summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/support/latex2nemeth
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/support/latex2nemeth')
-rw-r--r--Master/texmf-dist/doc/support/latex2nemeth/README72
-rw-r--r--Master/texmf-dist/doc/support/latex2nemeth/examples/mathpics.tex93
-rw-r--r--Master/texmf-dist/doc/support/latex2nemeth/examples/mathtest.tex253
-rw-r--r--Master/texmf-dist/doc/support/latex2nemeth/examples/nemeth.json1204
-rw-r--r--Master/texmf-dist/doc/support/latex2nemeth/gpl-3.0.txt674
5 files changed, 2296 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/support/latex2nemeth/README b/Master/texmf-dist/doc/support/latex2nemeth/README
new file mode 100644
index 00000000000..f71953163cf
--- /dev/null
+++ b/Master/texmf-dist/doc/support/latex2nemeth/README
@@ -0,0 +1,72 @@
+Latex2Nemeth: A Latex to Nemeth direct transcriber.
+
+Requires Java 1.7 or newer.
+
+Usage: latex2nemeth [options] texFile auxFile
+
+Options:
+ -e,--encoding <arg> The encoding table for Braille Mathematical symbols
+ in the form of a JSON file. If not specified, default
+ Nemeth table is used.
+
+ -m,--mode <arg> The mode of the parser which controls the type of
+ the output Braille files. It can be either 'nemeth'
+ or 'pef'. The default mode is nemeth.
+
+ -o <arg> The output prefix of the Braille files. It can also
+ be prefixed with a path to a specific directory.
+ The default value is the name of the TeX file. The program
+ generates an output file for each chapter in the input TeX
+ file.
+
+Usage examples:
+ A simple example:
+ latex2nemeth examples/mathtest.tex examples/mathtest.aux
+
+ A more complicated example:
+ latex2nemeth examples/mathtest.tex examples/mathtest.aux -o examples/ch -m nemeth -e examples/nemeth.json
+
+ An example with pictures:
+ latex2nemeth examples/mathpics.tex examples/mathpics.aux
+
+Notes:
+
+1. Input tex files must be in utf-8. If using another encoding (such as iso-8859-7)
+ run first LaTeX to produce the aux file and then convert the source.tex to utf-8
+ with a command such as
+
+ iconv -f iso8859-7 -t utf-8 source.tex > source-utf8.tex
+
+ or using your editor. Now run latex2nemeth as above with
+ source-utf8.tex as the tex file and source.aux as the aux file. If errors are
+ produced you need to modify the source-utf8.tex at the line indicated.
+ Usually the errors have to do either with non supported shortcuts for macros
+ (in which case replace the shortcut with the true code) or with macros that
+ are irrelevant to the blind (in which case remove them).
+
+2. Braille/Nemeth output files are encoded in UTF-16.
+ Convert them to utf-8 with a command such as
+
+ iconv -f utf-16 -t utf-8 source.nemeth > source-utf8.nemeth
+
+ (This step will be eliminated in future releases and the output will be directly
+ in utf-8.)
+
+3. To emboss the output open the produced source-utf8.nemeth in LibreOffice
+ with the odt2braille plugin installed, open it as "Unicode UTF-8 encoded text"
+ and emboss as usually.
+
+4. Pictures are exported separately in text files. Currently only pstricks pictures are supported.
+
+The project page is at http://myria.math.aegean.gr/labs/dt/braille/index-en.html
+
+The source is available at http://latex2nemeth.sourceforge.net/ under the GPL3 or newer license.
+
+Please report issues related to erratic output to andpapas@aegean.gr
+and issues related to the tex file handling/modifying to antonis.tsolomitis@gmail.com
+
+The project was supported by the Research Unit of the University of the Aegean (project 2625).
+
+
+
+
diff --git a/Master/texmf-dist/doc/support/latex2nemeth/examples/mathpics.tex b/Master/texmf-dist/doc/support/latex2nemeth/examples/mathpics.tex
new file mode 100644
index 00000000000..09b559eeed7
--- /dev/null
+++ b/Master/texmf-dist/doc/support/latex2nemeth/examples/mathpics.tex
@@ -0,0 +1,93 @@
+\documentclass[a4paper,12pt]{article}% hvoss
+\usepackage{pstricks-add,fullpage}
+\usepackage{pst-3dplot,pst-solides3d}
+\usepackage{pst-plot,pst-intersect,mathtools}
+
+%\pagestyle{empty}
+\begin{document}
+
+\begin{pspicture}(-0.5,-3.5)(2.5,3.5)
+%\psaxes[]{->}(0,0)(-0.5,-3.5)(3,3.5)
+\psline[linewidth=1mm]{->}(-1,0)(3,0)
+\psline[linewidth=1mm]{->}(-.1,-3.5)(-.1,3.5)
+\psparametricplot[algebraic,
+ linewidth=1.8mm,plotpoints=200,yMaxValue=3]{-2}{2}{t^2|t*(t^2-1)}
+\rput[lb](2.5,1.3){$y^2=(x-1)^2 x$}
+\psline[linewidth=1mm](-0.3,1)(.1,1)
+\rput(-.7,1){$1$}
+\psline[linewidth=1mm](-0.3,2)(.1,2)
+\rput(-.7,2){$2$}
+\psline[linewidth=1mm](-0.3,3)(.1,3)
+\rput(-.7,3){$3$}
+\psline[linewidth=1mm](-0.3,-1)(.1,-1)
+\rput(-.9,-1){$-1$}
+\psline[linewidth=1mm](-0.3,-2)(.1,-2)
+\rput(-.9,-2){$-2$}
+\psline[linewidth=1mm](-0.3,-3)(.1,-3)
+\rput(-.9,-3){$-3$}
+\rput(1,-.7){$1$}
+\psline[linewidth=1mm](2,-.2)(2,.2)
+\rput(2,-.7){$2$}
+\end{pspicture}
+
+\vspace*{2cm}
+
+
+
+
+\psset{Alpha=75,unit=4}
+\begin{pspicture}(-0.6,-1)(2,2)
+\psset{arrowscale=1.5,arrowinset=0,dotstyle=*,dotscale=1.5,drawCoor}
+\pstThreeDCoor[linecolor=black,xMin=-0.5,xMax=2,yMin=-0.5,yMax=2,zMin=-0.5,zMax=2,linewidth=1mm,%
+nameX=$x$,spotX=270,nameY=$y$,nameZ=$z$]
+\pstThreeDLine[linewidth=1.8mm](1.5,0,0)(0,1.5,0)
+\pstThreeDLine[linewidth=1.8mm](0,1.5,0)(0,0,1.5)
+\pstThreeDLine[linewidth=1.8mm](0,0,1.5)(1.5,0,0)
+
+%\pstThreeDDot[linecolor=blue]( 1.5 ,0 , 0)
+%\pstThreeDDot[linecolor=blue]( 0 ,1.5 , 0)
+%\pstThreeDDot[linecolor=blue]( 0 ,0 , 1.5)
+\pstThreeDPut(1.5,0.1,-0.1){$\sqrt{E_s}$}
+\pstThreeDPut(0.2,1.65,0.3){$\sqrt{E_s}$}
+\pstThreeDPut(0.1,.2,1.7){$\sqrt{E_s}$}
+\end{pspicture}
+
+\newpage
+%\vspace*{4cm}
+
+\psset{unit=0.3,viewpoint=20 20 20 rtp2xyz}
+\hspace*{1cm}\begin{pspicture}(-4,-3)(4,8)
+\psSolid[object=grille,base=-2 2 -2 2,linewidth=1mm]
+\axesIIID[axisnames={x,y,z},linewidth=1mm](0,0,0)(3.5,3,3)
+\defFunction[algebraic]{mydensity}(t)
+ {cos(t)}
+ {sin(t)}
+ {10*(t/8)*(1-(t/6.5))^4}
+\psSolid[object=courbe,r=.01,range=-1.3 10.5,linewidth=0.1,resolution=360,linewidth=1.8mm,
+ function=mydensity,linecolor=black,incolor=yellow,,hue=0 1]
+\rput(-2,-8){$(\cos(t),\sin(t),10\cdot (t/8)\cdot(1-(t/6.5))^4)$}
+\end{pspicture}
+
+
+\newpage
+
+\psset{linewidth=1mm}
+\begin{pspicture}(-2,-2)(8,8)
+\psaxes[labels=none,ticks=none]{->}(0,0)(-2,-2)(8,8)[$M$,-90][$Y$,0]
+\psset{linewidth=1.8mm,algebraic}
+\pssavepath{A}{\psplot{-0.5}{8}{4*(1-1.2^(-3*x+1))}}
+\psline(-2,4.2)(8,4.2) \uput[90](5,4.4){$Y=\frac{A}{\alpha+d}$}
+\pssavepath{B}{\psplot{-0.5}{8}{2^(-x/2+3)-2}}
+\pssavepath[linestyle=none]{C}{\psplot{-0.5}{8}{0}}
+\psintersect[name=D, showpoints]{A}{B}\uput{5mm}[-5](D1){$M_3^*,Y^*$}
+\psintersect[name=E, showpoints]{A}{C}\uput{4mm}[-70](E1){$M_c$}
+\psdot(4,0)\uput{4mm}[45](4,0){$M_c^*$}
+\end{pspicture}
+
+
+
+
+
+
+
+\end{document}
diff --git a/Master/texmf-dist/doc/support/latex2nemeth/examples/mathtest.tex b/Master/texmf-dist/doc/support/latex2nemeth/examples/mathtest.tex
new file mode 100644
index 00000000000..299b799b1f0
--- /dev/null
+++ b/Master/texmf-dist/doc/support/latex2nemeth/examples/mathtest.tex
@@ -0,0 +1,253 @@
+\documentclass[twoside,a4paper,leqno,11pt]{book}
+\usepackage[greek]{babel}
+\usepackage[utf8x]{inputenc}
+
+\usepackage{srcltx}
+
+\usepackage{latexsym}
+
+\usepackage{amsmath}
+
+\usepackage{amssymb}
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+%%%%%%%%%%%% New theorems %%%%%%%%%%%%%%%%%%%%%%%%
+\newtheorem{theorem}{Θεώρημα}[section]
+\newtheorem{lemma}[theorem]{Λήμμα}
+\newtheorem{proposition}[theorem]{Πρόταση}
+\newtheorem{application}[theorem]{Εφαρμογή}
+\newtheorem{corollary}[theorem]{Πόρισμα}
+\newtheorem{definition}[theorem]{Ορισμός}
+\newtheorem{exercise}[theorem]{Άσκηση}
+\newtheorem{example}[theorem]{Παράδειγμα}
+\newtheorem{examples}[theorem]{Παραδείγματα}
+\newtheorem{problem}[theorem]{Πρόβλημα}
+\newtheorem{remark}[theorem]{Παρατήρηση}
+\newtheorem{remarks}[theorem]{Παρατηρήσεις}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+%%%%%%%%%%%%%%%%%%%%% Document starts %%%%%%%%%%%%
+\begin{document}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+\textbf{Απειροστικός Λογισμός ΙΙ}
+\textbf{Πρόχειρες Σημειώσεις}
+\textbf{Τμήμα Μαθηματικών}
+\textbf{Πανεπιστήμιο Αθηνών}
+\textbf{2010--11}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\chapter{Υπακολουθίες και βασικές ακολουθίες}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+\section{Υπακολουθίες}
+
+\begin{definition} \upshape Έστω $(a_n)$ μια ακολουθία πραγματικών αριθμών.
+Η ακολουθία $(b_n)$ λέγεται \textit{υπακολουθία} της $(a_n)$ αν υπάρχει
+γνησίως αύξουσα ακολουθία φυσικών αριθμών $k_1 < k_2< \cdots < k_n <
+k_{n+1}<\cdots $ ώστε
+$$b_n = a_{k_n}\;\hbox{ για κάθε }\;n \in {\mathbb N}.\leqno (1.1.1)$$
+Με άλλα λόγια, οι όροι της $(b_n)$ είναι οι $a_{k_1}, a_{k_2},
+\ldots, a_{k_n}, \ldots $, όπου $k_1 < k_2< \cdots < k_n <
+k_{n+1}<\cdots$. Γενικά, μια ακολουθία έχει πολλές (συνήθως άπειρες
+το πλήθος) διαφορετικές υπακολουθίες.
+\end{definition}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\chapter{Σειρές πραγματικών αριθμών}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+\section{Σύγκλιση σειράς}
+
+\begin{definition} \upshape Έστω $(a_k)$ μια ακολουθία πραγματικών
+αριθμών. Θεωρούμε την ακολουθία $$s_n=a_1+\cdots +a_n.\leqno
+(2.1.1)$$ Δηλαδή,
+$$s_1=a_1,\ s_2=a_1+a_2,\ s_3=a_1+a_2+a_3,\ \ldots \leqno (2.1.2)$$
+Το σύμβολο $\sum_{k=1}^{\infty }a_k$ είναι η \textit{σειρά} με
+$k$-οστό όρο τον $a_k$. Το άθροισμα $s_n=\sum_{k=1}^na_k$
+είναι το \textit{$n$-οστό μερικό άθροισμα} της σειράς
+$\sum_{k=1}^{\infty }a_k$ και η $(s_n)$ είναι η {\it
+ακολουθία των μερικών αθροισμάτων} της σειράς $ \sum_{k =
+1}^{\infty }a_k$.
