summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/xmltex/passivetex/latextei.xml
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/xmltex/passivetex/latextei.xml')
-rw-r--r--Master/texmf-dist/doc/xmltex/passivetex/latextei.xml972
1 files changed, 0 insertions, 972 deletions
diff --git a/Master/texmf-dist/doc/xmltex/passivetex/latextei.xml b/Master/texmf-dist/doc/xmltex/passivetex/latextei.xml
deleted file mode 100644
index af9fbb686c4..00000000000
--- a/Master/texmf-dist/doc/xmltex/passivetex/latextei.xml
+++ /dev/null
@@ -1,972 +0,0 @@
-<?xml version="1.0"?>
-<!DOCTYPE TEI.2 SYSTEM "http://www.oucs.ox.ac.uk/dtds/tei-oucs.dtd" [
-<!ENTITY aacute "&#x00E1;">
-<!ENTITY ap "&#x2248;">
-<!ENTITY alpha "&#x03B1;">
-<!ENTITY barwed "&#x22BC;">
-<!ENTITY beta "&#x03B2;">
-<!ENTITY commaspace " ">
-<!ENTITY gamma "&#x03B3;">
-<!ENTITY delta "&#x03B4;">
-<!ENTITY Delta "&#x0394;">
-<!ENTITY dots "&#x2026;">
-<!ENTITY epsi "&#x03B5;">
-<!ENTITY gg "&#x22D9;">
-<!ENTITY Gt "&#x226B;">
-<!ENTITY geq "&#x2265;">
-<!ENTITY infin "&#x221E;">
-<!ENTITY infty "&#x221E;">
-<!ENTITY int "&#x222B;">
-<!ENTITY kappa "&#x03BA;">
-<!ENTITY lambda "&#x03BB;">
-<!ENTITY langle "&#x2329;">
-<!ENTITY leq "&#x2264;">
-<!ENTITY mu "&#x03BC;">
-<!ENTITY nbsp "&#x00A0;">
-<!ENTITY phi "&#x03C6;">
-<!ENTITY pi "&#x3C0;">
-<!ENTITY psi "&#x3C8;">
-<!ENTITY rangle "&#x232A;">
-<!ENTITY rho "&#x3C1;">
-<!ENTITY sigma "&#x3C3;">
-<!ENTITY Sigma "&#x03A3;">
-<!ENTITY sim "&#x223C;">
-<!ENTITY thinspace "&#x2009;">
-<!ENTITY thickspace "&#x2005;">
-<!ENTITY xi "&#x03BE;">
-<!ENTITY prime "&#x2032;">
-<!ENTITY isinv "&#x2208;">
-<!ENTITY macr "&#x0304;">
-<!ENTITY Emax "<msub><mi>E</mi><mi>max</mi></msub>">
-<!ENTITY exp "E<mtext>exp</mtext>">
-<!ENTITY ln "E<mtext>ln</mtext>">
-<!ENTITY Rarr "&#x21D2;">
-<!ENTITY rarr "&#x2192;">
-<!ENTITY GEANT "GEANT">
-<!ENTITY sum "&#x2211;">
-]>
-<TEI.2>
- <teiHeader>
- <fileDesc>
- <titleStmt>
- <title>A sample article</title>
- </titleStmt>
- <publicationStmt>
- <availability><p>Converted from LaTeX by Sebastian Rahtz</p> </availability>
- </publicationStmt>
- <sourceDesc>
- <p></p>
- </sourceDesc>
- </fileDesc>
- <revisionDesc>
- <list>
- <item>
- <date>23 Oct 1999</date> SR converted from LaTeX</item>
- </list>
- </revisionDesc>
- </teiHeader>
- <text>
- <front>
- <docTitle>
- <titlePart type="main">Simulation of Energy Loss Straggling</titlePart>
- </docTitle>
- <docAuthor>Maria Physicist</docAuthor>
- <docDate>January 17, 1999</docDate>
- </front>
- <body> <div id="intro"> <head>Introduction</head> <p>Due to
-the statistical nature of ionisation energy loss, large fluctuations
-can occur in the amount of energy deposited by a particle traversing
-an absorber element. Continuous processes such as multiple scattering
-and energy loss play a relevant role in the longitudinal and lateral
-development of electromagnetic and hadronic showers, and in the case
-of sampling calorimeters the measured resolution can be significantly
-affected by such fluctuations in their active layers. The description
-of ionisation fluctuations is characterised by the significance
-parameter <formula><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&kappa;</mi></math></formula>, which is
-proportional to the ratio of mean energy loss to the maximum allowed
-energy transfer in a single collision with an atomic electron
- <formula
-type="display"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow> <mi>&kappa;</mi><mo>=</mo>
-<mfrac>
- <mrow><mi>&xi;</mi></mrow>
- <mrow>
- &Emax;
- </mrow>
-</mfrac>
-</mrow>
-</math></formula>
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
->&Emax;</math></formula> is the
-maximum transferable energy in a single collision with an atomic electron.
-<formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mrow>
- &Emax;<mo>=</mo> <mfrac><mrow><mn>2</mn><msub><mi>m</mi><mrow><mi>e</mi></mrow></msub><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup><msup><mi>&gamma;</mi><mrow><mn>2</mn></mrow></msup></mrow><!--____________
---><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>&gamma;</mi><msub><mi>m</mi><mrow><mi>e</mi></mrow></msub><mo>/</mo><msub><mi>m</mi><mrow><mi>x</mi></mrow></msub><mo>+</mo><msup><mfenced
-open='(' close=')'><msub><mi>m</mi><mrow><mi>e</mi></mrow></msub><mo>/</mo><msub><mi>m</mi><mrow><mi>x</mi></mrow></msub> </mfenced><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo>
-</mrow></math></formula> where
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&gamma;</mi><mo>=</mo><mi>E</mi><mo>/</mo><msub><mi>m</mi><mrow><mi>x</mi></mrow></msub></math></formula>,
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>E</mi></math></formula> is energy and
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>m</mi><mrow><mi>x</mi></mrow></msub></math></formula> the mass of the
-incident particle, <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>-</mo><mn>1</mn><mo>/</mo><msup><mi>&gamma;</mi><mrow><mn>2</mn></mrow></msup></math></formula>
-and <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>m</mi><mrow><mi>e</mi></mrow></msub></math></formula> is the
-electron mass. <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&xi;</mi></math></formula>
-comes from the Rutherford scattering crosss section and is defined as:
- <table rend="inline"><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&xi;</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>&pi;</mi><msup><mi>z</mi><mrow><mn>2</mn></mrow></msup><msup><mi>e</mi><mrow><mn>4</mn></mrow></msup><msub><mi>N</mi><mrow><mi>A</mi><mi>v</mi></mrow></msub><mi>Z</mi><mi>&rho;</mi><mi>&delta;</mi><mi>x</mi></mrow><!--
- --><mrow><msub><mi>m</mi><mrow><mi>e</mi></mrow></msub><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup><msup><mi>c</mi><mrow><mn>2</mn></mrow></msup><mi>A</mi></mrow></mfrac> <mo>=</mo><mn>1</mn><mn>5</mn><mn>3</mn><mo>.</mo><mn>4</mn> <mfrac><mrow><msup><mi>z</mi><mrow><mn>2</mn></mrow></msup></mrow><!--
---><mrow><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup></mrow></mfrac> <mfrac><mrow><mi>Z</mi></mrow><!--
---><mrow><mi>A</mi></mrow></mfrac><mi>&rho;</mi><mi>&delta;</mi><mi>x</mi><mspace width='12pt'/><mi>keV </mi><mo>,</mo> <mtext></mtext>
-</math></formula></cell></row></table>
-where
-</p><p><table rend="inline"><row><cell
-><formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>z</mi></math></formula></cell><cell
->charge of the incident particle </cell>
-</row><row><cell
-><formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>N</mi><mrow><mi>A</mi><mi>v</mi></mrow></msub></math></formula></cell><cell
->Avogadro's number </cell>
-</row><row><cell
-><formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>Z</mi></math></formula></cell><cell
->atomic number of the material</cell>
-</row><row><cell
-><formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>A</mi></math></formula></cell><cell
->atomic weight of the material </cell>
-</row><row><cell
-><formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&rho;</mi></math></formula></cell><cell
->density </cell>
-</row><row><cell
-><formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&delta;</mi><mi>x</mi></math></formula></cell><cell
->thickness of the material </cell>
-</row><row><cell
-> </cell>
-</row></table>
-</p><p><formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&kappa;</mi></math></formula>
-measures the contribution of the collisions with energy transfer close to
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
->&Emax;</math></formula>. For a given absorber,
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&kappa;</mi></math></formula> tends towards large
-values if <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&delta;</mi><mi>x</mi></math></formula> is large
-and/or if <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&beta;</mi></math></formula> is small.
