +\psset{unit=0.7cm} +\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} +\newpsstyle{cadre}{linecolor=yellow!50} +\begin{pspicture}(-7,-6)(7,6) +\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-8)(7,8) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[pos=t] +\psset{unit=0.7cm} +\begin{pspicture}(-7,-6)(7,6) +\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-8)(7,8) +\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[pos=t] +\psset{unit=0.75cm,AntiHelmholtz, + R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, + nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant} +\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} +\newpsstyle{cadre}{linecolor=yellow!50} +\begin{pspicture}(-7,-6)(7,6) +\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6) +\end{pspicture} +\end{LTXexample} + + + + +\clearpage +\section{List of all optional arguments for \texttt{pst-magneticfield}} + +\xkvview{family=pst-magneticfield,columns={key,type,default}} + +\nocite{*} +\bgroup +\raggedright +\bibliographystyle{plain} +\bibliography{\jobname} +\egroup + + +\printindex + + + + +\end{document} diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.bib b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.bib new file mode 100644 index 00000000000..d02a96688b8 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.bib @@ -0,0 +1,70 @@ +%% -*-bibtex-*- +@STRING{tugboat = {TUGboat} } +@STRING{dtk = {{D}ie {\TeX}nische {K}om{\"o}die} } + +@Book{companion, + author = {Michel Goosens and Frank Mittelbach and Sebastian Rahtz and Dennis Roegel and Herbert Vo\ss}, + title = {The {\LaTeX} {G}raphics {C}ompanion}, + publisher = {{Addison-Wesley Publishing Company}}, + edition = {second}, + year = {2007}, + address = {Reading, Mass.} +} + +@Article{girou:01:, + author = {Denis Girou}, + title = {Pr\'esentation de {PST}ricks}, + journal = {Cahier {GUT}enberg}, + year = 1994, + volume = {16}, + month = apr, + pages = {21-70} +} + +@Article{girou:02:, + author = {{Timothy Van} Zandt and Denis Girou}, + title = {Inside {PST}ricks}, + journal = TUGboat, + year = 1994, + volume = {15}, + month = sep, + pages = {239-246} +} + +@Book{PostScript, + Author = {Kollock, Nikolai G.}, + Title = {Post{S}cript richtig eingesetzt: vom {K}onzept zum + praktischen {E}insatz}, + Publisher = {IWT}, + Address = {Vaterstetten}, + year = 1989, +} + +@Manual{multido, + Title = {\texttt{multido.tex} - a loop macro, that supports fixed-point addition}, + Author = {{Timothy Van} Zandt}, + Organization = {}, + Address = {\url{CTAN:/graphics/pstricks/generic/multido.tex}}, + Note = {}, + year = 1997 +} + +@Book{PSTricks2, + author = {Herbert Vo\ss{}}, + title = {\texttt{PSTricks} -- {G}rafik f\"ur \TeX{} und \LaTeX}, + edition = {fifth}, + publisher = {DANTE -- Lehmanns}, + year = {2008}, + address = {Heidelberg/Hamburg} +} + +@Book{abramowitz, + author = {M. Abramowitz and I. A. Stegun }, + year = 1964, + title = {Handbook of {M}athematical {F}unctions with {F}ormulas, {G}raphs, and + {M}athematical {T}ables}, + publisher = {National Bureau of Standards Applied Mathematics Series, + U.S. Government Printing Office}, + address = {Washington, D.C., USA}, + Note = { Corrections appeared in later printings up to the 10th Printing}, +} diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.pdf b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.pdf Binary files differnew file mode 100644 index 00000000000..e97e584cf38 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.pdf diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex new file mode 100644 index 00000000000..1ba114629d4 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex @@ -0,0 +1,301 @@ +%% $Id: pst-magneticfield-docFR.tex 322 2010-05-16 08:07:26Z herbert $ +\documentclass[11pt,english,french,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings + headexclude,footexclude,oneside]{pst-doc} +\usepackage[latin1]{inputenc} +\usepackage{pst-magneticfield} +\let\pstMFfv\fileversion +\lstset{pos=t,language=PSTricks, + morekeywords={psmagneticfield,psmagneticfieldThreeD},basicstyle=\footnotesize\ttfamily} +\newcommand\Cadre[1]{\psframebox[fillstyle=solid,fillcolor=black,linestyle=none,framesep=0]{#1}} +\def\bgImage{% +\psset{unit=0.5cm} +\begin{pspicture}(-7,-6)(7,6) +\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-8)(7,8) +\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}} +\end{pspicture} +} +% +\begin{document} + +\title{\texttt{pst-magneticfield}} +\subtitle{Magnetic field lines of a solenoid; v.