+
+Αν η $(s_n)$ συγκλίνει σε κάποιον πραγματικό αριθμό $s$, τότε
+γράφουμε
+$$s = a_1 + a_2 + \cdots + a_n + \cdots\ \hbox{ή}\ s=\sum_{k=1}^{\infty }a_k\leqno (2.1.3)$$
+και λέμε ότι η σειρά \textit{συγκλίνει} (στο $s$), το δε όριο
+$s=\lim_{n\to\infty }s_n$ είναι το \textit{άθροισμα} της σειράς.
+\end{definition}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\chapter{Ολοκλήρωμα \textlatin{Riemann}}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\section{Ο ορισμός του \textlatin{Darboux}}
+
+Σε αυτήν την παράγραφο δίνουμε τον ορισμό του ολοκληρώματος
+\textlatin{Riemann} για \textbf{φραγμένες} συναρτήσεις που ορίζονται σε ένα
+κλειστό διάστημα. Για μια φραγμένη συνάρτηση $f:[a,b]\to {\mathbb
+R}$ με μη αρνητικές τιμές, θα θέλαμε το ολοκλήρωμα να δίνει το
+εμβαδόν του χωρίου που περικλείεται ανάμεσα στο γράφημα της
+συνάρτησης, τον οριζόντιο άξονα $y=0$ και τις κατακόρυφες ευθείες
+$x=a$ και $x=b$.
+
+\begin{definition} \upshape (α) Έστω $[a,b]$ ένα κλειστό διάστημα.
+\textbf{Διαμέριση} του $[a,b]$ θα λέμε κάθε πεπερασμένο υποσύνολο
+$$P
+=\{ x_0,x_1,\ldots ,x_n\}\leqno (4.1.1)$$ του $[a,b]$ με $x_0=a$
+και $x_n=b$. Θα υποθέτουμε πάντα ότι τα $x_k\in P $ είναι
+διατεταγμένα ως εξής:
+$$a=x_0<x_1<\cdots <x_k<x_{k+1}<\cdots <x_n=b.\leqno (4.1.2)$$
+Θα γράφουμε
+$$P =\{ a=x_0<x_1<\cdots <x_n=b\}\leqno (4.1.3)$$ για να τονίσουμε αυτήν
+ακριβώς τη διάταξη. Παρατηρήστε ότι από τον ορισμό, κάθε διαμέριση
+$ P $ του $[a,b]$ περιέχει τουλάχιστον δύο σημεία: το $a$ και το
+$b$ (τα άκρα του $[a,b]$).
+
+
+
+ (β) Κάθε διαμέριση $ P =\{ a=x_0<x_1<\cdots <x_n=b\}$
+χωρίζει το $[a,b]$ σε $n$ υποδιαστήματα $[x_k,x_{k+1}]$,
+$k=0,1,\ldots ,n-1$. Ονομάζουμε \textbf{πλάτος} της διαμέρισης $ P $
+το μεγαλύτερο από τα μήκη αυτών των υποδιαστημάτων. Δηλαδή, το
+πλάτος της διαμέρισης ισούται με
+$$\| P\|:=\max\{ x_1-x_0,x_2-x_1,\ldots ,x_n-x_{n-1}\}.\leqno (4.1.4)$$
+Παρατηρήστε ότι δεν απαιτούμε να ισαπέχουν τα $x_k$ (τα $n$
+υποδιαστήματα δεν έχουν απαραίτητα το ίδιο μήκος).
+
+
+
+ (γ) Η διαμέριση $ P_1$ λέγεται \textbf{εκλέπτυνση} της $ P
+$ αν $ P \subseteq P_1$, δηλαδή αν η $P_1$ προκύπτει από την $ P $
+με την προσθήκη κάποιων (πεπερασμένων το πλήθος) σημείων. Σε αυτήν
+την περίπτωση λέμε επίσης ότι η $ P_1$ είναι \textit{λεπτότερη} από
+την $ P $.
+
+
+
+ (δ) Έστω $ P_1, P_2$ δύο διαμερίσεις του $[a,b]$. Η
+\textbf{κοινή εκλέπτυνση} των $ P_1, P_2$ είναι η διαμέριση $ P = P_1\cup
+P_2$. Εύκολα βλέπουμε ότι η $ P $ είναι διαμέριση του $[a,b]$ και
+ότι αν $ P^{\prime }$ είναι μια διαμέριση λεπτότερη τόσο από την $
+P_1$ όσο και από την $ P_2$ τότε $ P^{\prime }\supseteq P $
+(δηλαδή, η $ P = P_1\cup P_2$ είναι η μικρότερη δυνατή διαμέριση
+του $[a,b]$ που εκλεπτύνει ταυτόχρονα την $ P_1$ και την $ P_2$).
+\end{definition}
+
+
+\section{Ιδιότητες του ολοκληρώματος \textlatin{Riemann}}
+
+Σε αυτή την παράγραφο αποδεικνύουμε αυστηρά μερικές από τις πιο
+βασικές ιδιότητες του ολοκληρώματος \textlatin{Riemann}. Οι αποδείξεις
+των υπολοίπων είναι μια καλή άσκηση που θα σας βοηθήσει να
+εξοικειωθείτε με τις διαμερίσεις, τα άνω και κάτω αθροίσματα κλπ.
+
+\begin{theorem}
+Αν $f(x)=c$ για κάθε $x\in [a,b]$, τότε
+$$\int_a^bf(x)dx =c(b-a).\leqno (4.4.1)$$
+\end{theorem}
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\chapter{Τεχνικές ολοκλήρωσης}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+Σε αυτό το Κεφάλαιο περιγράφουμε, χωρίς ιδιαίτερη αυστηρότητα, τις
+βασικές μεθόδους υπολογισμού ολοκληρωμάτων. Δίνεται μια συνάρτηση
+$f$ και θέλουμε να βρούμε μια αντιπαράγωγο της $f$, δηλαδή μια
+συνάρτηση $F$ με την ιδιότητα $F^{\prime }=f$. Τότε,
+$$\int f(x)dx =F(x)+c.$$
+
+\section{Ολοκλήρωση με αντικατάσταση}
+
+\subsection{Πίνακας στοιχειωδών ολοκληρωμάτων}
+
+Κάθε τύπος παραγώγισης $F^{\prime }(x)=f(x)$ μας δίνει έναν τύπο
+ολοκλήρωσης: η $F$ είναι αντιπαράγωγος της $f$. Μπορούμε έτσι να
+δημιουργήσουμε έναν πίνακα βασικών ολοκληρωμάτων, αντιστρέφοντας
+τους τύπους παραγώγισης των πιο βασικών συναρτήσεων:
+\begin{eqnarray*}
+\int x^adx =\frac{x^{a+1}}{a+1},\qquad a\neq -1, &&
+\int\frac{1}{x}\,dx = \ln |x| +c\\
+\int e^xdx = e^x+c, &&
+\int\sin x\,dx = -\cos x+c\\
+\int\cos x\,dx = \sin x+c, &&
+\int\frac{1}{\cos^2x}\,dx = \tan x+c\\
+\int\frac{1}{\sin^2x}\,dx = -\cot x+c , &&
+\int\frac{1}{\sqrt{1-x^2}}\,dx = \arcsin x+c\\
+\int\frac{1}{1+x^2}\,dx =\arctan x+c. &&
+\end{eqnarray*}
+
+
+\section{Ολοκλήρωση ρητών συναρτήσεων}
+
+Σε αυτή την παράγραφο περιγράφουμε μια μέθοδο με την οποία μπορεί
+κανείς να υπολογίσει το αόριστο ολοκλήρωμα οποιασδήποτε ρητής
+συνάρτησης
+$$f(x)=\frac{p(x)}{q(x)}=\frac{a_nx^n+a_{n-1}x^{n-1}+\cdots
++a_1x+a_0}{b_mx^m+b_{m-1}x^{m-1}+\cdots +b_1x+b_0}.\leqno (6.3.1)$$
+Η πρώτη παρατήρηση είναι ότι μπορούμε πάντα να υποθέτουμε ότι $n<m$.
+Αν ο βαθμός $n$ του αριθμητή $p(x)$ είναι μεγαλύτερος ή ίσος από τον
+βαθμό $m$ του παρονομαστή $q(x)$, τότε διαιρούμε το $p(x)$ με το
+$q(x)$: υπάρχουν πολυώνυμα $\pi (x)$ και $\upsilon (x)$ ώστε ο
+βαθμός του $\upsilon (x)$ να είναι μικρότερος από $m$ και $$p(x)=\pi
+(x)q(x)+\upsilon (x).\leqno (6.3.2)$$ Τότε,
+$$f(x)=\frac{\pi (x)q(x)+\upsilon (x)}{q(x)}=\pi (x)+\frac{\upsilon
+(x)}{q(x)}.\leqno (6.3.3)$$ Συνεπώς, για τον υπολογισμό του $\int
+f(x)\,dx$ μπορούμε τώρα να υπολογίσουμε χωριστά το $\int \pi
+(x)\,dx$ (απλό ολοκλήρωμα πολυωνυμικής συνάρτησης) και το
+$\int\frac{\upsilon (x)}{q(x)}\,dx$ (ρητή συνάρτηση με την πρόσθετη
+ιδιότητα ότι $\mathrm{deg}(\upsilon )<\mathrm{deg}(q)$).
+
+Υποθέτουμε λοιπόν στη συνέχεια ότι $f=p/q$ και $\mathrm{deg}(p)<
+\mathrm{deg}(q)$. Μπορούμε επίσης να υποθέσουμε ότι $a_n=b_m=1$.
+Χρησιμοποιούμε τώρα το γεγονός ότι κάθε πολυώνυμο αναλύεται σε
+γινόμενο πρωτοβάθμιων και δευτεροβάθμιων όρων. Το $q(x)=x^m+\cdots
++b_1x+b_0$ γράφεται στη μορφή
+$$q(x)=(x-\alpha_1)^{r_1}\cdots
+(x-\alpha_k)^{r_k}(x^2+\beta_1x+\gamma_1)^{s_1}\cdots
+(x^2+\beta_lx+\gamma_l)^{s_l}.\leqno (6.3.4)$$ Οι $\alpha_1,\ldots
+,\alpha_k$ είναι οι πραγματικές ρίζες του $q(x)$ (και $r_j$ είναι η
+πολλαπλότητα της ρίζας $\alpha_j$) ενώ οι όροι
+$x^2+\beta_ix+\gamma_i$ είναι τα γινόμενα
+$(x-z_i)(x-\overline{z_i})$ όπου $z_i$ οι μιγαδικές ρίζες του $q(x)$
+(και $s_i$ είναι η πολλαπλότητα της ρίζας $z_i$). Παρατηρήστε ότι
+κάθε όρος της μορφής $x^2+\beta_ix+\gamma_i$ έχει αρνητική
+διακρίνουσα. Επίσης, οι $k,s\geq 0$ και $r_1+\cdots +r_k+2s_1+\cdots
++2s_l=m$ (ο βαθμός του $q(x)$).
+
+Γράφουμε την $f(x)$ στη μορφή
+$$f(x)=\frac{x^n+a_{n-1}x^{n-1}+\cdots +a_1x+a_0}{(x-\alpha_1)^{r_1}\cdots
+(x-\alpha_k)^{r_k}(x^2+\beta_1x+\gamma_1)^{s_1}\cdots
+(x^2+\beta_lx+\gamma_l)^{s_l}},\leqno (6.3.5)$$ και την ((αναλύουμε
+σε απλά κλάσματα)): υπάρχουν συντελεστές $A_{jt}$,
+$B_{it},\Gamma_{it}$ ώστε
+\begin{eqnarray*}
+f(x) &=&
+\frac{A_{11}}{x-\alpha_1}+\frac{A_{12}}{(x-\alpha_1)^2}+\cdots
++\frac{A_{1r_1}}{(x-\alpha_1)^{r_1}}\\
+&& +\cdots \\
+&& +\frac{A_{k1}}{x-\alpha_k}+\frac{A_{k2}}{(x-\alpha_k)^2}+\cdots
++\frac{A_{kr_1}}{(x-\alpha_k)^{r_k}}\\
+&&
++\frac{B_{11}x+\Gamma_{11}}{x^2+\beta_1x+\gamma_1}+\frac{B_{12}x+\Gamma_{12}}{(x^2+\beta_1x+\gamma_1)^2}+\cdots
++\frac{B_{1s_1}x+\Gamma_{1s_1}}{(x^2+\beta_1x+\gamma_1)^{s_1}}\\
+&& +\cdots \\
+&&
++\frac{B_{l1}x+\Gamma_{l1}}{x^2+\beta_lx+\gamma_l}+\frac{B_{l2}x+\Gamma_{l2}}{(x^2+\beta_lx+\gamma_l)^2}+\cdots
++\frac{B_{ls_1}x+\Gamma_{ls_l}}{(x^2+\beta_lx+\gamma_l)^{s_l}}.