-Likewise, <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&kappa;</mi></math></formula> tends
-towards zero if <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&delta;</mi><mi>x</mi></math></formula> is
-small and/or if <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&beta;</mi></math></formula>
-approaches 1.
-</p><p>The value of <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&kappa;</mi></math></formula>
-distinguishes two regimes which occur in the description of ionisation fluctuations
-:
-</p><list type="enumerate">
-<item>
-<p>A
-large
-number
-of
-collisions
-involving
-the
-loss
-of
-all
-or
-most
-of
-the
-incident
-particle
-energy
-during
-the
-traversal
-of
-an
-absorber.
-</p><p>As
-the
-total
-energy
-transfer
-is
-composed
-of
-a
-multitude
-of
-small
-energy
-losses,
-we
-can
-apply
-the
-central
-limit
-theorem
-and
-describe
-the
-fluctuations
-by
-a
-Gaussian
-distribution.
-This
-case
-is
-applicable
-to
-non-relativistic
-particles
-and
-is
-described
-by
-the
-inequality
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&kappa;</mi><mo>&gt;</mo><mn>1</mn><mn>0</mn></math></formula>
-(i.e.
-when
-the
-mean
-energy
-loss
-in
-the
-absorber
-is
-greater
-than
-the
-maximum
-energy
-transfer
-in
-a
-single
-collision).
-</p></item>
-<item>
-<p>Particles
-traversing
-thin
-counters
-and
-incident
-electrons
-under
-any
-conditions.
-</p><p>The
-relevant
-inequalities
-and
-distributions
-are
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mn>0</mn><mo>.</mo><mn>0</mn><mn>1</mn><mo>&lt;</mo><mi>&kappa;</mi><mo>&lt;</mo><mn>1</mn><mn>0</mn></math></formula>,
-Vavilov
-distribution,
-and
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&kappa;</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>1</mn></math></formula>,
-Landau
-distribution.</p></item></list>
-<p>An additional regime is defined by the contribution of the collisions
-with low energy transfer which can be estimated with the relation
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&xi;</mi><mo>/</mo><msub><mi>I</mi><mrow><mn>0</mn></mrow></msub></math></formula>,
-where <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>I</mi><mrow><mn>0</mn></mrow></msub></math></formula>
-is the mean ionisation potential of the atom. Landau theory assumes that
-the number of these collisions is high, and consequently, it has a restriction
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&xi;</mi><mo>/</mo><msub><mi>I</mi><mrow><mn>0</mn></mrow></msub><mo>&Gt;</mo><mn>1</mn></math></formula>. In <code>GEANT</code> (see
-URL <xptr url="http://wwwinfo.cern.ch/asdoc/geant/geantall.html"/>), the limit of Landau theory has
-been set at <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&xi;</mi><mo>/</mo><msub><mi>I</mi><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>5</mn><mn>0</mn></math></formula>.
-Below this limit special models taking into account the atomic structure of the material are
-used. This is important in thin layers and gaseous materials. Figure <ptr target="fg:phys332-1"/> shows the behaviour
-of <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&xi;</mi><mo>/</mo><msub><mi>I</mi><mrow><mn>0</mn></mrow></msub></math></formula> as
-a function of the layer thickness for an electron of 100 keV and 1 GeV of kinetic
-energy in Argon, Silicon and Uranium.
-</p>
-<p><figure file="phys332-1" id="fg:phys332-1">
-<head>The variable <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&xi;</mi><mo>/</mo><msub><mi>I</mi><mrow><mn>0</mn></mrow></msub></math></formula>
-can be used to measure the validity range of the Landau
-theory. It depends on the type and energy of the particle,
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>Z</mi></math></formula>,
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>A</mi></math></formula>
-and the ionisation potential of the material and the layer thickness. </head>
-</figure></p>
-<p>In the following sections, the different theories and models for the energy loss
-fluctuation are described. First, the Landau theory and its limitations are discussed,
-and then, the Vavilov and Gaussian straggling functions and the methods in the thin
-layers and gaseous materials are presented.
-</p>
-</div>
-<div id="sec:phys332-1">
-<head>Landau theory</head>
-<p>For a particle of mass <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>m</mi><mrow><mi>x</mi></mrow></msub></math></formula> traversing
-a thickness of material <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&delta;</mi><mi>x</mi></math></formula>,
-the Landau probability distribution may be written in terms of the universal Landau
-function <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&phi;</mi><mrow><mo>(</mo><mi>&lambda;</mi><mo>)</mo></mrow></math></formula>
-as<ptr target="bib-LAND"/>:
- <table rend="inline"><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mrow><mo>(</mo><mi>&epsi;</mi><mo>,</mo><mi>&delta;</mi><mi>x</mi><mo>)</mo></mrow> <mo>=</mo> <mfrac><mrow><mn>1</mn></mrow><!--
---><mrow><mi>&xi;</mi></mrow></mfrac><mi>&phi;</mi><mrow><mo>(</mo><mi>&lambda;</mi><mo>)</mo></mrow> <mtext></mtext>
-</math></formula></cell></row></table>
-where
- <table rend="inline"><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&phi;</mi><mrow><mo>(</mo><mi>&lambda;</mi><mo>)</mo></mrow> <mo>=</mo> <mfrac><mrow><mn>1</mn></mrow><!--_
---><mrow><mn>2</mn><mi>&pi;</mi><mi>i</mi></mrow></mfrac><msubsup><mo>&int;</mo>
- <mrow><mi>c</mi><mo>+</mo><mi>i</mi><mi>&infin;</mi></mrow><mrow><mi>c</mi><mo>-</mo><mi>i</mi><mi>&infin;</mi></mrow></msubsup><mo>exp</mo><mfenced
-open='(' close=')'><mi>u</mi><mo>ln</mo><mi>u</mi><mo>+</mo><mi>&lambda;</mi><mi>u</mi></mfenced><mi>d</mi><mi>u</mi><mspace width='2cm'/><mi>c</mi><mo>&geq;</mo><mn>0</mn> <mtext></mtext>
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&lambda;</mi> <mo>=</mo> <mfrac><mrow><mi>&epsi;</mi><mo>-</mo><munderover accent='true'><mo>&macr;</mo><mi>&epsi;</mi><mrow></mrow></munderover></mrow><!--
- --><mrow><mi>&xi;</mi></mrow></mfrac> <mo>-</mo><mi>&gamma;</mi><mi>&prime;</mi><mo>-</mo><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup><mo>-</mo><mo>ln</mo> <mfrac><mrow><mi>&xi;</mi></mrow><!-- ___
---><mrow>&Emax;</mrow></mfrac> <mtext></mtext>
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&gamma;</mi><mi>&prime;</mi> <mo>=</mo> <mn>0</mn><mo>.</mo><mn>4</mn><mn>2</mn><mn>2</mn><mn>7</mn><mn>8</mn><mn>4</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo>=</mo><mn>1</mn><mo>-</mo><mi>&gamma;</mi> <mtext></mtext>
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&gamma;</mi> <mo>=</mo> <mn>0</mn><mo>.</mo><mn>5</mn><mn>7</mn><mn>7</mn><mn>2</mn><mn>1</mn><mn>5</mn><mo>.</mo><mo>.</mo><mo>.</mo><mtext>(Eulers constant)</mtext> <mtext></mtext>
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover accent='true'><mo>&macr;</mo><mi>&epsi;</mi><mrow></mrow></munderover> <mo>=</mo> <mtext>average energy loss</mtext> <mtext></mtext>
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&epsi;</mi> <mo>=</mo> <mtext>actual energy loss</mtext> <mtext></mtext>
-</math></formula></cell></row></table>
-</p>
-<div >
-<head>Restrictions</head>
-<p>The Landau formalism makes two restrictive assumptions :
-</p><list type="enumerate">
-<item>
-<p>The
-typical
-energy
-loss
-is
-small
-compared
-to
-the
-maximum
-energy
-loss
-in
-a
-single
-collision.