\pstMFfv} +\author{Juergen Gilg\\ Manuel Luque\\Herbert Vo\ss} +%\docauthor{Juergen Gilg\\Manuel Luque\\Herbert Vo\ss} +\date{\today} +\maketitle + + +\clearpage% +\begin{abstract} +Le package \LPack{pst-magneticfield} a pour objet de tracer l'allure des lignes de +champ d'un solénoïde. Les paramètres physiques du solénoïde sont le rayon, le nombre +de spires et la longueur, les valeurs par défaut sont données ci-dessous : +\begin{enumerate} + \item le nombre de spires : \LKeyset{N=6} ; + \item le rayon : \LKeyset{R=2} ; + \item la longueur : \LKeyset{L=4}. +\end{enumerate} +Le tracé a été modélisé avec la méthode de Runge-Kutta 2 qui, après plusieurs essais, +semble être le meilleur compromis entre rapidité des calculs et précision du tracé. +Le calcul des intégrales elliptiques nécessaires à l'évaluation du champ magnétique +a été réalisé par des approximations polynômiales tirées du ``\textit{Handbook of +Mathematical Functions With Formulas, Graph, And Mathematical Tables}'' de +Milton Abramowitz et Irene.A. Stegun \url{http://www.math.sfu.ca/~cbm/aands/}. +\end{abstract} + +\clearpage +\tableofcontents + + +\clearpage + +\section{Introduction} +Les options de tracé, avec les valeurs par défaut, sont les suivantes : +\begin{enumerate} + \item Le nombre de points maximum sur chaque ligne de l'ensemble de la bobine : \LKeyset{pointsB=500} ; + \item le nombre de points maximum sur des lignes autour de spires choisies : \LKeyset{pointsS=1000} ; + \item le nombre de lignes de l'ensemble de la bobine : \LKeyset{nL=8} ; + \item le pas du tracé pour les lignes de l'ensemble de la bobine : \LKeyset{PasB=0.02} ; + \item le pas du tracé pour les lignes autour de spires choisies : \LKeyset{PasS=0.00275} ; + \item la possibilité de choisir individuellement des spires pour améliorer le rendu + du tracé : \LKeyset{numSpires=\{\}} , on place à la suite du signe ``='' les numéros + des spires \textsf{1 2 3 etc.} en partant de la spire du haut. Par défaut, + toutes les spires sont ciblées. + \item Le nombre de lignes de champ autour des spires choisies : \LKeyset{nS=1}. + \item On peut décider de ne pas représenter le solénoïde avec l'option \LKeyset{drawSelf=false}, + c'est utile pour la représentation en 3D. + \item les options de tracé des spires (couleur, épaisseur, flèches) sont : + \begin{enumerate} + \item La couleur et l'épaisseur du trait des spires : \Lkeyset{styleSpire=styleSpire} ; + \item le fléchage du sens du courant : \Lkeyset{styleCourant=sensCourant}. + \end{enumerate} + +\begin{verbatim} +\newpsstyle{styleSpire}{linecap=1,linecolor=red,linewidth=2\pslinewidth} +\newpsstyle{sensCourant}{linecolor=red,linewidth=2\pslinewidth,arrowinset=0.1} +\end{verbatim} + + \item La couleur et l'épaisseur des lignes de champ se règlent avec les paramètres usuels + de \LPack{pstricks} : \Lkeyword{linecolor} et \Lkeyword{linewidth}. +\end{enumerate} +Une commande \Lcs{psmagneticfieldThreeD} permet la visualisation en 3D du solénoïde et +des lignes de champ. + +\clearpage +\section{Influence des paramètres physiques sur la carte du champ magnétique} +\subsection{La longueur du solénoïde} + +\begin{LTXexample}[pos=t] +\psset{unit=0.5cm} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,nS=1] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,nS=1]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]} +\end{pspicture*} +\end{LTXexample} + +\textbf{Remarque :} pour affiner le tracé du deuxième solénoïde, on a du augmenter +le nombre de points et diminuer le pas du tracé : \Cadre{\textcolor{white}{pointsB=5500,PasB=0.0025}}, +ce qui rallonge la durée des calculs. + + + +\clearpage + +\subsection{Le nombre de spires} +\begin{LTXexample}[pos=t] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2] +\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8) +\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]} +\end{pspicture*} +\end{LTXexample} + +\begin{LTXexample}[pos=t] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,nS=2 3 4] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]} +\end{pspicture*} +\end{LTXexample} + + +\clearpage +\section{Les options de tracé} +\subsection{Le nombre de lignes de champ} +En raison de la symétrie du phénomène le nombre de lignes de champ donné en option +\Lkeyword{nL} est la moitié du nombre réellement représenté auquel il faut ajouter +la ligne confondue avec l'axe de révolution. Il faut aussi rajouter les lignes +autour des spires \Lkeyword{nS}, ces