+\end{eqnarray*}
+
+
+\end{document}
diff --git a/Master/texmf-dist/doc/support/latex2nemeth/examples/nemeth.json b/Master/texmf-dist/doc/support/latex2nemeth/examples/nemeth.json
new file mode 100644
index 00000000000..6c395dedd4c
--- /dev/null
+++ b/Master/texmf-dist/doc/support/latex2nemeth/examples/nemeth.json
@@ -0,0 +1,1204 @@
+{
+ "letters": {
+ ".": "\u2832",
+ ",": "\u2802",
+ ";": "\u2822",
+ "'": "\u2804",
+ "«": "\u2826",
+ "»": "\u2834",
+ "(": "\u2837",
+ ")": "\u283e",
+ "[": "\u2808\u2837",
+ "]": "\u2808\u283e",
+ "\\}": "\u2828\u283e",
+ "\\{": "\u2828\u2837",
+ "\\_": "\u2824\u2824",
+ ":": "\u2806",
+ "?": "\u2838\u2826",
+ "!": "\u2816",
+ "*": "\u2808\u283c",
+ "@": "\u2808\u2801\u281e",
+ "\\euro": "\u2808\u2811",
+ "+": "\u282e",
+ "-": "\u2824",
+ "=": "\u282d",
+ "\\backslash": "\u2838\u2821",
+ "\\#": "\u2828\u283c",
+ "\\&": "\u282f",
+ "\\ ": " ",
+ "\\,": "\u2802",
+ "--": "\u2824\u2824",
+ "---": "\u2824\u2824\u2824",
+ "/": "\u280c",
+ "\\\n": " ",
+ " ": " ",
+ "\\quad": " ",
+ "\\qquad": " ",
+ "#": "\u283c",
+ "0": "\u2834",
+ "1": "\u2802",
+ "2": "\u2806",
+ "3": "\u2812",
+ "4": "\u2832",
+ "5": "\u2822",
+ "6": "\u2816",
+ "7": "\u2836",
+ "8": "\u2826",
+ "9": "\u2814",
+ "a": "\u2801",
+ "b": "\u2803",
+ "c": "\u2809",
+ "d": "\u2819",
+ "e": "\u2811",
+ "f": "\u280b",
+ "g": "\u281b",
+ "h": "\u2813",
+ "i": "\u280a",
+ "j": "\u281a",
+ "k": "\u2805",
+ "l": "\u2807",
+ "m": "\u280d",
+ "n": "\u281d",
+ "o": "\u2815",
+ "p": "\u280f",
+ "q": "\u281f",
+ "r": "\u2817",
+ "s": "\u280e",
+ "t": "\u281e",
+ "u": "\u2825",
+ "v": "\u2827",
+ "w": "\u283a",
+ "x": "\u282d",
+ "y": "\u283d",
+ "z": "\u2835",
+ "A": "\u2820\u2801",
+ "B": "\u2820\u2803",
+ "C": "\u2820\u2809",
+ "D": "\u2820\u2819",
+ "E": "\u2820\u2811",
+ "F": "\u2820\u280b",
+ "G": "\u2820\u281b",
+ "H": "\u2820\u2813",
+ "I": "\u2820\u280a",
+ "J": "\u2820\u281a",
+ "K": "\u2820\u2805",
+ "L": "\u2820\u2807",
+ "M": "\u2820\u280d",
+ "N": "\u2820\u281d",
+ "O": "\u2820\u2815",
+ "P": "\u2820\u280f",
+ "Q": "\u2820\u281f",
+ "R": "\u2820\u2817",
+ "S": "\u2820\u280e",
+ "T": "\u2820\u281e",
+ "U": "\u2820\u2825",
+ "V": "\u2820\u2827",
+ "W": "\u2820\u283a",
+ "X": "\u2820\u282d",
+ "Y": "\u2820\u283d",
+ "Z": "\u2820\u2835",
+ "e-grave": "\u282e",
+ "e-accent": "\u283f",
+ "EN": "\u2830",
+ "αι": "\u2823",
+ "Αι": "\u2828\u2823",
+ "αυ": "\u2821",
+ "Αυ": "\u2828\u2821",
+ "ει": "\u2829",
+ "Ει": "\u2828\u2829",
+ "ευ": "\u2831",
+ "Ευ": "\u2828\u2831",
+ "οι": "\u282a",
+ "Οι": "\u2828\u282a",
+ "ου": "\u2825",
+ "Ου": "\u2828\u2825",
+ "υι": "\u283b",
+ "Υι": "\u2828\u283b",
+ "ηυ": "\u2833",
+ "Ηυ": "\u2828\u2833",
+ "Ηύ": "\u2828\u2833",
+ "αί": "\u2823",
+ "ηύ": "\u2833",
+ "Υί": "\u2828\u283b",
+ "υί": "\u283b",
+ "Ού": "\u2828\u2825",
+ "ού": "\u2825",
+ "Οί": "\u2828\u282a",
+ "οί": "\u282a",
+ "εύ": "\u2831",
+ "Εύ": "\u2828\u2831",
+ "Εί": "\u2828\u2829",
+ "Αί": "\u2828\u2823",
+ "Αύ": "\u2828\u2821",
+ "αύ": "\u2821",
+ "εί": "\u2829",
+ "α": "\u2801",
+ "β": "\u2803",
+ "γ": "\u281b",
+ "δ": "\u2819",
+ "ε": "\u2811",
+ "ζ": "\u2835",
+ "η": "\u281c",
+ "θ": "\u2839",
+ "ι": "\u280a",
+ "ϊ": "\u280a",
+ "κ": "\u2805",
+ "λ": "\u2807",
+ "μ": "\u280d",
+ "ν": "\u281d",
+ "ξ": "\u282d",
+ "ο": "\u2815",
+ "π": "\u280f",
+ "ρ": "\u2817",
+ "σ": "\u280e",
+ "ς": "\u280e",
+ "τ": "\u281e",
+ "υ": "\u283d",
+ "ϋ": "\u283d",
+ "φ": "\u280b",
+ "χ": "\u2813",
+ "ψ": "\u282f",
+ "ω": "\u281a",
+ "ά": "\u2801",
+ "έ": "\u2811",
+ "ή": "\u281c",
+ "ί": "\u280a",
+ "ό": "\u2815",
+ "ύ": "\u283d",
+ "ώ": "\u281a",
+ "Α": "\u2828\u2801",
+ "Β": "\u2828\u2803",
+ "Γ": "\u2828\u281b",
+ "Δ": "\u2828\u2819",
+ "Ε": "\u2828\u2811",
+ "Ζ": "\u2828\u2835",
+ "Η": "\u2828\u281c",
+ "Θ": "\u2828\u2839",
+ "Ι": "\u2828\u280a",
+ "Κ": "\u2828\u2805",
+ "Λ": "\u2828\u2807",
+ "Μ": "\u2828\u280d",
+ "Ν": "\u2828\u281d",
+ "Ξ": "\u2828\u282d",
+ "Ο": "\u2828\u2815",
+ "Π": "\u2828\u280f",
+ "Ρ": "\u2828\u2817",
+ "Σ": "\u2828\u280e",
+ "Τ": "\u2828\u281e",
+ "Υ": "\u2828\u283d",
+ "Φ": "\u2828\u280b",
+ "Χ": "\u2828\u2813",
+ "Ψ": "\u2828\u282f",
+ "Ω": "\u2828\u281a",
+ "Ά": "\u2828\u2801",
+ "\u00b6": "\u2828\u2801",
+ "Έ": "\u2828\u2811",
+ "Ή": "\u2828\u281c",
+ "Ί": "\u2828\u280a",
+ "Ό": "\u2828\u2815",
+ "Ύ": "\u2828\u283d",
+ "Ώ": "\u2828\u281a",
+ "Ά": "\u2828\u2810\u2801",
+ "Έ": "\u2828\u2810\u2811",
+ "Ή": "\u2828\u2810\u281c",
+ "Ί": "\u2828\u2810\u280a",
+ "Ό": "\u2828\u2810\u2815",
+ "Ύ": "\u2828\u2810\u283d",
+ "Ώ": "\u2828\u2810\u281a",
+ "\\textbf": "\u2838",
+ "\\textbf-open": "\u2820\u2804\u2838",
+ "\\textbf-close": "\u2838\u2820\u2804",
+ "\\textit": "\u2828",
+ "\\textit-open": "\u2820\u2804\u2838",
+ "\\textit-close": "\u2838\u2820\u2804"
+ },
+ "mathSymbols": {
+ "#": "\u283c",
+ "0": "\u2834",
+ "1": "\u2802",
+ "2": "\u2806",
+ "3": "\u2812",
+ "4": "\u2832",
+ "5": "\u2822",
+ "6": "\u2816",
+ "7": "\u2836",
+ "8": "\u2826",
+ "9": "\u2814",
+ "#0": "\u283c\u2834",
+ "#1": "\u283c\u2802",
+ "#2": "\u283c\u2806",
+ "#3": "\u283c\u2812",
+ "#4": "\u283c\u2832",
+ "#5": "\u283c\u2822",
+ "#6": "\u283c\u2816",
+ "#7": "\u283c\u2836",
+ "#8": "\u283c\u2826",
+ "#9": "\u283c\u2814",
+ "a": "\u2801",
+ "b": "\u2803",
+ "c": "\u2809",
+ "d": "\u2819",
+ "e": "\u2811",
+ "f": "\u280b",
+ "g": "\u281b",
+ "h": "\u2813",
+ "i": "\u280a",
+ "j": "\u281a",
+ "k": "\u2805",
+ "l": "\u2807",
+ "m": "\u280d",
+ "n": "\u281d",
+ "o": "\u2815",
+ "p": "\u280f",
+ "q": "\u281f",
+ "r": "\u2817",
+ "s": "\u280e",
+ "t": "\u281e",
+ "u": "\u2825",
+ "v": "\u2827",
+ "w": "\u283a",
+ "x": "\u282d",
+ "y": "\u283d",
+ "z": "\u2835",
+ "A": "\u2820\u2801",
+ "B": "\u2820\u2803",
+ "C": "\u2820\u2809",
+ "D": "\u2820\u2819",
+ "E": "\u2820\u2811",
+ "F": "\u2820\u280b",
+ "G": "\u2820\u281b",
+ "H": "\u2820\u2813",
+ "I": "\u2820\u280a",
+ "J": "\u2820\u281a",
+ "K": "\u2820\u2805",
+ "L": "\u2820\u2807",
+ "M": "\u2820\u280d",
+ "N": "\u2820\u281d",
+ "O": "\u2820\u2815",
+ "P": "\u2820\u280f",
+ "Q": "\u2820\u281f",
+ "R": "\u2820\u2817",
+ "S": "\u2820\u280e",
+ "T": "\u2820\u281e",
+ "U": "\u2820\u2825",
+ "V": "\u2820\u2827",
+ "W": "\u2820\u283a",
+ "X": "\u2820\u282d",
+ "Y": "\u2820\u283d",
+ "Z": "\u2820\u2835",
+ "Α": "\u2828\u2801",
+ "Β": "\u2828\u2803",
+ "Ε": "\u2828\u2811",
+ "Ζ": "\u2828\u2835",
+ "Η": "\u2828\u281c",
+ "Ι": "\u2828\u280a",
+ "Κ": "\u2828\u2805",
+ "Μ": "\u2828\u280d",
+ "Ν": "\u2828\u281d",
+ "Ξ": "\u2828\u282d",
+ "Ο": "\u2828\u2815",
+ "Ρ": "\u2828\u2817",
+ "Τ": "\u2828\u281e",
+ "Υ": "\u2828\u283d",
+ "Χ": "\u2828\u2813",
+ "α": "\u2801",
+ "β": "\u2803",
+ "γ": "\u281b",
+ "δ": "\u2819",
+ "ε": "\u2811",
+ "ζ": "\u2835",
+ "η": "\u281c",
+ "θ": "\u2839",
+ "ι": "\u280a",
+ "ϊ": "\u280a",
+ "κ": "\u2805",
+ "λ": "\u2807",
+ "μ": "\u280d",
+ "ν": "\u281d",
+ "ξ": "\u282d",
+ "ο": "\u2815",
+ "π": "\u280f",
+ "ρ": "\u2817",
+ "σ": "\u280e",
+ "ς": "\u280e",
+ "τ": "\u281e",
+ "υ": "\u283d",
+ "ϋ": "\u283d",
+ "φ": "\u280b",
+ "χ": "\u2813",
+ "ψ": "\u282f",
+ "ω": "\u281a",
+ "\\sqrt-b": "\u281c",
+ "\\sqrt-e": "\u283b",
+ "\\sqrt-level": "\u2828",
+ "\\radical-index": "\u2823",
+ "\\frac-b": "\u2839",
+ "\\frac-e": "\u283c",
+ "frac-level": "\u2820",
+ "\\frac-separator": "\u280c",
+ "\\superscript": "\u2818",
+ "\\sub": "\u2830",
+ "\\base": "\u2810",
+ "\\arccos": "\u2801\u2817\u2809\u2809\u2815\u280e",
+ "\\cot": "\u2809\u2815\u281e",
+ "\\exp": "\u2811\u282d\u280f",
+ "\\lim": "\u2807\u280a\u280d",
+ "\\min": "\u280d\u280a\u281d",
+ "\\tan": "\u281e\u2801\u281d",
+ "\\arcsin": "\u2801\u2817\u2809\u280e\u280a\u281d",
+ "\\coth": "\u2809\u2815\u281e\u2813",
+ "\\gcd": "\u281b\u2809\u2819",
+ "\\liminf": "\u2829\u2807\u280a\u280d",
+ "\\varliminf": "\u2829\u2807\u280a\u280d",
+ "\\Pr": "\u2820\u280f\u2817",
+ "\\tanh": "\u281e\u2801\u281d\u2813",
+ "\\arctan": "\u2801\u2817\u2809\u281e\u2801\u281d",
+ "\\csc": "\u2809\u280e\u2809",
+ "\\hom": "\u2813\u2815\u280d",
+ "\\limsup": "\u2823\u2807\u280a\u280d",
+ "\\varlimsup": "\u2823\u2807\u280a\u280d",
+ "\\sec": "\u280e\u2811\u2809",
+ "\\arg": "\u2801\u2817\u281b",
+ "\\deg": "\u2819\u2811\u281b",
+ "\\inf": "\u280a\u281d\u280b",
+ "\\ln": "\u2807\u281d",
+ "\\sin": "\u280e\u280a\u281d ",
+ "\\cos": "\u2809\u2815\u280e ",
+ "\\det": "\u2819\u2811\u281e",
+ "\\ker": "\u2805\u2811\u2817",
+ "\\log": "\u2807\u2815\u281b ",
+ "\\sinh": "\u280e\u280a\u281d\u2813 ",
+ "\\cosh": "\u2809\u2815\u280e\u2813 ",
+ "\\dim": "\u2819\u280a\u280d",
+ "\\lg": "\u2807\u281b",
+ "\\max": "\u280d\u2801\u282d",
+ "\\sup": "\u280e\u2825\u280f",
+ " ": " ",
+ ".": "\u2832",
+ "\\qquad": " ",
+ "\\quad": " ",
+ "\\;": " ",
+ "\\:": " ",
+ "\\,": " ",
+ "\\!": "",
+ "\\\n": " ",
+ ":": "\u2806",
+ "+": "\u282c",
+ "-": "\u2824",
+ "*": "\u2808\u283c",
+ "/": "\u280c",
+ "=": "\u2828\u2805",
+ "!": "\u2816",
+ "--": "\u2824\u2824",
+ "---": "\u2824\u2824\u2824",
+ "\\&": "\u2838\u282f",
+ ",": "\u2820",
+ ";": "\u2822",
+ "(": "\u2837",
+ ")": "\u283e",
+ "[": "\u2808\u2837",
+ "]": "\u2808\u283e",
+ "\\left(": "\u2820\u2837",
+ "\\right)": "\u2820\u283e",
+ "\\bigl(": "\u2820\u2837",
+ "\\Bigl(": "\u2820\u2837",
+ "\\biggl(": "\u2820\u2837",
+ "\\Biggl(": "\u2820\u2837",
+ "\\bigr)": "\u2820\u283e",
+ "\\Bigr)": "\u2820\u283e",
+ "\\biggr)": "\u2820\u283e",