-This
-restriction
-is
-removed
-in
-the
-Vavilov
-theory
-(see
-section
-<ptr target="vavref"/>).
-</p></item>
-<item>
-<p>The
-typical
-energy
-loss
-in
-the
-absorber
-should
-be
-large
-compared
-to
-the
-binding
-energy
-of
-the
-most
-tightly
-bound
-electron.
-For
-gaseous
-detectors,
-typical
-energy
-losses
-are
-a
-few
-keV
-which
-is
-comparable
-to
-the
-binding
-energies
-of
-the
-inner
-electrons.
-In
-such
-cases
-a
-more
-sophisticated
-approach
-which
-accounts
-for
-atomic
-energy
-levels<ptr target="bib-TALM"/>
-is
-necessary
-to
-accurately
-simulate
-data
-distributions.
-In
-<code>GEANT</code>,
-a
-parameterised
-model
-by
-L.
-Urb&aacute;n
-is
-used
-(see
-section
-<ptr target="urban"/>).</p></item></list>
-<p>In addition, the average value of the Landau distribution is infinite.
-Summing the Landau fluctuation obtained to the average energy from the
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>d</mi><mi>E</mi><mo>/</mo><mi>d</mi><mi>x</mi></math></formula>
-tables, we obtain a value which is larger than the one coming from the table. The
-probability to sample a large value is small, so it takes a large number of steps
-(extractions) for the average fluctuation to be significantly larger than zero. This
-introduces a dependence of the energy loss on the step size which can affect
-calculations.
-</p><p>A solution to this has been to introduce a limit on the value of the
-variable sampled by the Landau distribution in order to keep the average
-fluctuation to 0. The value obtained from the <code>GLANDO</code> routine is:
-<formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mrow>
- <mi>&delta;</mi><mi>d</mi><mi>E</mi><mo>/</mo><mi>d</mi><mi>x</mi><mo>=</mo><mi>&epsi;</mi><mo>-</mo><munderover accent='true'><mo>&macr;</mo><mi>&epsi;</mi><mrow></mrow></munderover><mo>=</mo><mi>&xi;</mi><mrow><mo>(</mo><mi>&lambda;</mi><mo>-</mo><mi>&gamma;</mi><mi>&prime;</mi><mo>+</mo><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup><mo>+</mo><mo>ln</mo> <mfrac><mrow><mi>&xi;</mi></mrow><!-- ___
---><mrow>&Emax;</mrow></mfrac> <mo>)</mo></mrow>
-</mrow></math></formula>
-In order for this to have average 0, we must impose that:
-<formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mrow>
- <munderover accent='true'><mo>&macr;</mo><mi>&lambda;</mi><mrow></mrow></munderover><mo>=</mo><mo>-</mo><mi>&gamma;</mi><mi>&prime;</mi><mo>-</mo><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup><mo>-</mo><mo>ln</mo> <mfrac><mrow><mi>&xi;</mi></mrow><!-- ___
---><mrow>&Emax;</mrow></mfrac>
-</mrow></math></formula>
-</p><p>This is realised introducing a <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>&lambda;</mi><mrow><mtext>max</mtext></mrow></msub><mrow><mo>(</mo><munderover accent='true'><mo>&macr;</mo><mi>&lambda;</mi><mrow></mrow></munderover><mo>)</mo></mrow></math></formula>
-such that if only values of <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&lambda;</mi><mo>&leq;</mo><msub><mi>&lambda;</mi><mrow><mtext>max</mtext></mrow></msub></math></formula>
-are accepted, the average value of the distribution is
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><munderover accent='true'><mo>&macr;</mo><mi>&lambda;</mi><mrow></mrow></munderover></math></formula>.
-</p><p>A parametric fit to the universal Landau distribution has been performed, with following result:
-<formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mrow>
- <msub><mi>&lambda;</mi><mrow><mtext>max</mtext></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>6</mn><mn>0</mn><mn>7</mn><mn>1</mn><mn>5</mn><mo>+</mo><mn>1</mn><mo>.</mo><mn>1</mn><mn>9</mn><mn>3</mn><mn>4</mn><munderover accent='true'><mo>&macr;</mo><mi>&lambda;</mi><mrow></mrow></munderover><mo>+</mo><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>6</mn><mn>7</mn><mn>7</mn><mn>9</mn><mn>4</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>5</mn><mn>2</mn><mn>3</mn><mn>8</mn><mn>2</mn><munderover accent='true'><mi>&lambda;</mi><mrow></mrow><mo>&macr;</mo></munderover><mo>)</mo></mrow><mo>exp</mo><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>9</mn><mn>4</mn><mn>7</mn><mn>5</mn><mn>3</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>7</mn><mn>4</mn><mn>4</mn><mn>4</mn><mn>2</mn><munderover accent='true'><mi>&lambda;</mi><mrow></mrow><mo>&macr;</mo></munderover><mo>)</mo></mrow>
-</mrow></math></formula> only values
-smaller than <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>&lambda;</mi><mrow><mtext>max</mtext></mrow></msub></math></formula>
-are accepted, otherwise the distribution is resampled.