spires pouvant être choisies individuellement +avec \Lkeyword{numSpires}. + + + +\begin{LTXexample}[pos=t] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2] +\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12] +\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]} +\end{pspicture*} +\end{LTXexample} + +\clearpage +\subsection{Le nombre de points et le pas du tracé} +Le tracé des lignes de champ est réalisé par une méthode numérique (RK2) et il s'ensuit +le pas du tracé et le nombre de points choisis influent sur la précision du tracé, +comme dans les deux exemples ci-dessous : + +\begin{LTXexample}[pos=t] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100] +\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) +\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} +\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100] +\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) +\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} +\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]} +\end{pspicture*} +\end{LTXexample} + +Si les valeurs par défaut ne conviennent pas il faut donc trouver par des +essais les valeurs qui donnent un tracé correct. + + +\clearpage + +\section{Le paramètre: numSpires} +\begin{LTXexample}[pos=t,wide] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-8,-10)(8,10) +\psset{linecolor=blue} +\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075] +\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9) +\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]} +\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} +\end{pspicture*}\quad +\begin{pspicture*}[showgrid](0,-10)(16,10) +\psset{linecolor=blue} +\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075] +\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9) +\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]} +\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} +\end{pspicture*} +\end{LTXexample} + + +\clearpage +\section{The parameter \nxLkeyword{AntiHelmholtz}} +\begin{LTXexample}[pos=t] +\psset{unit=0.75,AntiHelmholtz, + R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, + nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} +\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} +\newpsstyle{cadre}{linecolor=yellow!50} +\begin{pspicture*}[showgrid](-7,-6)(7,6) +\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) +\psmagneticfield[linecolor={[HTML]{660066}}] +\end{pspicture*} +\end{LTXexample} + + +\clearpage +\section{La vue en 3D} +La vue en 3D utilise la commande + +\begin{BDef} +\Lcs{psmagneticfield}\OptArgs\coord1\coord2\\ +\Lcs{psmagneticfieldThreeD}\OptArgs\coord1\coord2 +\end{BDef} + +dans laquelle les options sont les paramètres de +\Lcs{psmagneticfield} et \verb+(x1,y1)(x2,y2)+ les coordonnées des coins +inférieur gauche et supérieur droit du cadre dans lequel est encapsulée +la carte du champ comme pour \Lcs{psframe}. On pourra utiliser l'option \Lkeyword{viewpoint} du +package \LPack{pst-3d} pour modifier le point de vue. + +Les options du cadre sont, par défaut, les suivantes : +\begin{verbatim} +\newpsstyle{grille}{subgriddiv=0,gridcolor=lightgray,griddots=10} +\newpsstyle{cadre}{linecolor=green!20} +\end{verbatim} + +Ce sont donc celles-ci qu'il faudra modifier si on souhaite en changer, comme dans l'exemple ci-dessous. +\begin{LTXexample}[pos=t] +\psset{unit=0.7} +\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} +\newpsstyle{cadre}{linecolor=yellow!50} +\begin{pspicture}(-7,-6)(7,6) +\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-8)(7,8) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[pos=t] +\psset{unit=0.7} +\begin{pspicture}(-7,-6)(7,6) +\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-8)(7,8) +\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[pos=t] +\psset{unit=0.75cm,AntiHelmholtz, + R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, + nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant} +\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} +\newpsstyle{cadre}{linecolor=yellow!50} +\begin{pspicture}(-7,-6)(7,6) +\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6) +\end{pspicture} +\end{LTXexample} + + +\clearpage +\section{List of all optional arguments for \texttt{pst-magneticfield}} + +\xkvview{family=pst-magneticfield,columns={key,type,default}} + +\nocite{*} +\bgroup +\raggedright +\bibliographystyle{plain} +\bibliography{\jobname} +\egroup + + +\printindex + + + + +\end{document} |