+ "\\Biggr)": "\u2820\u283e",
+ "\\right.": "",
+ "\\left.": "",
+ "\\big": "\u2820",
+ "\\bigg": "\u2820",
+ "\\right|": "\u2820\u2833",
+ "\\left|": "\u2820\u2833",
+ "\\ ": " ",
+ "\\hspace*": " ",
+ "\\left[": "\u2808\u2820\u2837",
+ "\\right]": "\u2808\u2820\u283e",
+ "\\bigl[": "\u2808\u2820\u2837",
+ "\\Bigl[": "\u2808\u2820\u2837",
+ "\\biggl[": "\u2808\u2820\u2837",
+ "\\Biggl[": "\u2808\u2820\u2837",
+ "\\bigr]": "\u2808\u2820\u283e",
+ "\\Bigr]": "\u2808\u2820\u283e",
+ "\\biggr]": "\u2808\u2820\u283e",
+ "\\Biggr]": "\u2808\u2820\u283e",
+ "\\setminus": "\u2838\u2821",
+ "\\sum": "\u2828\u2820\u280e",
+ "\\bigcap": "\u2828\u2829",
+ "\\bigodot": "\u282b\u2809\u2838\u282b\u2821\u283b",
+ "\\int": "\u282e",
+ "\\oint": "\u282e\u2808\u282b\u2809\u283b",
+ "\\prod": "\u2828\u2820\u280f",
+ "\\bigcup": "\u2828\u282c",
+ "\\bigotimes": "\u282b\u2809\u2838\u282b\u2808\u2821\u283b",
+ "\\bigvee": "\u2808\u282c",
+ "\\bigwedge": "\u2808\u2829",
+ "\\coprod": "INVERTED PI",
+ "\\AA": "\u2808\u2820\u2801",
+ "\\aa": "\u2801\u2823\u2828\u2821",
+ "@": "\u2808\u2801\u281e",
+ "\\P": "\u2808\u2820\u280f",
+ "\\dag": "\u2838\u283b",
+ "\\ddag": "\u2838\u2838\u283b",
+ "\\S": "\u2808\u2820\u280e",
+ "\\textsection": "\u2808\u2820\u280e",
+ "\\textregistered": "\u282b\u2809\u2838\u282b\u2820\u2817\u283b",
+ "\\copyright": "\u282b\u2809\u2838\u282b\u2820\u2809\u283b",
+ "\\pounds": "\u2808\u2807",
+ "\\textstirling": "\u2808\u2807",
+ "\\SS": "\u2820\u280e\u2820\u280e",
+ "\\lq": "\u2820\u2826",
+ "\\leftquote": "\u2820\u2826",
+ "\\rq": "\u2834\u2804",
+ "\\rightquote": "\u2834\u2804",
+ "\\texttrademark": "\u2818\u2820\u281e\u2820\u280d",
+ "\\textasciicircum": "\u2838\u2823",
+ "\\&": "\u2838\u282f",
+ "\\_": "\u2824\u2824",
+ "\\textbackslash": "\u2838\u2821",
+ "\\cent": "\u2808\u2809",
+ "\\checked": "\u2808\u281c",
+ "\\dj": "\u2808\u282b",
+ "\\barlambda": "\u2808\u2828\u2807",
+ "\\planck": "\u2808\u2813",
+ "\\$": "\u2808\u280e",
+ "\\bigoplus": "\u282b\u2809\u2838\u282b\u282c\u283b",
+ "\\biguplus": "\u2828\u282c\u2838\u282b\u282c\u283b",
+ "\\bigl\\|": "\u2820\u2833",
+ "\\bigr\\|": "\u2820\u2833",
+ "\\bigl|": "\u2820\u2833",
+ "\\bigr|": "\u2820\u2833",
+ "\\Bigl|": "\u2820\u2833",
+ "\\Bigr|": "\u2820\u2833",
+ "\\Bigl\\|": "\u2820\u2833",
+ "\\Bigr\\|": "\u2820\u2833",
+ "\\biggl|": "\u2820\u2833",
+ "\\biggr|": "\u2820\u2833",
+ "\\Biggl|": "\u2820\u2833",
+ "\\Biggr|": "\u2820\u2833",
+ "\\uparrow": "\u282b\u2823\u2812\u2812\u2815",
+ "\\{": "\u2828\u2837",
+ "\\left\\{": "\u2828\u2820\u2837",
+ "\\bigl\\{": "\u2828\u2820\u2837",
+ "\\Bigl\\{": "\u2828\u2820\u2837",
+ "\\biggl\\{": "\u2828\u2820\u2837",
+ "\\Biggl\\{": "\u2828\u2820\u2837",
+ "\\lfloor": "\u2808\u2830\u2837",
+ "\\langle": "\u2828\u2828\u2837",
+ "\\left\\langle": "\u2828\u2828\u2820\u2837",
+ "\\bigl\\langle": "\u2828\u2828\u2820\u2837",
+ "\\Biggl\\langle": "\u2828\u2828\u2820\u2837",
+ "\\biggl\\langle": "\u2828\u2828\u2820\u2837",
+ "\\Biggl\\langle": "\u2828\u2828\u2820\u2837",
+ "|": "\u2833",
+ "\\bigm|": "\u2820\u2833",
+ "\\Bigm|": "\u2820\u2833",
+ "\\biggm|": "\u2820\u2833",
+ "\\Biggm|": "\u2820\u2833",
+ "\\Uparrow": "\u282b\u2823\u2836\u2836\u2815",
+ "\\}": "\u2828\u283e",
+ "\\right\\}": "\u2828\u2820\u283e",
+ "\\bigr\\}": "\u2828\u2820\u283e",
+ "\\Bigr\\}": "\u2828\u2820\u283e",
+ "\\biggr\\}": "\u2828\u2820\u283e",
+ "\\Biggr\\}": "\u2828\u2820\u283e",
+ "\\rfloor": "\u2808\u2830\u283e",
+ "\\rangle": "\u2828\u2828\u283e",
+ "\\right\rangle": "\u2828\u2828\u2820\u283e",
+ "\\bigr\rangle": "\u2828\u2828\u2820\u283e",
+ "\\Bigr\rangle": "\u2828\u2828\u2820\u283e",
+ "\\biggr\rangle": "\u2828\u2828\u2820\u283e",
+ "\\Biggr\rangle": "\u2828\u2828\u2820\u283e",
+ "\\|": "\u2833\u2833",
+ "\\left\\|": "\u2820\u2833\u2820\u2833",
+ "\\right\\|": "\u2820\u2833\u2820\u2833",
+ "\\big\\|": "\u2820\u2833\u2820\u2833",
+ "\\Big\\|": "\u2820\u2833\u2820\u2833",
+ "\\bigg\\|": "\u2820\u2833\u2820\u2833",
+ "\\Bigg\\|": "\u2820\u2833\u2820\u2833",
+ "\\big(": "\u2820\u2837",
+ "\\big)": "\u2820\u283e",
+ "\\big\\{": "\u2828\u2820\u2837",
+ "\\big\\}": "\u2820\u2833\u2820\u2833",
+ "\\bigg(": "\u2820\u2837",
+ "\\bigg)": "\u2820\u283e",
+ "\\bigg\\{": "\u2828\u2820\u2837",
+ "\\bigg\\}": "\u2820\u2833\u2820\u2833",
+ "\\big|": "\u2820\u2833\u2820\u2833",
+ "\\bigg|": "\u2820\u2833\u2820\u2833",
+ "\\downarrow": "\u282b\u2829\u2812\u2812\u2815",
+ "\\updownarrow": "\u282b\u2823\u282a\u2812\u2812\u2815",
+ "\\lceil": "\u2808\u2818\u2837",
+ "\\Downarrow": "\u282b\u2829\u2836\u2836\u2815",
+ "\\Updownarrow": "\u282b\u2829\u282a\u2836\u2836\u2815",
+ "\\rceil": "\u2808\u2818\u283e",
+ "\\backslash": "\u2838\u2821",
+ "\\ulcorner": "\u2808\u2818\u2837",
+ "\\left\\ulcorner": "\u2808\u2818\u2820\u2837",
+ "\\bigl\\ulcorner": "\u2808\u2818\u2820\u2837",
+ "\\Bigl\\ulcorner": "\u2808\u2818\u2820\u2837",
+ "\\biggl\\ulcorner": "\u2808\u2818\u2820\u2837",
+ "\\Biggl\\ulcorner": "\u2808\u2818\u2820\u2837",
+ "\\urcorner": "\u2808\u2818\u283e",
+ "\\right\\urcorner": "\u2808\u2818\u2820\u283e",
+ "\\bigr\\urcorner": "\u2808\u2818\u2820\u283e",
+ "\\Bigr\\urcorner": "\u2808\u2818\u2820\u283e",
+ "\\biggr\\urcorner": "\u2808\u2818\u2820\u283e",
+ "\\Biggr\\urcorner": "\u2808\u2818\u2820\u283e",
+ "\\llcorner": "\u2808\u2830\u2837",
+ "\\left\\llcorner": "\u2808\u2830\u2820\u2837",
+ "\\bigl\\llcorner": "\u2808\u2830\u2820\u2837",
+ "\\Bigl\\llcorner": "\u2808\u2830\u2820\u2837",
+ "\\biggl\\llcorner": "\u2808\u2830\u2820\u2837",
+ "\\Biggl\\llcorner": "\u2808\u2830\u2820\u2837",
+ "\\lrcorner": "\u2808\u2830\u283e",
+ "\\right\\lrcorner": "\u2808\u2830\u2820\u283e",
+ "\\bigr\\lrcorner": "\u2808\u2830\u2820\u283e",
+ "\\Bigr\\lrcorner": "\u2808\u2830\u2820\u283e",
+ "\\biggr\\lrcorner": "\u2808\u2830\u2820\u283e",
+ "\\Biggr\\lrcorner": "\u2808\u2830\u2820\u283e",
+ "\\alpha": "\u2828\u2801",
+ "\\epsilon": "\u2828\u2811",
+ "\\theta": "\u2828\u2839",
+ "\\lambda": "\u2828\u2807",
+ "\\varrho": "\u2828\u2808\u2817",
+ "\\upsilon": "\u2828\u2825",
+ "\\psi": "\u2828\u283d",
+ "\\Gamma": "\u2828\u2820\u281b",
+ "\\Xi": "\u2828\u2820\u282d",
+ "\\Phi": "\u2828\u2820\u280b",
+ "\\beta": "\u2828\u2803",
+ "\\varepsilon": "\u2828\u2808\u2811",
+ "\\vartheta": "\u2828\u2808\u2839",
+ "\\mu": "\u2828\u280d",
+ "\\pi": "\u2828\u280f",
+ "\\sigma": "\u2828\u280e",
+ "\\phi": "\u2828\u280b",
+ "\\omega": "\u2828\u283a",
+ "\\Delta": "\u2828\u2820\u2819",
+ "\\Pi": "\u2828\u2820\u280f",
+ "\\Psi": "\u2828\u2820\u283d",
+ "\\gamma": "\u2828\u281b",
+ "\\zeta": "\u2828\u2835",
+ "\\iota": "\u2828\u280a",
+ "\\nu": "\u2828\u281d",
+ "\\varpi": "\u2828\u2808\u280f",
+ "\\varsigma": "\u2828\u2808\u280e",
+ "\\varphi": "\u2828\u2808\u280b",
+ "\\Theta": "\u2828\u2820\u2839",
+ "\\Sigma ": "\u2828\u2820\u280e",
+ "\\Omega": "\u2828\u2820\u283a",
+ "\\delta": "\u2828\u2819",
+ "\\eta": "\u2828\u2831",
+ "\\kappa": "\u2828\u2805",
+ "\\xi": "\u2828\u282d",
+ "\\rho": "\u2828\u2817",
+ "\\tau": "\u2828\u281e",
+ "\\chi": "\u2828\u282f",
+ "\\Lambda": "\u2828\u2820\u2807",
+ "\\Upsilon": "\u2828\u2820\u2825",
+ "\\digamma": "\u2828\u2827",
+ "\\varkappa": "\u2828\u2808\u2805",
+ "\\beth": "\u2820\u2820\u2827",
+ "\\daleth": "\u2820\u2820\u2819",
+ "\\gimel": "\u2820\u2820\u281b",
+ "\\stigma": "\u2828\u282e",
+ "\\Stigma": "\u2828\u2820\u282e",
+ "\\qoppa": "\u2828\u281f",
+ "\\sampi": "\u2828\u2809",
+ "\\Sampi ": "\u2828\u2820\u2809",
+ "\\Qoppa": "\u2828\u2820\u281f",
+ "\\pm": "\u282c\u2824",
+ "\\mp": "\u2824\u282c",
+ "\\times": "\u2808\u2821",
+ "\\div": "\u2828\u280c",
+ "\\ast": "\u2808\u283c",
+ "\\star": "\u282b\u280e",
+ "\\circ": "\u2828\u2821",
+ "\\bullet": "\u2838\u2832",
+ "\\cdot": "\u2821",
+ "\\cap": "\u2828\u2829",
+ "\\cup": "\u2828\u282c",
+ "\\uplus": "\u2828\u282c\u2838\u282b\u282c\u283b",
+ "\\vee": "\u2808\u282c",
+ "\\wedge": "\u2808\u2829",
+ "\\diamond": "\u282b\u2819",
+ "\\bigtriangleup": "\u282b\u281e",
+ "\\bigtriangledown": "\u2828\u282b",
+ "\\oplus": "\u282b\u2809\u2838\u282b\u282c\u283b",
+ "\\ominus": "\u282b\u2809\u2838\u282b\u2824\u283b",
+ "\\otimes": "\u282b\u2809\u2838\u282b\u2808\u2821\u283b",
+ "\\oslash": "\u282b\u2809\u2838\u282b\u2814\u283b",
+ "\\odot": "\u282b\u2809\u2838\u282b\u2821\u283b",
+ "\\bigcirc": "\u282b\u2809",
+ "\\dagger": "\u2838\u283b",
+ "\\ddagger": "\u2838\u2838\u283b",
+ "\\amalg": "????",
+ "\\dotplus": "\u2810\u282c\u2823\u2821\u283b",
+ "\\Cup": "\u2828\u282c\u2838\u282b\u2828\u282c\u283b",
+ "\\doublebarwedge": "\u2828\u2805\u2808\u2829",
+ "\\boxdot": "\u282b\u2832\u2838\u282b\u2821\u283b",
+ "\\circleddash": "\u282b\u2809\u2838\u282b\u2824\u283b",
+ "\\centerdot": "\u2821",
+ "\\smallsetminus": "\u2838\u2821",
+ "\\barwedge": "\u2831\u2808\u2829",
+ "\\boxminus": "\u282b\u2832\u2838\u282b\u2831\u283b",
+ "\\boxplus": "\u282b\u2832\u2838\u282b\u282c\u283b",
+ "\\circledast": "\u282b\u2809\u2838\u282b\u2808\u283c\u283b",
+ "\\intercal": "\u282b\u2823\u2812\u2812\u2833",
+ "\\Cap": "\u2828\u2829\u2838\u282b\u2828\u2829\u283b",
+ "\\veebar": "\u2808\u282c\u2831",
+ "\\boxtimes": "\u282b\u2832\u2838\u282b\u2808\u2821\u283b",
+ "\\divideontimes": "\u2808\u2821\u2838\u282b\u2828\u280c\u283b",
+ "\\circledcirc": "\u282b\u2809\u2838\u282b\u2828\u2821\u283b",
+ "\\leftarrow": "\u282b\u282a",
+ "\\Leftarrow": "\u282b\u282a\u2836\u2836",