-</p>
-</div>
-</div>
-<div id="vavref">
-<head>Vavilov theory</head>
-<p>Vavilov<ptr target="bib-VAVI"/> derived a more accurate straggling distribution by introducing the kinematic
-limit on the maximum transferable energy in a single collision, rather than using
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
->&Emax;<mo>=</mo><mi>&infin;</mi></math></formula>. Now
-we can write<ptr target="bib-SCH1"/>:
- <table rend="inline"><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi> <mfenced
-open='(' close=')'><mi>&epsi;</mi><mo>,</mo><mi>&delta;</mi><mi>s</mi></mfenced> <mo>=</mo> <mfrac><mrow><mn>1</mn></mrow><!--
---><mrow><mi>&xi;</mi></mrow></mfrac><msub><mi>&phi;</mi><mrow><mi>v</mi></mrow></msub> <mfenced
-open='(' close=')'><msub><mi>&lambda;</mi><mrow><mi>v</mi></mrow></msub><mo>,</mo><mi>&kappa;</mi><mo>,</mo><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup></mfenced> <mtext></mtext>
-</math></formula></cell></row></table>
-where
- <table rend="inline"><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>&phi;</mi><mrow><mi>v</mi></mrow></msub> <mfenced
-open='(' close=')'><msub><mi>&lambda;</mi><mrow><mi>v</mi></mrow></msub><mo>,</mo><mi>&kappa;</mi><mo>,</mo><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup></mfenced> <mo>=</mo> <mfrac><mrow><mn>1</mn></mrow><!--_
---><mrow><mn>2</mn><mi>&pi;</mi><mi>i</mi></mrow></mfrac><msubsup><mo>&int;</mo>
- <mrow><mi>c</mi><mo>+</mo><mi>i</mi><mi>&infin;</mi></mrow><mrow><mi>c</mi><mo>-</mo><mi>i</mi><mi>&infin;</mi></mrow></msubsup><mi>&phi;</mi><mfenced
-open='(' close=')'><mi>s</mi></mfenced><msup><mi>e</mi><mrow><mi>&lambda;</mi><mi>s</mi></mrow></msup><mi>d</mi><mi>s</mi><mspace width='2cm'/><mi>c</mi><mo>&geq;</mo><mn>0</mn> <mtext></mtext>
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&phi;</mi><mfenced
-open='(' close=')'><mi>s</mi></mfenced> <mo>=</mo> <mo>exp</mo><mfenced
-open='[' close=']'><mi>&kappa;</mi><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup><mi>&gamma;</mi><mo>)</mo></mrow></mfenced><mo>exp</mo><mfenced
-open='[' close=']'><mi>&psi;</mi> <mfenced
-open='(' close=')'><mi>s</mi></mfenced></mfenced><mo>,</mo> <mtext></mtext>
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&psi;</mi> <mfenced
-open='(' close=')'><mi>s</mi></mfenced> <mo>=</mo> <mi>s</mi><mo>ln</mo><mi>&kappa;</mi><mo>+</mo><mrow><mo>(</mo><mi>s</mi><mo>+</mo><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup><mi>&kappa;</mi><mo>)</mo></mrow><mfenced
-open='[' close=']'><mo>ln</mo><mrow><mo>(</mo><mi>s</mi><mo>/</mo><mi>&kappa;</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>E</mi><mrow>
-<mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>s</mi><mo>/</mo><mi>&kappa;</mi><mo>)</mo></mrow></mfenced><mo>-</mo><mi>&kappa;</mi><msup><mi>e</mi><mrow><mo>-</mo><mi>s</mi><mo>/</mo><mi>&kappa;</mi></mrow></msup><mo>,</mo> <mtext></mtext>
-</math></formula></cell></row></table>
-and
- <table rend="inline"><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow> <mo>=</mo><msubsup> <mo>&int;</mo>
- <mrow><mi>&infin;</mi></mrow><mrow><mi>z</mi></mrow></msubsup><msup><mi>t</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><mi>e</mi><mrow><mo>-</mo><mi>t</mi></mrow></msup><mi>d</mi><mi>t</mi><mspace width='1cm'/><mtext>(the exponential integral)</mtext> <mtext></mtext>
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>&lambda;</mi><mrow><mi>v</mi></mrow></msub> <mo>=</mo> <mi>&kappa;</mi><mfenced
-open='[' close=']'><mfrac><mrow><mi>&epsi;</mi><mo>-</mo><munderover accent='true'><mo>&macr;</mo><mi>&epsi;</mi><mrow></mrow></munderover></mrow><!--
- --><mrow><mi>&xi;</mi></mrow></mfrac> <mo>-</mo><mi>&gamma;</mi><mi>&prime;</mi><mo>-</mo><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup></mfenced> <mtext></mtext>
-</math></formula></cell></row></table>
-</p><p>The Vavilov parameters are simply related to the Landau parameter by
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>&lambda;</mi><mrow><mi>L</mi></mrow></msub><mo>=</mo><msub><mi>&lambda;</mi><mrow><mi>v</mi></mrow></msub><mo>/</mo><mi>&kappa;</mi><mo>-</mo><mo>ln</mo><mi>&kappa;</mi></math></formula>. It can be shown that
-as <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&kappa;</mi><mo>&rarr;</mo><mn>0</mn></math></formula>, the distribution of
-the variable <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>&lambda;</mi><mrow><mi>L</mi></mrow></msub></math></formula> approaches
-that of Landau. For <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&kappa;</mi><mo>&leq;</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>1</mn></math></formula>
-the two distributions are already practically identical. Contrary to what many textbooks
-report, the Vavilov distribution <emph>does not</emph> approximate the Landau distribution for small
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&kappa;</mi></math></formula>, but rather the
-distribution of <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>&lambda;</mi><mrow><mi>L</mi></mrow></msub></math></formula>
-defined above tends to the distribution of the true
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&lambda;</mi></math></formula> from
-the Landau density function. Thus the routine <code>GVAVIV</code> samples the variable
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>&lambda;</mi><mrow><mi>L</mi></mrow></msub></math></formula> rather
-than <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>&lambda;</mi><mrow><mi>v</mi></mrow></msub></math></formula>.
-For <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&kappa;</mi><mo>&geq;</mo><mn>1</mn><mn>0</mn></math></formula>
-the Vavilov distribution tends to a Gaussian distribution (see next section).
-</p>
-</div>
-<div >
-<head>Gaussian Theory</head>
-<p>Various conflicting forms have been proposed for Gaussian straggling functions, but most
-of these appear to have little theoretical or experimental basis. However, it has been shown<ptr target="bib-SELT"/>
-that for <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&kappa;</mi><mo>&geq;</mo><mn>1</mn><mn>0</mn></math></formula>
-the Vavilov distribution can be replaced by a Gaussian of the form:
- <table rend="inline"><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mrow><mo>(</mo><mi>&epsi;</mi><mo>,</mo><mi>&delta;</mi><mi>s</mi><mo>)</mo></mrow><mo>&ap;</mo> <mfrac><mrow><mn>1</mn></mrow><!--________
---><mrow><mi>&xi;</mi><msqrt><!--<mi>&radical;</mi>
- ______________--><mfrac><mrow><mn>2</mn><mi>&pi;</mi></mrow><!--
- --><mrow><mi>&kappa;</mi></mrow></mfrac> <mfenced
-open='(' close=')'><mn>1</mn><mo>-</mo><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn></mfenced></msqrt></mrow></mfrac><mo>exp</mo><mfenced
-open='[' close=']'><mfrac><mrow><msup><mrow><mo>(</mo><mi>&epsi;</mi><mo>-</mo><munderover accent='true'><mo>&macr;</mo><mi>&epsi;</mi><mrow></mrow></munderover><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><!--
- --><mrow><mn>2</mn></mrow></mfrac> <mfrac><mrow><mi>&kappa;</mi></mrow><!-- _______
---><mrow><msup><mi>&xi;</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow></mfrac></mfenced> <mtext></mtext>
-</math></formula></cell></row></table>
-thus implying
- <table rend="inline"><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>mean</mi> <mo>=</mo> <munderover accent='true'><mo>&macr;</mo><mi>&epsi;</mi><mrow></mrow></munderover> <mtext></mtext>
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>&sigma;</mi><mrow><mn>2</mn></mrow></msup> <mo>=</mo> <mfrac><mrow><msup><mi>&xi;</mi><mrow><mn>2</mn></mrow></msup></mrow><!--
- --><mrow><mi>&kappa;</mi></mrow></mfrac> <mrow><mo>(</mo><mn>1</mn><mo>-</mo><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn><mo>)</mo></mrow><mo>=</mo><mi>&xi;</mi><msub><mi>E</mi><mrow><mi>
-max</mi></mrow></msub><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn><mo>)</mo></mrow> <mtext></mtext>
-</math></formula></cell></row></table>
-</p>
-</div>
-<div id="urban">
-<head>Urb&aacute;n model</head>
-<p>The method for computing restricted energy losses with
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&delta;</mi></math></formula>-ray
-production above given threshold energy in <code>GEANT</code> is a Monte Carlo method that
-can be used for thin layers. It is fast and it can be used for any thickness of a
-medium. Approaching the limit of the validity of Landau's theory, the loss
-distribution approaches smoothly the Landau form as shown in Figure <ptr target="fg:phys332-2"/>.
-</p>
-<p><figure file="phys332-2" id="fg:phys332-2">
-<head>Energy loss distribution for a 3 GeV electron in Argon as given by
-standard GEANT. The width of the layers is given in centimeters.</head>
-</figure></p>
-<p>It is assumed that the atoms have only two energy levels with binding energy
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>E</mi><mrow><mn>1</mn></mrow></msub></math></formula> and
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>E</mi><mrow><mn>2</mn></mrow></msub></math></formula>.
-The particle--atom interaction will then be an excitation with energy loss
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>E</mi><mrow><mn>1</mn></mrow></msub></math></formula> or
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>E</mi><mrow><mn>2</mn></mrow></msub></math></formula>, or
-an ionisation with an energy loss distributed according to a function
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>g</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mo>&sim;</mo><mn>1</mn><mo>/</mo><msup><mi>E</mi><mrow><mn>2</mn></mrow></msup></math></formula>:
-<formula type="equation"><math xmlns="http://www.w3.org/1998/Math/MathML">
- <mi>g</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mrow><mo>(</mo>&Emax;<mo>+</mo><mi>I</mi><mo>)</mo></mrow><mi>I</mi></mrow><!--
- --><mrow>&Emax;</mrow></mfrac>
-<mfrac><mrow><mn>1</mn></mrow><!-- _
---><mrow><msup><mi>E</mi><mrow><mn>2</mn></mrow></msup></mrow></mfrac>
-</math></formula></p><p>The
-macroscopic cross-section for excitations (<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></formula>)
-is <formula id="eq:sigex" type="equation"><math xmlns="http://www.w3.org/1998/Math/MathML">
- <msub><mi>&Sigma;</mi><mrow><mi>i</mi></mrow></msub><mo>=</mo><mi>C</mi> <mfrac><mrow><msub><mi>f</mi><mrow><mi>i</mi></mrow></msub></mrow><!--
---><mrow><msub><mi>E</mi><mrow><mi>i</mi></mrow></msub></mrow></mfrac> <mfrac><mrow><mo>ln</mo><mrow><mo>(</mo><mn>2</mn><mi>m</mi><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup><msup><mi>&gamma;</mi><mrow><mn>2</mn></mrow></msup><mo>/</mo><msub><mi>E</mi><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>-</mo><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup></mrow><!--
- --><mrow><mo>ln</mo><mrow><mo>(</mo><mn>2</mn><mi>m</mi><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup><msup><mi>&gamma;</mi><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>I</mi><mo>)</mo></mrow><mo>-</mo><msup><mi>&beta;</mi><mrow><mn>2</mn></mrow></msup></mrow></mfrac> <mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>r</mi><mo>)</mo></mrow> </math></formula>and
-the macroscopic cross-section for ionisation is
-<formula id="eq:sigion" type="equation"><math xmlns="http://www.w3.org/1998/Math/MathML">
- <msub><mi>&Sigma;</mi><mrow><mn>3</mn></mrow></msub><mo>=</mo><mi>C</mi> <mfrac><mrow>&Emax;</mrow><!-- ________________
---><mrow><mi>I</mi><mrow><mo>(</mo>&Emax;<mo>+</mo><mi>I</mi><mo>)</mo></mrow><mo>ln</mo><mrow><mo>(</mo><mfrac><mrow>&Emax;<mo>+</mo><mi>I</mi></mrow><!--
- --><mrow><mi>I</mi></mrow></mfrac> <mo>)</mo></mrow></mrow></mfrac><mi>r</mi> </math></formula>
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML">&Emax;</math></formula>
-is the <code>GEANT</code> cut for <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&delta;</mi></math></formula>-production,
-or the maximum energy transfer minus mean ionisation energy, if it is smaller than
-this cut-off value. The following notation is used:
-</p><p><table rend="inline"><row><cell
-><formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>r</mi><mo>,</mo><mi>C</mi></math></formula></cell><cell
->parameters of the model</cell>
-</row><row><cell
-><formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>E</mi><mrow><mi>i</mi></mrow></msub></math></formula></cell><cell
->atomic energy levels </cell>
-</row><row><cell
-><formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>I</mi></math></formula></cell><cell
->mean ionisation energy </cell>
-</row><row><cell
-><formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>f</mi><mrow><mi>i</mi></mrow></msub></math></formula></cell><cell
->oscillator strengths </cell>
-</row></table>
-</p><p>The model has the parameters <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>f</mi><mrow><mi>i</mi></mrow></msub></math></formula>,
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>E</mi><mrow><mi>i</mi></mrow></msub></math></formula>,
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>C</mi></math></formula> and
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>r</mi><mrow><mo>(</mo><mn>0</mn><mo>&leq;</mo><mi>r</mi><mo>&leq;</mo><mn>1</mn><mo>)</mo></mrow></math></formula>. The oscillator
-strengths <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>f</mi><mrow><mi>i</mi></mrow></msub></math></formula> and the
-atomic level energies <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>E</mi><mrow><mi>i</mi></mrow></msub></math></formula>
-should satisfy the constraints
- <table rend="inline"><row><cell><formula type="subeqn" id="eq:fisum"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>f</mi><mrow><mn>2</mn></mrow></msub> <mo>=</mo> <mn>1</mn>
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
- </math></formula></cell></row><row><cell><formula type="subeqn" id="eq:flnsum"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mrow><mn>1</mn></mrow></msub><mo>ln</mo><msub><mi>E</mi><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>f</mi><mrow><mn>2</mn></mrow></msub><mo>ln</mo><msub><mi>E</mi><mrow><mn>2</mn></mrow></msub> <mo>=</mo> <mo>ln</mo><mi>I</mi>
-</math></formula></cell></row></table>
-The parameter <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>C</mi></math></formula>
-can be defined with the help of the mean energy loss
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>d</mi><mi>E</mi><mo>/</mo><mi>d</mi><mi>x</mi></math></formula> in the following way: The
-numbers of collisions (<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>n</mi><mrow><mi>i</mi></mrow></msub></math></formula>,
-i = 1,2 for the excitation and 3 for the ionisation) follow the Poisson distribution with a mean
-number <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mrow><mo>&lt;</mo><msub><mi>n</mi><mrow><mi>i</mi></mrow></msub><mo>>;</mo></mrow></math></formula>. In a step
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&Delta;</mi><mi>x</mi></math></formula> the mean number
-of collisions is <formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML">
- <mrow><mo>&lt;</mo><msub><mi>n</mi><mrow><mi>i</mi></mrow></msub><mo>>;</mo></mrow><mo>=</mo><msub><mi>&Sigma;</mi><mrow><mi>i</mi></mrow></msub><mi>&Delta;</mi><mi>x</mi>
-</math></formula>The
-mean energy loss <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>d</mi><mi>E</mi><mo>/</mo><mi>d</mi><mi>x</mi></math></formula>
-in a step is the sum of the excitation and ionisation contributions
-<formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML">
- <mfrac><mrow><mi>d</mi><mi>E</mi></mrow><!--
---><mrow><mi>d</mi><mi>x</mi></mrow></mfrac> <mi>&Delta;</mi><mi>x</mi><mo>=</mo><mfenced
-open='[' close=']'><msub><mi>&Sigma;</mi><mrow><mn>1</mn></mrow></msub><msub><mi>E</mi><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>&Sigma;</mi><mrow><mn>2</mn></mrow></msub><msub><mi>E</mi><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mi>&Sigma;</mi><mrow><mn>3</mn></mrow></msub><msubsup><mo>&int;</mo>