+ "\\rightarrow": "\u282b\u2815",
+ "\\to": "\u282b\u2815",
+ "\\Rightarrow": "\u282b\u2836\u2836\u2815",
+ "\\leftrightarrow": "\u282b\u282a\u2812\u2812\u2815",
+ "\\Leftrightarrow": "\u282b\u282a\u2836\u2836\u2815",
+ "\\mapsto": "\u282b\u2833\u2812\u2815",
+ "\\hookleftarrow": "\u282b\u282a\u2812\u2812\u2808\u283d",
+ "\\leftharpoonup": "\u282b\u2808\u282a\u2812\u2812",
+ "\\leftharpoondown": "\u282b\u2820\u282a\u2812\u2812",
+ "\\leadsto": "\u282b\u2814\u2812\u2822\u2815",
+ "\\longleftarrow": "\u282b\u282a\u2812\u2812",
+ "\\Longleftarrow": "\u282b\u282a\u2812\u2812",
+ "\\longrightarrow": "\u282b\u2812\u2812\u2815",
+ "\\Longrightarrow": "\u282b\u282a\u2836\u2836",
+ "\\longleftrightarrow": "\u282b\u282a\u2812\u2812\u2815",
+ "\\Longleftrightarrow": "\u282b\u282a\u2836\u2836\u2815",
+ "\\longmapsto": "\u282b\u2833\u2812\u2812\u2815",
+ "\\hookrightarrow": "\u282b\u2808\u282f\u2812\u2812\u2815",
+ "\\rightharpoonup": "\u282b\u2812\u2812\u2808\u2815",
+ "\\rightharpoondown": "\u282b\u2812\u2812\u2820\u2815",
+ "\\uparrow": "\u282b\u2823\u2812\u2812\u2815",
+ "\\Uparrow": "\u282b\u2823\u2836\u2836\u2815",
+ "\\downarrow": "\u282b\u2829\u2812\u2812\u2815",
+ "\\Downarrow": "\u282b\u2829\u2836\u2836\u2815",
+ "\\updownarrow": "\u282b\u2823\u282a\u2812\u2812\u2815",
+ "\\Updownarrow": "\u282b\u2823\u282a\u2836\u2836\u2815",
+ "\\nearrow": "\u282b\u2818\u2812\u2812\u2815",
+ "\\searrow": "\u282b\u2830\u2812\u2812\u2815",
+ "\\swarrow": "\u282b\u2830\u282a\u2812\u2812",
+ "\\nwarrow": "\u282b\u2818\u282a\u2812\u2812",
+ "\\leftrightarrows": "\u282b\u282a\u2812\u2812\u282b\u2812\u2812\u2815",
+ "\\leftarrowtail": "\u282b\u282a\u2812\u2812\u282a",
+ "\\curvearrowleft": "\u282b\u2822\u2814\u2815",
+ "\\upuparrows": "\u282b\u2823\u2812\u2812\u2815\u2810\u282b\u2823\u2812\u2812\u2815",
+ "\\multimap": "\u282b\u2812\u2812\u2828\u2821",
+ "\\rightleftarrows": "\u282b\u2812\u2812\u2815\u282b\u282a\u2812\u2812",
+ "\\twoheadrightarrow": "\u282b\u2812\u2812\u2815\u2815",
+ "\\rightleftharpoons": "\u282b\u2812\u2812\u2808\u2815\u282b\u2820\u282a\u2812\u2812",
+ "\\downharpoonright": "\u282b\u2829\u2812\u2812\u2808\u2815",
+ "\\Lleftarrow": "\u282b\u282a\u283f\u283f",
+ "\\circlearrowleft": "\u282b\u2809\u2838\u282b\u282a\u283b",
+ "\\upharpoonleft": "\u282b\u2823\u2812\u2812\u2808\u2815",
+ "\\leftrightsquigarrow": "\u282b\u282a\u2814\u2822\u2814\u2815",
+ "\\rightrightarrows": "\u282b\u2812\u2812\u2815\u282b\u2812\u2812\u2815",
+ "\\curvearrowright": "\u282b\u282a\u2822\u2814",
+ "\\downdownarrows": "\u282b\u2829\u2812\u2812\u2815\u2810\u282b\u2829\u2812\u2812\u2815",
+ "\\rightsquigarrow": "\u282b\u2814\u2822\u2814\u2815",
+ "\\rightarrowtail": "\u282b\u2815\u2812\u2812\u2815",
+ "\\leftleftarrows": "\u282b\u282a\u2812\u2812\u282b\u282a\u2812\u2812",
+ "\\twoheadleftarrow": "\u282b\u282a\u282a\u2812\u2812",
+ "\\leftrightharpoons": "\u282b\u2820\u282a\u2812\u2812\u282b\u2812\u2812\u2808\u2815",
+ "\\downharpoonleft": "\u282b\u2829\u2812\u2812\u2820\u2815",
+ "\\circlearrowright": "\u282b\u2809\u2838\u282b\u2815\u283b",
+ "\\upharpoonright": "\u282b\u2823\u2812\u2812\u2820\u2815",
+ "\\Rrightarrow": "\u282b\u283f\u283f\u2815",
+ "\\nleftarrow": "\u280c\u282b\u282a",
+ "\\nRightarrow": "\u280c\u282b\u2836\u2836\u2815",
+ "\\nrightarrow": "\u280c\u282b\u2815",
+ "\\nleftrightarrow": "\u280c\u282b\u282a\u2812\u2812\u2815",
+ "\\nLeftarrow": "\u280c\u282b\u282a\u2836\u2836",
+ "\\nLeftrightarrow": "\u280c\u282b\u282a\u2836\u2836\u2815",
+ "\\leq": "\u2810\u2805\u2831",
+ "\\le": "\u2810\u2805\u2831",
+ "\\prec": "\u2828\u2810\u2805",
+ "\\preceq": "\u2828\u2810\u2805\u2831",
+ "\\ll": "\u2810\u2805\u2808\u2810\u2805\u283b",
+ "\\subset": "\u2838\u2810\u2805",
+ "\\subseteq": "\u2838\u2810\u2805\u2831",
+ "\\in": "\u2808\u2811",
+ "\\vdash": "\u282b\u2833\u2812\u2812",
+ "\\geq": "\u2828\u2802\u2831",
+ "\\succ": "\u2828\u2828\u2802",
+ "\\succeq": "\u2828\u2828\u2802\u2831",
+ "\\gg": "\u2828\u2802\u2808\u2828\u2802\u283b",
+ "\\supset": "\u2838\u2828\u2802",
+ "\\supseteq": "\u2838\u2828\u2802\u2831",
+ "\\ni": "\u2808\u2822",
+ "\\dashv": "\u282b\u2812\u2812\u2833",
+ "\\equiv": "\u2838\u2807",
+ "\\sim": "\u2808\u2831",
+ "\\simeq": "\u2808\u2831\u2831",
+ "\\asymp": "\u282b\u2801\u282b\u2804",
+ "\\approx": "\u2808\u2831\u2808\u2831",
+ "\\cong": "\u2808\u2831\u2828\u2805",
+ "\\neq": "\u280c\u2828\u2805",
+ "\\ne": "\u280c\u2828\u2805",
+ "\\not": "\u280c",
+ "\\doteq": "\u2810\u2828\u2805\u2823\u2821\u283b",
+ "\\propto": "\u2838\u283f",
+ "<": "\u2810\u2805",
+ "\\models": "\u282b\u2833\u2836\u2836",
+ "\\perp": "\u282b\u280f",
+ "\\mid": "\u2833",
+ "\\parallel": "\u282b\u2807",
+ "\\smile": "\u282b\u2804",
+ "\\frown": "\u282b\u2801",
+ ">": "\u2828\u2802",
+ "\\leqq": "\u2810\u2805\u2828\u2805",
+ "\\lesssim": "\u2810\u2805\u2808\u2831",
+ "\\lessdot": "\u2810\u2805\u2838\u282b\u2821\u283b",
+ "\\lesseqgtr": "\u2810\u2805\u2831\u2828\u2802",
+ "\\precsim": "\u2828\u2810\u2805\u2808\u2831",
+ "\\smallsmile": "\u282b\u2804",
+ "\\Bumpeq": "\u2808\u2823\u2820\u2823",
+ "\\eqslantgtr": "\u2831\u2828\u2802",
+ "\\gtrdot": "\u2828\u2802\u2838\u282b\u2821\u283b",
+ "\\gtreqless": "\u2828\u2802\u2831\u2810\u2805",
+ "\\circeq ": "\u2810\u2828\u2805\u2823\u2828\u2821\u283b",
+ "\\thickapprox": "\u2838\u2808\u2831\u2838\u2808\u2831",
+ "\\succsim": "\u2828\u2828\u2802\u2808\u2831",
+ "\\shortparallel": "\u282b\u2807",
+ "\\varpropto": "\u2838\u283f",
+ "\\backepsilon": "\u2808\u2822",
+ "\\leqslant": "\u2810\u2805\u2831",
+ "\\lessapprox": "\u2810\u2805\u2808\u2831\u2808\u2831",
+ "\\lll": "\u2810\u2805\u2808\u2810\u2805\u2808\u2810\u2805\u283b",
+ "\\lesseqqgtr": "\u2810\u2805\u2828\u2805\u2828\u2802",
+ "\\subseteqq": "\u2838\u2810\u2805\u2828\u2805",
+ "\\precapprox": "\u2828\u2810\u2805\u2808\u2831\u2808\u2831",
+ "\\vDash": "\u282b\u2833\u2836\u2836",
+ "\\smallfrown": "\u282b\u2801",
+ "\\geqq": "\u2828\u2802\u2828\u2805",
+ "\\gtrsim": "\u2828\u2802\u2808\u2831",
+ "\\ggg": "\u2828\u2802\u2808\u2828\u2802\u2808\u2828\u2802\u283b",
+ "\\gtreqqless": "\u2828\u2802\u2828\u2805\u2810\u2805",
+ "\\triangleq": "\u2810\u2828\u2805\u2823\u282b\u281e\u283b",
+ "\\supseteqq": "\u2838\u2828\u2802\u2828\u2805",
+ "\\succapprox": "\u2828\u2828\u2802\u2808\u2831\u2808\u2831",
+ "\\Vdash": "\u282b\u2833\u2833\u2812\u2812",
+ "\\blacktriangleleft": "\u282b\u2838",
+ "\\blacktriangleright": "\u282b\u2838",
+ "\\eqslantless": "\u2831\u2810\u2805",
+ "\\approxeq": "\u2808\u2831\u2808\u2831\u2831",
+ "\\lessgtr": "\u2810\u2805\u2828\u2802",
+ "\\doteqdot": "\u2810\u2828\u2805\u2829\u2821\u2823\u2821\u283b",
+ "\\Subset": "\u2838\u2810\u2805\u2838\u282b\u2838\u2810\u2805\u283b",
+ "\\Vvdash": "\u282b\u2833\u2833\u2833\u2812\u2812",
+ "\\geqslant": "\u2828\u2802\u2831",
+ "\\gtrapprox": "\u2828\u2802\u2808\u2831\u2808\u2831",
+ "\\gtrless": "\u2828\u2802\u2810\u2805",
+ "\\eqcirc ": "\u2828\u2821\u2808\u2828\u2805\u283b",
+ "\\thicksim": "\u2838\u2808\u2831",
+ "\\Supset": "\u2838\u2828\u2802\u2838\u282b\u2838\u2828\u2802\u283b",
+ "\\shortmid": "\u2833",
+ "\\therefore": "\u2820\u2821",
+ "\\because": "\u2808\u280c",
+ "\\nless": "\u280c\u2810\u2805",
+ "\\nleqq": "\u280c\u2810\u2805\u2828\u2805",
+ "\\nprec": "\u280c\u2828\u2810\u2805",
+ "\\precnapprox": "\u280c\u2828\u2810\u2805\u2808\u2831\u2808\u2831",
+ "\\nmid": "\u280c\u2833",
+ "\\subsetneq": "\u2838\u2810\u2805\u280c\u2831",
+ "\\varsubsetneqq": "\u2838\u2810\u2805\u280c\u2828\u2805",
+ "\\ngeqslant": "\u280c\u2828\u2802\u2831",
+ "\\gneqq ": "\u2828\u2802\u280c\u2828\u2805",
+ "\\gnapprox": "\u2828\u2802\u280c\u2808\u2831\u2808\u2831",
+ "\\succnsim": "\u2828\u2828\u2802\u280c\u2808\u2831",
+ "\\nshortparallel": "\u280c\u282b\u2807",
+ "\\nVDash": "\u280c\u282b\u2833\u2833\u2812\u2812",
+ "\\nsupseteq": "\u280c\u2838\u2828\u2802\u2831",
+ "\\varsupsetneq ": "\u2838\u2828\u2802\u280c\u2831",
+ "\\nleq": "\u280c\u2810\u2805\u2831",
+ "\\lneq": "\u2810\u2805\u280c\u2831",
+ "\\lnsim": "\u2810\u2805\u280c\u2808\u2831",
+ "\\npreceq": "\u280c\u2828\u2810\u2805\u2831",
+ "\\nsim": "\u280c\u2808\u2831",
+ "\\nvdash": "\u280c\u282b\u2833\u2812\u2812",
+ "\\varsubsetneq": "\u2838\u2810\u2805\u280c\u2831",
+ "\\ngtr": "\u280c\u2828\u2802",
+ "\\ngeqq": "\u280c\u2828\u2802\u2828\u2805",
+ "\\gvertneqq": "\u2828\u2802\u280c\u2828\u2805",
+ "\\nsucc": "\u2828\u2828\u2802",
+ "\\succnapprox": "\u2828\u2828\u2802\u280c\u2808\u2831\u2808\u2831",
+ "\\nparallel": "\u280c\u282b\u2807",
+ "\\nsupseteqq": "\u280c\u2838\u2828\u2802\u2828\u2805",
+ "\\supsetneqq": "\u2838\u2828\u2802\u280c\u2828\u2805",
+ "\\nleqslant": "\u280c\u2810\u2805\u2831",
+ "\\lneqq": "\u2810\u2805\u280c\u2828\u2805",
+ "\\lnapprox": "\u2810\u2805\u280c\u2808\u2831\u2808\u2831",
+ "\\precnsim": "\u2828\u2810\u2805\u280c\u2808\u2831",
+ "\\nshortmid": "\u280c\u2833",
+ "\\nvDash": "\u280c\u282b\u2833\u2836\u2836",
+ "\\nsubseteq": "\u280c\u2838\u2810\u2805\u2831",
+ "\\subsetneqq": "\u2838\u2810\u2805\u280c\u2828\u2805",
+ "\\ngeq": "\u280c\u2828\u2802\u2831",
+ "\\gneq": "\u2828\u2802\u280c\u2831",
+ "\\gnsim": "\u2828\u2802\u280c\u2808\u2831",
+ "\\nsucceq": "\u280c\u2828\u2828\u2802\u2831",
+ "\\ncong": "\u280c\u2808\u2831\u2828\u2805",
+ "\\nvDash": "\u280c\u282b\u2833\u2836\u2836",
+ "\\supsetneq": "\u2838\u2828\u2802\u280c\u2831",