- <mrow><mi>I</mi></mrow><mrow>&Emax;<mo>+</mo><mi>I</mi></mrow></msubsup><mi>E</mi><mi>g</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mi>d</mi><mi>E</mi></mfenced><mi>&Delta;</mi><mi>x</mi>
-</math></formula>From
-this, using the equations (<ptr target="eq:sigex"/>), (<ptr target="eq:sigion"/>), (<ptr target="eq:fisum"/>) and (<ptr target="eq:flnsum"/>), one can define the parameter
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>C</mi></math></formula>
-<formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML">
- <mi>C</mi><mo>=</mo><mfrac><mrow><mi>d</mi><mi>E</mi></mrow><!--
---><mrow><mi>d</mi><mi>x</mi></mrow></mfrac>
-</math></formula>
-</p><p>The following values have been chosen in <code>GEANT</code> for the other parameters:
-<formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mrow>
- <mtable equalrows='false' equalcolumns='false'><mtr><mtd><msub><mi>f</mi><mrow><mn>2</mn></mrow></msub><mo>=</mo><mfenced
-open='{' ><mtable equalrows='false' equalcolumns='false'><mtr><mtd><mn>0</mn> </mtd><mtd><mi>if</mi><mi>Z</mi><mo>&leq;</mo><mn>2</mn></mtd>
-</mtr><mtr><mtd><mn>2</mn><mo>/</mo><mi>Z</mi></mtd><mtd><mi>if</mi><mi>Z</mi><mo>&gt;</mo><mn>2</mn></mtd>
-</mtr><mtr><mtd> </mtd></mtr></mtable> </mfenced></mtd><mtd><mo>&Rarr;</mo></mtd><mtd><msub><mi>f</mi><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>-</mo><msub><mi>f</mi><mrow><mn>2</mn></mrow></msub> </mtd>
- </mtr><mtr><mtd><msub><mi>E</mi><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn><mn>0</mn><msup><mi>Z</mi><mrow><mn>2</mn></mrow></msup><mi>eV </mi> </mtd><mtd><mo>&Rarr;</mo></mtd><mtd><msub><mi>E</mi><mrow><mn>1</mn></mrow></msub><mo>=</mo><msup><mfenced
-open='(' close=')'> <mfrac><mrow><mi>I</mi></mrow><!--___
---><mrow><msubsup><mi>E</mi><mrow><mn>2</mn></mrow><mrow><msub><mi>f</mi><mrow><mn>2</mn></mrow></msub></mrow></msubsup></mrow></mfrac> </mfenced><mrow> <mfrac><mrow><mn>1</mn></mrow><!-- _
---><mrow><msub><mi>f</mi><mrow><mn>1</mn></mrow></msub></mrow></mfrac> </mrow></msup></mtd>
- </mtr><mtr><mtd><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn> </mtd><mtd> </mtd><mtd> </mtd>
- </mtr><mtr><mtd> </mtd></mtr></mtable>
-</mrow></math></formula> With these values
-the atomic level <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>E</mi><mrow><mn>2</mn></mrow></msub></math></formula>
-corresponds approximately the K-shell energy of the atoms and
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>Z</mi><msub><mi>f</mi><mrow><mn>2</mn></mrow></msub></math></formula> the number of
-K-shell electrons. <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>r</mi></math></formula>
-is the only variable which can be tuned freely. It determines the relative contribution
-of ionisation and excitation to the energy loss.
-</p><p>The energy loss is computed with the assumption that the step length (or the relative
-energy loss) is small, and---in consequence---the cross-section can be considered
-constant along the path length. The energy loss due to the excitation is
-<formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML">
- <mi>&Delta;</mi><msub><mi>E</mi><mrow><mi>e</mi></mrow></msub><mo>=</mo><msub><mi>n</mi><mrow><mn>1</mn></mrow></msub><msub><mi>E</mi><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>n</mi><mrow><mn>2</mn></mrow></msub><msub><mi>E</mi><mrow><mn>2</mn></mrow></msub>
-</math></formula>where
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>n</mi><mrow><mn>1</mn></mrow></msub></math></formula> and
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>n</mi><mrow><mn>2</mn></mrow></msub></math></formula>
-are sampled from Poisson distribution as discussed above. The
-loss due to the ionisation can be generated from the distribution
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>g</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></math></formula> by
-the inverse transformation method:
- <table rend="inline"><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mi>F</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow> <mo>=</mo><msubsup> <mo>&int;</mo>
- <mrow><mi>I</mi></mrow><mrow><mi>E</mi></mrow></msubsup><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>d</mi><mi>x</mi> <mtext></mtext>
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><msup><mi>F</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow> <mo>=</mo> <mfrac><mrow><mi>I</mi></mrow><!--____
---><mrow><mn>1</mn><mo>-</mo><mi>u</mi> <mfrac><mrow>&Emax;</mrow><!-- ___
---><mrow>&Emax;<mo>+</mo><mi>I</mi></mrow></mfrac> </mrow></mfrac>
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
-</math></formula></cell></row></table>
-where <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>u</mi></math></formula> is a uniform random
-number between <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>F</mi><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></math></formula> and
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>F</mi><mrow><mo>(</mo>&Emax;<mo>+</mo><mi>I</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></math></formula>. The contribution from the
-ionisations will be <formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML">
- <mi>&Delta;</mi><msub><mi>E</mi><mrow><mi>i</mi></mrow></msub><mo>=</mo><msubsup><mo>&sum;</mo>
- <mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub></mrow></msubsup> <mfrac><mrow><mi>I</mi></mrow><!--________
---><mrow><mn>1</mn><mo>-</mo><msub><mi>u</mi><mrow><mi>j</mi></mrow></msub> <mfrac><mrow>&Emax;</mrow><!-- ___
---><mrow>&Emax;<mo>+</mo><mi>I</mi></mrow></mfrac> </mrow></mfrac>
-</math></formula>where
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub></math></formula> is the
-number of ionisation (sampled from Poisson distribution). The energy loss in a step will
-then be <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&Delta;</mi><mi>E</mi><mo>=</mo><mi>&Delta;</mi><msub><mi>E</mi><mrow><mi>e</mi></mrow></msub><mo>+</mo><mi>&Delta;</mi><msub><mi>E</mi><mrow><mi>i</mi></mrow></msub></math></formula>.
-</p>
-<div >
-<head>Fast simulation for <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo>&geq;</mo><mn>1</mn><mn>6</mn></math></formula></head>
-<p>If the number of ionisation <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub></math></formula>
-is bigger than 16, a faster sampling method can be used. The possible energy loss
-interval is divided in two parts: one in which the number of collisions is large and the
-sampling can be done from a Gaussian distribution and the other in which
-the energy loss is sampled for each collision. Let us call the former interval
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mrow><mo>[</mo><mi>I</mi><mo>,</mo><mi>&alpha;</mi><mi>I</mi><mo>]</mo></mrow></math></formula> the interval A,
-and the latter <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mrow><mo>[</mo><mi>&alpha;</mi><mi>I</mi><mo>,</mo>&Emax;<mo>]</mo></mrow></math></formula> the
-interval B. <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&alpha;</mi></math></formula> lies
-between 1 and <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
->&Emax;<mo>/</mo><mi>I</mi></math></formula>.
-A collision with a loss in the interval A happens with the probability
-<formula type="display" id="eq:phys332-5"><math xmlns="http://www.w3.org/1998/Math/MathML">
- <mi>P</mi><mrow><mo>(</mo><mi>&alpha;</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mo>&int;</mo>
- <mrow><mi>I</mi></mrow><mrow><mi>&alpha;</mi><mi>I</mi></mrow></msubsup><mi>g</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mi>d</mi><mi>E</mi><mo>=</mo><mfrac><mrow><mrow><mo>(</mo>&Emax;<mo>+</mo><mi>I</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow><!--
- --><mrow>&Emax;<mi>&alpha;</mi></mrow></mfrac>
-</math></formula>The
-mean energy loss and the standard deviation for this type of collision are
-<formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML">
- <mrow><mo>&lt;</mo><mi>&Delta;</mi><mi>E</mi><mrow><mo>(</mo><mi>&alpha;</mi><mo>)</mo></mrow><mo>>;</mo></mrow><mo>=</mo> <mfrac><mrow><mn>1</mn></mrow><!--___
---><mrow><mi>P</mi><mrow><mo>(</mo><mi>&alpha;</mi><mo>)</mo></mrow></mrow></mfrac><msubsup><mo>&int;</mo>
- <mrow><mi>I</mi></mrow><mrow><mi>&alpha;</mi><mi>I</mi></mrow></msubsup><mi>E</mi><mi>g</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mi>d</mi><mi>E</mi><mo>=</mo><mfrac><mrow><mi>I</mi><mi>&alpha;</mi><mo>ln</mo><mi>&alpha;</mi></mrow><!--
- --><mrow><mi>&alpha;</mi><mo>-</mo><mn>1</mn></mrow></mfrac>
-</math></formula>and <formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>&sigma;</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>&alpha;</mi><mo>)</mo></mrow><mo>=</mo> <mfrac><mrow><mn>1</mn></mrow><!--___
---><mrow><mi>P</mi><mrow><mo>(</mo><mi>&alpha;</mi><mo>)</mo></mrow></mrow></mfrac><msubsup><mo>&int;</mo>
- <mrow><mi>I</mi></mrow><mrow><mi>&alpha;</mi><mi>I</mi></mrow></msubsup><msup><mi>E</mi><mrow><mn>2</mn></mrow></msup><mi>g</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mi>d</mi><mi>E</mi><mo>=</mo><msup><mi>I</mi><mrow><mn>2</mn></mrow></msup><mi>&alpha;</mi><mfenced
-open='(' close=')'><mn>1</mn><mo>-</mo> <mfrac><mrow><mi>&alpha;</mi><msup><mo>ln</mo><mrow><mn>2</mn></mrow></msup><mi>&alpha;</mi></mrow><!--_
---><mrow><msup><mrow><mo>(</mo><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mfenced>
-</math></formula>If the
-collision number is high, we assume that the number of the type A collisions can be
-calculated from a Gaussian distribution with the following mean value and standard
-deviation:
- <table rend="inline"><row><cell><formula type="subeqn" id="eq:phys332-1"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>&lt;</mo><msub><mi>n</mi><mrow><mi>A</mi></mrow></msub><mo>>;</mo></mrow> <mo>=</mo> <msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mi>P</mi><mrow><mo>(</mo><mi>&alpha;</mi><mo>)</mo></mrow>
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
- </math></formula></cell></row><row><cell><formula type="subeqn" id="eq:phys332-2"><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>&sigma;</mi><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msubsup> <mo>=</mo> <msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mi>P</mi><mrow><mo>(</mo><mi>&alpha;</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>P</mi><mrow><mo>(</mo><mi>&alpha;</mi><mo>)</mo></mrow><mo>)</mo></mrow>
-</math></formula></cell></row></table>
-It is further assumed that the energy loss in these collisions has a Gaussian
-distribution with
- <table rend="inline"><row><cell><formula type="subeqn" id="eq:phys332-3"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>&lt;</mo><mi>&Delta;</mi><msub><mi>E</mi><mrow><mi>A</mi></mrow></msub><mo>>;</mo></mrow> <mo>=</mo> <msub><mi>n</mi><mrow><mi>A</mi></mrow></msub><mrow><mo>&lt;</mo><mi>&Delta;</mi><mi>E</mi><mrow><mo>(</mo><mi>&alpha;</mi><mo>)</mo></mrow><mo>>;</mo></mrow>
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
- </math></formula></cell></row><row><cell><formula type="subeqn" id="eq:phys332-4"><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>&sigma;</mi><mrow><mi>E</mi><mo>,</mo><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msubsup> <mo>=</mo> <msub><mi>n</mi><mrow><mi>A</mi></mrow></msub><msup><mi>&sigma;</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>&alpha;</mi><mo>)</mo></mrow>
-</math></formula></cell></row></table>
-The energy loss of these collision can then be sampled from the Gaussian
-distribution.
-</p><p>The collisions where the energy loss is in the interval B are sampled directly from
-<formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML">
- <mi>&Delta;</mi><msub><mi>E</mi><mrow><mi>B</mi></mrow></msub><mo>=</mo><msubsup><mo>&sum;</mo>
- <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo>-</mo><msub><mi>n</mi><mrow><mi>A</mi></mrow></msub></mrow></msubsup> <mfrac><mrow><mi>&alpha;</mi><mi>I</mi></mrow><!--_________
---><mrow><mn>1</mn><mo>-</mo><msub><mi>u</mi><mrow><mi>i</mi></mrow></msub> <mfrac><mrow>&Emax;<mo>+</mo><mi>I</mi><mo>-</mo><mi>&alpha;</mi><mi>I</mi></mrow><!--
- --><mrow>&Emax;<mo>+</mo><mi>I</mi></mrow></mfrac> </mrow></mfrac>
-</math></formula>The
-total energy loss is the sum of these two types of collisions:
-<formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML">
- <mi>&Delta;</mi><mi>E</mi><mo>=</mo><mi>&Delta;</mi><msub><mi>E</mi><mrow><mi>A</mi></mrow></msub><mo>+</mo><mi>&Delta;</mi><msub><mi>E</mi><mrow><mi>B</mi></mrow></msub>
-</math></formula></p>
-<p>The approximation of equations (<ptr target="eq:phys332-1"/>), (<ptr target="eq:phys332-2"/>), (<ptr target="eq:phys332-3"/>) and (<ptr target="eq:phys332-4"/>) can be used under the following
-conditions:
- <table rend="inline"><row><cell><formula type="subeqn" id="eq:phys332-6"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>&lt;</mo><msub><mi>n</mi><mrow><mi>A</mi></mrow></msub><mo>>;</mo></mrow><mo>-</mo><mi>c</mi><msub><mi>&sigma;</mi><mrow><mi>A</mi></mrow></msub> <mo>&geq;</mo> <mn>0</mn>
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
- </math></formula></cell></row><row><cell><formula type="subeqn" id="eq:phys332-7"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>&lt;</mo><msub><mi>n</mi><mrow><mi>A</mi></mrow></msub><mo>>;</mo></mrow><mo>+</mo><mi>c</mi><msub><mi>&sigma;</mi><mrow><mi>A</mi></mrow></msub> <mo>&leq;</mo> <msub><mi>n</mi><mrow><mn>3</mn></mrow></msub>
- </math></formula></cell></row><row><cell><formula type="subeqn"><math xmlns="http://www.w3.org/1998/Math/MathML">
- </math></formula></cell></row><row><cell><formula type="subeqn" id="eq:phys332-8"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>&lt;</mo><mi>&Delta;</mi><msub><mi>E</mi><mrow><mi>A</mi></mrow></msub><mo>>;</mo></mrow><mo>-</mo><mi>c</mi><msub><mi>&sigma;</mi><mrow><mi>E</mi><mo>,</mo><mi>A</mi></mrow></msub> <mo>&geq;</mo> <mn>0</mn>
-</math></formula></cell></row></table>
-where <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>c</mi><mo>&geq;</mo><mn>4</mn></math></formula>. From
-the equations (<ptr target="eq:phys332-5"/>), (<ptr target="eq:phys332-1"/>) and (<ptr target="eq:phys332-3"/>) and from the conditions (<ptr target="eq:phys332-6"/>) and (<ptr target="eq:phys332-7"/>) the following limits can be
-<formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>&alpha;</mi><mrow><mi>min</mi></mrow></msub><mo>=</mo><mfrac><mrow><mrow><mo>(</mo><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo>+</mo><msup><mi>c</mi><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>(</mo>&Emax;<mo>+</mo><mi>I</mi><mo>)</mo></mrow></mrow><!--
---><mrow><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo>&Emax;<mo>+</mo><mi>I</mi><mo>)</mo></mrow><mo>+</mo><msup><mi>c</mi><mrow><mn>2</mn></mrow></msup><mi>I</mi></mrow></mfrac> <mo>&leq;</mo><mi>&alpha;</mi><mo>&leq;</mo><msub><mi>&alpha;</mi><mrow><mtext>max</mtext></mrow></msub><mo>=</mo><mfrac><mrow><mrow><mo>(</mo><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo>+</mo><msup><mi>c</mi><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>(</mo>&Emax;<mo>+</mo><mi>I</mi><mo>)</mo></mrow></mrow><!--
---><mrow><msup><mi>c</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo>&Emax;<mo>+</mo><mi>I</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mi>I</mi></mrow></mfrac>
-</math></formula>This
-conditions gives a lower limit to number of the ionisations
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub></math></formula> for which the fast
-<formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo>&geq;</mo><msup><mi>c</mi><mrow><mn>2</mn></mrow></msup> </math></formula>As
-in the conditions (<ptr target="eq:phys332-6"/>), (<ptr target="eq:phys332-7"/>) and (<ptr target="eq:phys332-8"/>) the value of
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>c</mi></math></formula> is as minimum
-4, one gets <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo>&geq;</mo><mn>1</mn><mn>6</mn></math></formula>.