+ "\\varsupsetneqq": "\u2838\u2828\u2802\u280c\u2828\u2805",
+ "\\ldots": "\u2804\u2804\u2804",
+ "\\dots": "\u2804\u2804\u2804",
+ "\\dotsc": "\u2804\u2804\u2804",
+ "\\aleph": "\u2820\u2820\u2801",
+ "\\hbar": "\u2808\u2813",
+ "\\surd": "\u281c",
+ "\\top": "\u282b\u2823\u2812\u2812\u2833",
+ "\\wp": "\u2808\u2830\u280f",
+ "\\Im": "\u2820\u280a\u280d",
+ "\\cdots": "\u2804\u2804\u2804",
+ "\\prime": "\u2804",
+ "\\emptyset": "\u2838\u2834",
+ "\\varnothing": "\u2838\u2834",
+ "\\Box": "\u282b\u2832",
+ "\\bot": "\u282b\u280f",
+ "\\angle": "\u282b\u282a",
+ "\\vdots": "\u282b\u2829\u2804\u2804\u2804",
+ "\\forall": "\u2808\u282f",
+ "\\exists": "\u2808\u283f",
+ "\\triangle": "\u282b\u281e",
+ "\\ell": "\u2820\u2807",
+ "\\partial": "\u2808\u2819",
+ "\\ddots": "\u282b\u2829\u2804\u2804\u2804",
+ "\\infty": "\u2820\u283f",
+ "\\nabla": "\u2828\u282b",
+ "\\Diamond": "\u282b\u2819",
+ "\\neg": "\u282b\u2812\u2812\u2820\u2833",
+ "\\sharp": "\u2828\u283c",
+ "\\Re": "\u2820\u2817\u2811",
+ "\\adots": "\u282b\u2823\u2804\u2804\u2804",
+ "\\lozenge": "\u282b\u2819",
+ "\\nexists": "\u280c\u2808\u283f",
+ "\\blacksquare": "\u282b\u2838\u2832",
+ "\\complement": "\u2828\u2809",
+ "\\square": "\u282b\u2832",
+ "\\blacktriangledown": "\u282b\u2838\u2828\u281e",
+ "\\vartriangle": "\u282b\u281e",
+ "\\circledS": "\u282b\u2809\u2838\u282b\u2820\u280e\u283b",
+ "\\varnothing": "\u2838\u2834",
+ "\\blacklozenge": "\u282b\u2838\u2819",
+ "\\measuredangle": "\u282b\u282a\u2808\u282b\u2801\u283b",
+ "\\blacktriangle": "\u282b\u2838\u281e",
+ "\\bigstar": "\u282b\u2838\u280e",
+ "\\diagup": "\u280c",
+ "\\Bbbk": "\u2838\u2805",
+ "\\diagdown": "\u2838\u2821",
+ "\\llbracket": "\u2808\u2838\u2837",
+ "\\left\\llbracket": "\u2808\u2838\u2820\u2837",
+ "\\bigl\\llbracket": "\u2808\u2838\u2820\u2837",
+ "\\Bigl\\llbracket": "\u2808\u2838\u2820\u2837",
+ "\\biggl\\llbracket": "\u2808\u2838\u2820\u2837",
+ "\\Biggl\\llbracket": "\u2808\u2838\u2820\u2837",
+ "\\rrbracket": "\u2808\u2838\u283e",
+ "\\right\rrbracket": "\u2808\u2838\u2820\u283e",
+ "\\bigr\rrbracket": "\u2808\u2838\u2820\u283e",
+ "\\Bigr\rrbracket": "\u2808\u2838\u2820\u283e",
+ "\\biggr\rrbracket": "\u2808\u2838\u2820\u283e",
+ "\\Biggr\rrbracket": "\u2808\u2838\u2820\u283e",
+ "\\varg": "\u2808\u281b",
+ "\\varv": "\u2808\u2827",
+ "\\varw": "\u2808\u283a",
+ "\\vary": "\u2808\u283d",
+ "\\medcirc": "\u282b\u2809",
+ "\\circledwedge": "\u282b\u2809\u2838\u282b\u2808\u2839\u283b",
+ "\\circledbslash": "\u282b\u2809\u2838\u282b\u2822\u283b",
+ "\\boxbslash": "\u282b\u2832\u2838\u282b\u2822\u283b",
+ "\\medbullet": "\u282b\u2838\u2809",
+ "\\circledvee": "\u282b\u2809\u2838\u282b\u2808\u283c\u283b",
+ "\\nplus": "\u2828\u2829\u2838\u282b\u282c\u283b",
+ "\\boxbar": "\u282b\u2832\u2838\u282b\u2833\u283b",
+ "\\circledbar": "\u282b\u2809\u2838\u282b\u2833\u283b",
+ "\\boxast": "\u282b\u2832\u2838\u282b\u2808\u283c\u283b",
+ "\\boxslash": "\u282b\u2832\u2838\u282b\u2814\u283b",
+ "\\Diamonddot": "\u282b\u2819\u2838\u282b\u2821\u283b",
+ "\\lambdabar": "\u2808\u2828\u2807",
+ "\\Bot": "\u282b\u2829\u2836\u2836\u2833",
+ "\\Diamondblack": "\u282b\u2838\u2819",
+ "\\Diamond": "\u282b\u2819",
+ "\\Top": "\u282b\u2823\u2836\u2836\u2833",
+ "\\bignplus": "\u2828\u2829\u2838\u282b\u282c\u283b",
+ "\\oiint": "\u282e\u282e\u2808\u282b\u2809\u283b",
+ "\\ointclockwise": "\u282e\u2808\u282b\u282a\u2822\u2814\u283b",
+ "\\sqint": "\u282e\u2808\u282b\u2832\u283b",
+ "\\fint": "\u280c\u282e",
+ "\\iiiint": "\u282e\u282e\u282e\u282e",
+ "\\oiintclockwise": "\u282e\u282e\u2808\u282b\u282a\u2822\u2814\u283b",
+ "\\oiiintctrclockwise": "\u282e\u282e\u282e\u2808\u282b\u2822\u2814\u2815\u283b",
+ "\\varoiiintclockwise": "\u282e\u282e\u282e\u2808\u282b\u282a\u2822\u2814\u283b",
+ "\\oiiint": "\u282e\u282e\u282e\u2808\u282b\u2809\u283b",
+ "\\varointctrclockwise": "\u282e\u2808\u282b\u2822\u2814\u2815\u283b",
+ "\\sqiintop": "\u282e\u282e\u2808\u282b\u2817\u283b",
+ "\\iint": "\u282e\u282e",
+ "\\idotsint": "\u282e\u2804\u2804\u2804\u282e",
+ "\\varoiintctrclockwise": "\u282e\u282e\u2808\u282b\u2822\u2814\u2815\u283b",
+ "\\oiiintclockwise": "\u282e\u282e\u282e\u2808\u282b\u282a\u2822\u2814\u283b",
+ "\\varprod": "\u2810\u2808\u2821",
+ "\\ointctrclockwise": "\u282e\u2808\u282b\u2822\u2814\u2815\u283b",
+ "\\varointclockwise": "\u282e\u2808\u282b\u282a\u2822\u2814\u283b",
+ "\\sqiiintop": "\u282e\u282e\u282e\u2808\u282b\u2817\u283b",
+ "\\iiint": "\u282e\u282e\u282e",
+ "\\iiiint": "\u282e\u282e\u282e\u282e",
+ "\\upint": "\u2823\u282e",
+ "\\lowint": "\u2829\u282e",
+ "\\oiintctrclockwise": "\u282e\u282e\u2808\u282b\u2822\u2814\u2815\u283b",
+ "\\varoiintclockwise": "\u282e\u282e\u2808\u282b\u282a\u2822\u2814\u283b",
+ "\\varoiiintctrclockwise": "\u282e\u282e\u282e\u2808\u282b\u2822\u2814\u2815\u283b",
+ "\\dashrightarrow": "\u282b\u2812",
+ "\\ntwoheadrightarrow": "\u280c\u282b\u2812\u2812\u2815\u2815",
+ "\\Searrow": "\u282b\u2830\u2836\u2836\u2815",
+ "\\Perp": "\u282b\u2829\u2836\u2836\u2833",
+ "\\boxright": "\u282b\u2832\u282b\u2815",
+ "\\boxdotleft": "\u282b\u282a\u282b\u2832\u2838\u282b\u2821\u283b",
+ "\\Diamonddotright": "\u282b\u2819\u2838\u282b\u2821\u283b\u282b\u2815",
+ "\\boxLeft": "\u282b\u282a\u2834\u2834\u282b\u2832",
+ "\\DiamondRight": "\u282b\u2819\u282b\u2836\u2836\u2815",
+ "\\DiamonddotLeft": "\u282b\u282a\u2836\u2836\u282b\u2819\u2838\u282b\u2821\u283b",
+ "\\circleddotright": "\u282b\u2809\u2838\u282b\u2821\u282b\u2815\u283b",
+ "\\multimapdotbothvert": "\u282b\u2823\u2821\u2812\u2812\u2821",
+ "\\dashleftrightarrow": "\u282b\u282a\u2812",
+ "\\ntwoheadleftarrow": "\u280c\u282b\u282a\u282a\u2812\u2812",
+ "\\Nwarrow": "\u282b\u2818\u282a\u2836\u2836",
+ "\\leadstoext": "\u2808\u2831",
+ "\\boxleft": "\u282b\u282a\u282b\u2832",
+ "\\Diamondright": "\u282b\u2819\u282b\u2815",
+ "\\Diamonddotleft": "\u282b\u282a\u282b\u2819\u2838\u282b\u2821\u283b",
+ "\\boxdotRight": "\u282b\u2832\u2838\u282b\u2821\u283b\u282b\u2836\u2836\u2815",
+ "\\DiamondLeft": "\u282b\u282a\u2836\u2836\u282b\u2819",
+ "\\circleright": "\u282b\u2809\u2838\u282b\u2815\u283b",
+ "\\circleddotleft": "\u282b\u2809\u2838\u282b\u2821\u282b\u282a\u283b",
+ "\\dashleftarrow": "\u282b\u282a\u2812",
+ "\\leftsquigarrow": "\u282b\u282a\u2814\u2822\u2814",
+ "\\Nearrow": "\u282b\u2818\u2836\u2836\u2815",
+ "\\Swarrow": "\u282b\u2830\u282a\u2836\u2836",
+ "\\leadsto": "\u282b\u2814\u2812\u2822\u2815",
+ "\\boxdotright": "\u282b\u2832\u2838\u2821\u283b\u282b\u2815",
+ "\\Diamondleft": "\u282b\u282a\u282b\u2819",
+ "\\boxRight": "\u282b\u2832\u282b\u2836\u2836\u2815",
+ "\\boxdotLeft": "\u282b\u282a\u2836\u2836\u282b\u2832\u2838\u282b\u2821\u283b",
+ "\\DiamonddotRight": "\u282b\u2819\u2838\u282b\u2821\u283b\u282b\u2836\u2836\u2815",
+ "\\circleleft": "\u282b\u2809\u2838\u282b\u282a\u283b",
+ "\\multimapbothvert": "\u282b\u2823\u2828\u2821\u2812\u2812\u2828\u2821",
+ "\\multimapdotbothBvert": "\u282b\u2823\u2828\u2821\u2812\u2812\u2821",
+ "\\mappedfrom": "\u282b\u282a\u2812\u2833",
+ "\\Longmapsto": "\u282b\u2833\u2836\u2836\u2815",
+ "\\mmapsto": "\u282b\u2833\u2833\u2812\u2815",
+ "\\longmmappedfrom": "\u282b\u282a\u2812\u2812\u2833\u2833",
+ "\\Mmappedfrom": "\u282b\u282a\u2836\u2833\u2833",
+ "\\varparallelinv": "\u2838\u2821\u2838\u2821",
+ "\\colonapprox": "\u2806\u2808\u2831\u2808\u2831",
+ "\\Colonsim": "\u2806\u2806\u2808\u2831",
+ "\\multimapboth": "\u282b\u2828\u2821\u2812\u2812\u2828\u2821",
+ "\\multimapdotboth": "\u282b\u2821\u2812\u2812\u2821",
+ "\\Vdash": "\u282b\u2833\u2833\u2836\u2836",
+ "\\preceqq": "\u2828\u2810\u2805\u2828\u2805",
+ "\\nsuccsim": "\u280c\u2828\u2828\u2802\u2808\u2831",
+ "\\nlessapprox": "\u280c\u2810\u2805\u2808\u2831\u2808\u2831",
+ "\\nequiv": "\u280c\u283f",
+ "\\nsubset": "\u280c\u2838\u2810\u2805",
+ "\\ngg": "\u280c\u2828\u2802\u2808\u2828\u2802\u283b",
+ "\\nprecapprox": "\u280c\u2828\u2810\u2805\u2808\u2831\u2808\u2831",
+ "\\nsucceqq": "\u280c\u2828\u2828\u2802\u2828\u2805",
+ "\\notni": "\u280c\u2808\u2822",
+ "\\notowns": "\u280c\u2808\u2822",
+ "\\eqqcolon": "\u2828\u2805\u2810\u2806",
+ "\\Coloneqq": "\u2806\u2806\u2810\u2828\u2805",
+ "\\Eqcolon": "\u2831\u2810\u2806\u2806",
+ "\\strictiff": "\u282b\u282f\u2812\u2812\u283d",
+ "\\longmappedfrom": "\u282b\u282a\u2812\u2812\u2833",
+ "\\Mappedfrom": "\u282b\u282a\u2836\u2833",
+ "\\longmmapsto": "\u282b\u2833\u2833\u2812\u2812\u2815",
+ "\\Mmapsto": "\u282b\u2833\u2833\u2836\u2815",
+ "\\Longmmappedfrom": "\u282b\u282a\u2836\u2836\u2833\u2833",
+ "\\nvarparallel": "\u280c\u282b\u2807",
+ "\\colonsim": "\u2806\u2810\u2808\u2831",
+ "\\doteq": "\u2810\u2828\u2805\u2823\u2821\u283b",
+ "\\multimapdot": "\u282b\u2812\u2812\u2821",
+ "\\multimapdotbothA": "\u282b\u2828\u2821\u2812\u2812\u2821",
+ "\\VvDash": "\u282b\u2833\u2833\u2833\u2836\u2836",
+ "\\succeqq": "\u2828\u2828\u2802\u2828\u2805",
+ "\\nlesssim": "\u280c\u2810\u2805\u2808\u2831",
+ "\\ngtrapprox": "\u280c\u2828\u2802\u2808\u2831\u2808\u2831",
+ "\\ngtrless": "\u280c\u2810\u2805\u2828\u2802",
+ "\\nBumpeq": "\u280c\u2808\u2823\u2820\u2823",
+ "\\nsim": "\u280c\u2808\u2831",
+ "\\nsupset": "\u280c\u2838\u2828\u2802",
+ "\\nthickapprox": "\u280c\u2838\u2808\u2831\u2838\u2808\u2831",
+ "\\nsuccapprox": "\u280c\u2828\u2828\u2802\u2808\u2831\u2808\u2831",