-In order to speed the simulation, the maximum value is used for
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&alpha;</mi></math></formula>.
-</p><p>The number of collisions with energy loss in the interval B (the number of interactions
-which has to be simulated directly) increases slowly with the total number of collisions
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub></math></formula>.
-The maximum number of these collisions can be estimated as
-<formula type="equation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>n</mi><mrow><mi>B</mi><mo>,</mo><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo>-</mo><msub><mi>n</mi><mrow><mi>A</mi><mo>,</mo><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msub><mo>&ap;</mo><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><mrow><mo>&lt;</mo><msub><mi>n</mi><mrow><mi>A</mi></mrow></msub><mo>>;</mo></mrow><mo>-</mo><msub><mi>&sigma;</mi><mrow><mi>A</mi></mrow></msub><mo>)</mo></mrow>
-</math></formula>From the previous
-expressions for <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mrow><mo>&lt;</mo><msub><mi>n</mi><mrow><mi>A</mi></mrow></msub><mo>>;</mo></mrow></math></formula> and
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>&sigma;</mi><mrow><mi>A</mi></mrow></msub></math></formula> one can derive the
-<formula type="equation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>n</mi><mrow><mi>B</mi></mrow></msub><mo>&leq;</mo><msub><mi>n</mi><mrow><mi>B</mi><mo>,</mo><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo> <mfrac><mrow><mn>2</mn><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><msup><mi>c</mi><mrow><mn>2</mn></mrow></msup></mrow><!--_
---><mrow><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo>+</mo><msup><mi>c</mi><mrow><mn>2</mn></mrow></msup></mrow></mfrac>
-</math></formula>The following
-values are obtained with <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>c</mi><mo>=</mo><mn>4</mn></math></formula>:
-</p><p><table rend="inline"><row><cell
-><formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub></math></formula></cell><cell
-><formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>n</mi><mrow><mi>B</mi><mo>,</mo><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></formula></cell><cell
-></cell><cell
-><formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub></math></formula></cell><cell
-><formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>n</mi><mrow><mi>B</mi><mo>,</mo><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></formula></cell>
-</row><row><cell
->16 </cell><cell
->16 </cell><cell
-></cell><cell
-> 200</cell><cell
-> 29.63</cell>
-</row><row><cell
->20 </cell><cell
->17.78 </cell><cell
-></cell><cell
-> 500</cell><cell
-> 31.01</cell>
-</row><row><cell
->50 </cell><cell
->24.24 </cell><cell
-></cell><cell
-> 1000</cell><cell
-> 31.50</cell>
-</row><row><cell
->100 </cell><cell
->27.59 </cell><cell
-></cell><cell
-><formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&infin;</mi></math></formula></cell><cell
-> 32.00</cell>
-</row></table>
-</p>
-</div>
-<div >
-<head>Special sampling for lower part of the spectrum</head>
-<p>If the step length is very small (<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mo>&leq;</mo><mn>5</mn></math></formula>
-mm in gases, <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mo>&leq;</mo></math></formula>
-2-3 <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>&mu;</mi></math></formula>m in solids)
-the model gives 0 energy loss for some events. To avoid this, the probability of 0 energy loss is
-<formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mrow><mo>(</mo><mi>&Delta;</mi><mi>E</mi><mo>=</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msup><mi>e</mi><mrow><mo>-</mo><mrow><mo>(</mo><mrow><mo>&lt;</mo><msub><mi>n</mi><mrow><mn>1</mn></mrow></msub><mo>></mo></mrow><mo>+</mo><mrow><mo>&lt;</mo><msub><mi>n</mi><mrow><mn>2</mn></mrow></msub><mo>></mo></mrow><mo>+</mo><mrow><mo>&lt;</mo><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo>></mo></mrow><mo>)</mo></mrow></mrow></msup>
-</math></formula>If the
-probability is bigger than 0.01 a special sampling is done, taking into account the fact that in
-these cases the projectile interacts only with the outer electrons of the atom. An energy level
-<formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><msub><mi>E</mi><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn><mn>0</mn></math></formula> eV is chosen
-to correspond to the outer electrons. The mean number of collisions can be calculated from
-<formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>&lt;</mo><mi>n</mi><mo>></mo></mrow><mo>=</mo> <mfrac><mrow><mn>1</mn></mrow><mrow><msub><mi>E</mi><mrow><mn>0</mn></mrow></msub></mrow></mfrac>
-</math></formula>The number
-of collisions <formula><math xmlns="http://www.w3.org/1998/Math/MathML"
-><mi>n</mi></math></formula>
-is sampled from Poisson distribution. In the case of the thin layers, all the
-collisions are considered as ionisations and the energy loss is computed as
-<formula type="display"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&Delta;</mi><mi>E</mi><mo>=</mo><msubsup><mo>&sum;</mo>
- <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup>
-<mfrac><mrow><msub><mi>E</mi><mrow><mn>0</mn></mrow></msub></mrow><mrow><mn>1</mn><mo>-</mo>
-<mfrac><mrow>&Emax;</mrow>
-<mrow>&Emax;<mo>+</mo><msub><mi>E</mi><mrow><mn>0</mn></mrow></msub></mrow></mfrac>
-<msub><mi>u</mi><mrow><mi>i</mi></mrow></msub></mrow></mfrac>
-</math></formula>
-</p> </div> </div> <div
-type="star"> <head>References</head> <list type="bibliography"> <item
-id="bib-LAND"> <p>L.Landau. On the Energy Loss of Fast Particles by
-Ionisation. Originally published in <emph>J. Phys.</emph>, 8:201,
-1944. Reprinted in D.ter Haar, Editor, <emph>L.D.Landau, Collected
-papers</emph>, page 417. Pergamon Press, Oxford, 1965.
-</p></item> <item id="bib-SCH1"> <p>B.Schorr. Programs for
-the Landau and the Vavilov distributions and the corresponding random
-numbers. <emph>Comp. Phys. Comm.</emph>, 7:216, 1974.
-</p></item> <item id="bib-SELT"> <p>S.M.Seltzer and
-M.J.Berger. Energy loss straggling of protons and mesons. In
-<emph>Studies in Penetration of Charged Particles in Matter</emph>,
-Nuclear Science Series 39, Nat. Academy of Sciences, Washington DC,
-1964. </p></item> <item id="bib-TALM"> <p>R.Talman. On the
-statistics of particle identification using ionization. <emph>Nucl.
-Inst. Meth.</emph>, 159:189, 1979. </p></item> <item
-id="bib-VAVI"> <p>P.V.Vavilov. Ionisation losses of high energy
-heavy particles. <emph>Soviet Physics JETP</emph>, 5:749,
-1957.</p></item></list> </div>
- </body> </text> </TEI.2>
-
-