+ "\\nsimeq": "\u280c\u2808\u2831\u2831",
+ "\\nSubset": "\u280c\u2838\u2810\u2805\u2838\u282b\u2838\u2810\u2805\u283b",
+ "\\coloneq": "\u2806\u2810\u2831",
+ "\\Eqqcolon": "\u2828\u2805\u2810\u2806\u2806",
+ "\\strictif": "\u282b\u2812\u2812\u283d",
+ "\\circledless": "\u282b\u2809\u2838\u282b\u2810\u2805\u283b",
+ "\\Mapsto": "\u282b\u2833\u2836\u2815",
+ "\\Longmappedfrom": "\u282b\u282a\u2836\u2836\u2833",
+ "\\mmappedfrom": "\u282b\u282a\u2812\u2833\u2833",
+ "\\Longmmapsto": "\u282b\u2833\u2833\u2836\u2836\u2815",
+ "\\varparallel": "\u282b\u2807",
+ "\\nvarparallelinv": "\u280c\u2838\u2821\u2838\u2821",
+ "\\Colonapprox": "\u2806\u2806\u2810\u2808\u2831\u2808\u2831",
+ "\\multimapinv": "\u282b\u2828\u2821\u2812\u2812",
+ "\\multimapdotinv": "\u282b\u2821\u2812\u2812",
+ "\\multimapdotbothB": "\u282b\u2821\u2812\u2812\u2828\u2821",
+ "\\nprecsim": "\u280c\u2828\u2810\u2805\u2808\u2831",
+ "\\ngtrsim": "\u280c\u2828\u2802\u2808\u2831",
+ "\\nlessgtr": "\u280c\u2828\u2802\u2810\u2805",
+ "\\nasymp": "\u280c\u282b\u2801\u282b\u2804",
+ "\\napprox": "\u280c\u2808\u2831\u2808\u2831",
+ "\\nll": "\u280c\u2810\u2805\u2808\u2810\u2805\u283b",
+ "\\napproxeq": "\u280c\u2808\u2831\u2808\u2831\u2831",
+ "\\npreceqq": "\u280c\u2828\u2810\u2805\u2828\u2805",
+ "\\notin": "\u280c\u2808\u2811",
+ "\\nSupset": "\u280c\u2838\u2828\u2802\u2838\u282b\u2838\u2828\u2802\u283b",
+ "\\coloneqq": "\u2806\u2810\u2828\u2805",
+ "\\eqcolon": "\u2831\u2810\u2806",
+ "\\Coloneq": "\u2806\u2806\u2810\u2831",
+ "\\strictfi": "\u282b\u282f\u2812\u2812",
+ "\\circledgtr": "\u282b\u2809\u2838\u282b\u2828\u2802\u283b",
+ "\\mathbb": "\u2838",
+ "\\mathcal": "\u2808\u2830",
+ "\\underbrace-begin": "\u2810",
+ "\\underbrace-middle": "\u2829\u2828\u283e\u2829\u2829",
+ "\\underbrace-end": "\u283b",
+ "\\overbrace-begin": "\u2810",
+ "\\overbrace-middle": "\u2823\u2828\u2837\u2823\u2823",
+ "\\overbrace-end": "\u283b",
+ "\\overline-begin": "\u2810",
+ "\\overline-end": "\u2823\u2831",
+ "\\underline-begin": "\u2810",
+ "\\underline-end": "\u2829\u2831",
+ "?": "\u2838\u2826",
+ "'": "\u2804",
+ "{": "",
+ "}": "",
+ "\\displaystyle": "",
+ "\\tilde": "\u2808\u2831",
+ "\\widetilde-begin": "\u2810",
+ "\\widetilde-end": "\u2823\u2808\u2820\u2831",
+ "\\lenqno": " ",
+ "\\binom": "\u2829",
+ "\\atop": "\u2829",
+ "\\choose": "\u2829",
+ "\\under": "\u2829",
+ "\\under": "\u2829",
+ "\\leqno": " ",
+ "\\hat": "\u2823\u2838\u2823",
+ "\\%": "\u2808\u2834",
+ "\\bar": "\u2831",
+ "\\stackrel-begin": "\u2810",
+ "\\stackrel-middle": "\u2823",
+ "\\stackrel-end": "\u283B",
+ "\\sqcup": "⠈⠨⠬",
+ "\\sqcap": "⠈⠨⠩",
+ "\\bigsqcup": "⠈⠨⠬",
+ "\\bigsqcap": "⠈⠨⠩",
+ "\\wr": "",
+ "\\trangleleft": "⠫⠐⠅⠇⠻",
+ "\\triangleright": "⠫⠸⠨⠂⠻",
+ "\\lhd": "⠫⠐⠅⠇⠻",
+ "\\unlhd": "⠫⠐⠅⠇⠱⠻",
+ "\\rhd": "⠫⠸⠨⠂⠻",
+ "\\unrhd": "⠫⠸⠨⠂⠱⠻",
+ "\\amalg": "⠫⠨⠏⠻",
+ "\\ltimes": "⠫⠸⠈⠡⠻",
+ "\\rightthreetimes": "",
+ "\\rtimes": "⠫⠈⠡⠇⠻",
+ "\\curlywedge": "⠫⠈⠩⠻",
+ "\\leftthreetimes": "",
+ "\\curlyvee": "⠫⠈⠬⠻",
+ "\\sqsubset": "⠈⠸⠐⠅",
+ "\\sqsubseteq": "⠈⠸⠐⠅⠱",
+ "\\sqsupset": "⠈⠸⠨⠂",
+ "\\sqsupseteq": "⠈⠸⠨⠂⠱",
+ "\\bowtie": "⠫⠸⠈⠡⠇⠻",
+ "\\Join": "⠫⠸⠈⠡⠇⠻",
+ "\\risingdotseq": "",
+ "\\backsimeq": "⠈⠈⠱⠱",
+ "\\tianglelefteq": "⠫⠐⠅⠇⠱⠻",
+ "\\trianglerighteq": "⠫⠸⠨⠂⠱⠻",
+ "\\fallingdotseq": "",
+ "\\preccurlyeq": "⠫⠨⠐⠅⠱⠻",
+ "\\succcurlyeq": "⠫⠨⠨⠂⠱⠻",
+ "\\between": "⠷⠾",
+ "\\blacktriangleleft": "⠸⠫⠐⠅⠇⠻",
+ "\\blacktriangleright": "⠸⠫⠸⠨⠂⠻",
+ "\\backsim": "⠈⠈⠱",
+ "\\curlyeqprec": "⠫⠱⠨⠐⠅⠻",
+ "\\vartriangleleft": "⠫⠐⠅⠇⠻",
+ "\\curlyeqsucc": "⠫⠱⠨⠨⠂⠻",
+ "\\vartrianlgeright": "⠫⠸⠨⠂⠻",
+ "\\lvertneqq": "⠐⠅⠱⠌⠨⠅⠻",
+ "\\ntriangleleft": "⠌⠫⠐⠅⠇⠻",
+ "\\ntrianglelefteq": "⠌⠫⠐⠅⠇⠱⠻",
+ "\\ntriangleright": "⠌⠫⠸⠨⠂⠻",
+ "\\ntrianglerighteq": "⠌⠫⠸⠨⠂⠱⠻",
+ "\\mho": "⠫⠨⠚⠻",
+ "\\hslash": "⠫⠌⠓⠻",
+ "\\backprime": "⠈⠄",
+ "\\Finv": "⠫⠠⠋⠻",
+ "\\eth": "⠫⠌⠈⠙⠻",
+ "\\triangledown": "⠨⠫",
+ "\\Game": "⠫⠠⠛⠻",
+ "\\Wr": "",
+ "\\sqcupplus": "⠈⠨⠬⠸⠫⠬⠻",
+ "\\invamp": "⠫⠯⠻",
+ "\\sqcapplus": "⠈⠨⠩⠸⠫⠬⠻",
+ "\\lambdaslash": "⠫⠌⠨⠇⠻",
+ "\\bigsqcupplus": "⠈⠨⠬⠸⠫⠬⠻",
+ "\\bigsqcapplus": "⠈⠨⠩⠸⠫⠬⠻",
+ "\\nsqsubset": "⠌⠈⠸⠐⠅",
+ "\\nsqsupset": "⠌⠈⠸⠨⠂",
+ "\\nsucccurlyeq": "⠌⠫⠨⠨⠂⠱⠻",
+ "\\nbacksim": "⠌⠈⠈⠱",
+ "\\nsqsubseteq": "⠌⠈⠸⠐⠅⠱",
+ "\\lJoin": "⠫⠸⠈⠡⠻",
+ "\\openJoin": "⠈⠡",
+ "\\nsqsupseteq": "⠌⠈⠸⠨⠂⠱",
+ "\\lrtimes": "⠫⠸⠈⠡⠇⠻",
+ "\\rJoin": "⠫⠈⠡⠇⠻",
+ "\\npreccurlyeq": "⠌⠫⠨⠐⠅⠱⠻",
+ "\\nbacksim": "⠌⠈⠈⠱",
+ "\\textvisiblespace": "⠿",
+ "\\imath": "⠫⠊⠻",
+ "\\jmath": "⠫⠚⠻",
+ "\\check": "\u2823\u2808\u2838\u2823",
+ "\\acute": "\u2823\u2804",
+ "\\grave": "\u2831"
+ },
+ "theoremSymbols": {
+ ".": "\u2828",
+ "#": "\u283c",
+ "0": "\u2834",
+ "1": "\u2802",
+ "2": "\u2806",
+ "3": "\u2812",
+ "4": "\u2832",
+ "5": "\u2822",
+ "6": "\u2816",
+ "7": "\u2836",
+ "8": "\u2826",
+ "9": "\u2814",
+ "#0": "\u283c\u2834",
+ "#1": "\u283c\u2802",
+ "#2": "\u283c\u2806",
+ "#3": "\u283c\u2812",
+ "#4": "\u283c\u2832",
+ "#5": "\u283c\u2822",
+ "#6": "\u283c\u2816",
+ "#7": "\u283c\u2836",
+ "#8": "\u283c\u2826",
+ "#9": "\u283c\u2814"
+ }
+} \ No newline at end of file
diff --git a/Master/texmf-dist/doc/support/latex2nemeth/gpl-3.0.txt b/Master/texmf-dist/doc/support/latex2nemeth/gpl-3.0.txt
new file mode 100644
index 00000000000..94a9ed024d3
--- /dev/null
+++ b/Master/texmf-dist/doc/support/latex2nemeth/gpl-3.0.txt
@@ -0,0 +1,674 @@
+ GNU GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+ The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works. By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users. We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors. You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+ To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights. Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received. You must make sure that they, too, receive
+or can get the source code. And you must show them these terms so they
+know their rights.
+
+ Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+ For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software. For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+ Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so. This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software. The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable. Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products. If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+ Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary. To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ TERMS AND CONDITIONS
+
+ 0. Definitions.
+
+ "This License" refers to version 3 of the GNU General Public License.
+
+ "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+ "The Program" refers to any copyrightable work licensed under this
+License. Each licensee is addressed as "you". "Licensees" and
+"recipients" may be individuals or organizations.
+
+ To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy. The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+ A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+ To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy. Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+ To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies. Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+ An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License. If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+ 1. Source Code.
+
+ The "source code" for a work means the preferred form of the work
+for making modifications to it. "Object code" means any non-source
+form of a work.
+
+ A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+ The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form. A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+ The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities. However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work. For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+ The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+ The Corresponding Source for a work in source code form is that
+same work.
+
+ 2. Basic Permissions.
+
+ All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met. This License explicitly affirms your unlimited
+permission to run the unmodified Program. The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work. This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+ You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force. You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright. Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+ Conveying under any other circumstances is permitted solely under
+the conditions stated below. Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+ No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+ When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+ 4. Conveying Verbatim Copies.
+
+ You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+ You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+ 5. Conveying Modified Source Versions.
+
+ You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+ a) The work must carry prominent notices stating that you modified
+ it, and giving a relevant date.
+
+ b) The work must carry prominent notices stating that it is
+ released under this License and any conditions added under section
+ 7. This requirement modifies the requirement in section 4 to
+ "keep intact all notices".
+
+ c) You must license the entire work, as a whole, under this
+ License to anyone who comes into possession of a copy. This
+ License will therefore apply, along with any applicable section 7
+ additional terms, to the whole of the work, and all its parts,
+ regardless of how they are packaged. This License gives no
+ permission to license the work in any other way, but it does not
+ invalidate such permission if you have separately received it.
+
+ d) If the work has interactive user interfaces, each must display
+ Appropriate Legal Notices; however, if the Program has interactive
+ interfaces that do not display Appropriate Legal Notices, your
+ work need not make them do so.
+
+ A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit. Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+ 6. Conveying Non-Source Forms.
+
+ You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+ a) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by the
+ Corresponding Source fixed on a durable physical medium
+ customarily used for software interchange.
+
+ b) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by a
+ written offer, valid for at least three years and valid for as
+ long as you offer spare parts or customer support for that product
+ model, to give anyone who possesses the object code either (1) a
+ copy of the Corresponding Source for all the software in the
+ product that is covered by this License, on a durable physical
+ medium customarily used for software interchange, for a price no
+ more than your reasonable cost of physically performing this
+ conveying of source, or (2) access to copy the
+ Corresponding Source from a network server at no charge.
+
+ c) Convey individual copies of the object code with a copy of the
+ written offer to provide the Corresponding Source. This
+ alternative is allowed only occasionally and noncommercially, and
+ only if you received the object code with such an offer, in accord
+ with subsection 6b.
+
+ d) Convey the object code by offering access from a designated
+ place (gratis or for a charge), and offer equivalent access to the
+ Corresponding Source in the same way through the same place at no
+ further charge. You need not require recipients to copy the
+ Corresponding Source along with the object code. If the place to
+ copy the object code is a network server, the Corresponding Source
+ may be on a different server (operated by you or a third party)
+ that supports equivalent copying facilities, provided you maintain
+ clear directions next to the object code saying where to find the
+ Corresponding Source. Regardless of what server hosts the
+ Corresponding Source, you remain obligated to ensure that it is
+ available for as long as needed to satisfy these requirements.
+
+ e) Convey the object code using peer-to-peer transmission, provided
+ you inform other peers where the object code and Corresponding
+ Source of the work are being offered to the general public at no
+ charge under subsection 6d.
+
+ A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+ A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling. In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage. For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product. A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+ "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source. The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+ If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information. But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+ The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed. Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+ Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+ 7. Additional Terms.
+
+ "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law. If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+ When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it. (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.) You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+ Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+ a) Disclaiming warranty or limiting liability differently from the
+ terms of sections 15 and 16 of this License; or
+
+ b) Requiring preservation of specified reasonable legal notices or
+ author attributions in that material or in the Appropriate Legal
+ Notices displayed by works containing it; or
+
+ c) Prohibiting misrepresentation of the origin of that material, or
+ requiring that modified versions of such material be marked in
+ reasonable ways as different from the original version; or
+
+ d) Limiting the use for publicity purposes of names of licensors or
+ authors of the material; or
+
+ e) Declining to grant rights under trademark law for use of some
+ trade names, trademarks, or service marks; or
+
+ f) Requiring indemnification of licensors and authors of that
+ material by anyone who conveys the material (or modified versions of
+ it) with contractual assumptions of liability to the recipient, for
+ any liability that these contractual assumptions directly impose on
+ those licensors and authors.
+
+ All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10. If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term. If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+ If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+ Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+ 8. Termination.
+
+ You may not propagate or modify a covered work except as expressly
+provided under this License. Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+ However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+ Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+ Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License. If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+ 9. Acceptance Not Required for Having Copies.
+
+ You are not required to accept this License in order to receive or
+run a copy of the Program. Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance. However,
+nothing other than this License grants you permission to propagate or
+modify any covered work. These actions infringe copyright if you do
+not accept this License. Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+ 10. Automatic Licensing of Downstream Recipients.
+
+ Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License. You are not responsible
+for enforcing compliance by third parties with this License.
+
+ An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations. If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+ You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License. For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+ 11. Patents.
+
+ A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based. The
+work thus licensed is called the contributor's "contributor version".
+
+ A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version. For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+ In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement). To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+ If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients. "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+ If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+ A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License. You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+ Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+ 12. No Surrender of Others' Freedom.
+
+ If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all. For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+ 13. Use with the GNU Affero General Public License.
+
+ Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work. The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+ 14. Revised Versions of this License.
+
+ The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation. If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+ If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+ Later license versions may give you additional or different
+permissions. However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+ 15. Disclaimer of Warranty.
+
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+ 16. Limitation of Liability.
+
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+ 17. Interpretation of Sections 15 and 16.
+
+ If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+ <one line to give the program's name and a brief idea of what it does.>
+ Copyright (C) <year> <name of author>
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
+
+Also add information on how to contact you by electronic and paper mail.
+
+ If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+ <program> Copyright (C) <year> <name of author>
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+ You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+<http://www.gnu.org/licenses/>.
+
+ The GNU General Public License does not permit incorporating your program
+into proprietary programs. If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library. If this is what you want to do, use the GNU Lesser General
+Public License instead of this License. But first, please read
+<http://www.gnu.org/philosophy/why-not-lgpl.html>.