diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex')
9 files changed, 55 insertions, 23 deletions
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/README.md b/Master/texmf-dist/doc/latex/tkz-euclide/README.md index db0ee4fc41e..55940008e75 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/README.md +++ b/Master/texmf-dist/doc/latex/tkz-euclide/README.md @@ -1,6 +1,6 @@ # tkz-euclide — for euclidean geometry -Release 4.21c 2022/07/19 +Release 4.22c 2022/07/28 ## Description @@ -69,9 +69,18 @@ Other examples, in French, are on my site. ## History + +- 4.22c. Correction of a bug in the macro \tkzMarkAngle; + Correction of the documentation: + Remove options R,diameter of the macro \tkzDrawCircle. To draw a circle you must use two points: the center and a point of the circle. + + \tkzDefPointOnCircle : + forgotten "in rad" in the documentation +Complément dans la documentation pour la macro \tkzDefCircle[R](....). On peut utiliser soit \tkzGetPoints{o}{x} ou soit \tkzGetPoints{x}. - 4.21c the package archive was corrupted, all the "|" disappeared ... -- 4.2c +- 4.2c. + Now \tkzDefCircle gives two points as results: the center of the circle and a point of the circle. When a point of the circle is known, it is enough to use \tkzGetPoint or \tkzGetFirstPoint to get the center, otherwise \tkzGetPoints will give you the center and a point of the circle. You can always get the length of the radius with \tkzGetLength . I wanted to favor working with nodes and banish the appearance of numbers in the code. diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circles.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circles.tex index 72219d5ef5e..2a336d91af6 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circles.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circles.tex @@ -1,3 +1,4 @@ +\newpage \section{Circles} Among the following macros, one will allow you to draw a circle, which is not a real feat. To do this, you will need to know the center of the circle and either the radius of the circle or a point on the circumference. It seemed to me that the most frequent use was to draw a circle with a given center passing through a given point. This will be the default method, otherwise you will have to use the \tkzname{R} option. There are a large number of special circles, for example the circle circumscribed by a triangle. @@ -51,21 +52,41 @@ options & default & definition \\ \medskip \emph{In the following examples, I draw the circles with a macro not yet presented. You may only need the center and a point on the circle. } -\end{NewMacroBox} +\end{NewMacroBox} + +\subsubsection{Example with option \tkzname{R}} +We obtain with the macro \tkzcname{tkzGetPoint} a point of the circle which is the East pole. - \subsubsection{Example with option \tkzname{diameter}} - It is simpler here to search directly for the middle of $[AB]$. The result is the center and if necessary \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1] - \tkzDefPoint(0,0){A} - \tkzDefPoint(2,2){B} - \tkzDefCircle[diameter](A,B) - \tkzGetPoint{O} - \tkzDrawCircle(O,B) - \tkzDrawSegment(A,B) - \tkzDrawPoints(A,B,O) - \tkzLabelPoints[below](A,B,O) + \tkzDefPoint(3,3){C} + \tkzDefPoint(5,5){A} + \tkzCalcLength(A,C) \tkzGetLength{rAC} + \tkzDefCircle[R](C,\rAC) \tkzGetPoint{B} + \tkzDrawCircle(C,B) + \tkzDrawSegment(C,A) + \tkzLabelSegment[above left](C,A){$2\sqrt{2}$} + \tkzDrawPoints(A,B,C) + \tkzLabelPoints(A,C,B) \end{tikzpicture} +\end{tkzexample} + + + \subsubsection{Example with option \tkzname{diameter}} + It is simpler here to search directly for the middle of $[AB]$. The result is the center and if necessary +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){O} + \tkzDefPoint(2,2){B} + \tkzDefCircle[diameter](O,B) \tkzGetPoint{A} + \tkzDrawCircle(A,B) + \tkzDrawPoints(O,A,B) + \tkzDrawSegment(O,B) + \tkzLabelPoints(O,A,B) + \tkzLabelSegment[above left](O,A){$\sqrt{2}$} + \tkzLabelSegment[above left](A,B){$\sqrt{2}$} + \tkzMarkSegments[mark=s||](O,A A,B) +\end{tikzpicture} \end{tkzexample} \subsubsection{Circles inscribed and circumscribed for a given triangle} @@ -245,7 +266,7 @@ arguments & default & definition \\ Jc,Xc Jc,Yc Jc,Zc I,Ia I,Ib I,Ic) \tkzMarkRightAngles[size=.2,fill=gray!15](Ja,Za,B Ja,Xa,B Ja,Ya,C Jb,Yb,C) -\tkzMarkRightAngles[size=.2,fill=gray!15](Jb,Zb,B Jb,Xb,C Jc,Yc,A Jc,Zc,B) Jc,Xc,C I,Ia,B I,Ib,C I,Ic,A) +\tkzMarkRightAngles[size=.2,fill=gray!15](Jb,Zb,B Jb,Xb,C Jc,Yc,A Jc,Zc,B Jc,Xc,C I,Ia,B I,Ib,C I,Ic,A) \tkzDrawSegments[blue](Jc,C Ja,A Jb,B) \tkzDrawPoints(A,B,C,Xa,Xb,Xc,Ja,Jb,Jc,Ia,Ib,Ic,Ya,Yb,Yc,Za,Zb,Zc) \tkzLabelPoints(A,Ya,Yb,Ja,I) diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-drawing.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-drawing.tex index 763227ddba7..917ea41008a 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-drawing.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-drawing.tex @@ -237,7 +237,8 @@ This is of course equivalent to \tkzcname{draw (A)--(B);}. You can also use the \subsubsection{Adding dimensions with option \tkzname{dim} new code from Muzimuzhi Z} This code comes from an answer to this question on tex.stackexchange.com -(change-color-and-style-of-dimension-lines-in-tkz-euclide ) +(change-color-and-style-of-dimension-lines-in-tkz-euclide ). +The code of \tkzname{dim} is based on options of TikZ, you must add the units. You can use now two styles : |dim style| and |dim fence style|. You have several ways to use them. I'll let you look at the examples to see what you can do with these styles. @@ -554,12 +555,11 @@ arguments & example & explanation \\ options & default & definition \\ \midrule \TOline{through}{through}{circle with two points defining a radius} -\TOline{diameter}{through}{circle with two points defining a diameter} -\TOline{R} {through}{circle characterized by a point and the measurement of a radius} \bottomrule \end{tabular} \medskip +You do not need to use the default option \tkzname{through}. Of course, you have to add all the styles of \TIKZ\ for the tracings... \end{NewMacroBox} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-examples.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-examples.tex index 1a64516c84f..45a9be0f98c 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-examples.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-examples.tex @@ -979,7 +979,7 @@ Since the triangles $AO_2C$ and $AO_1E$ are isosceles the angles at the base are \begin{tikzpicture} \node [mybox,title={Book of lemmas proposition 6 Archimedes}] (box){% \begin{minipage}{0.90\textwidth} - {\emph{Let $AC$, the diameter of a semicircle, be divided at $B$ so that $AC/AB =\phi$ or in any ratio]. Describe semicircles within the first semicircle and on $AB$, $BC$ as diameters, and suppose a circle drawn touching the all three semicircles. If $GH$ be the diameter of this circle, to find relation between $GH$ and $AC$.}} + {\emph{Let $AC$, the diameter of a semicircle, be divided at $B$ so that $AC/AB =\phi$ or in any ratio. Describe semicircles within the first semicircle and on $AB$, $BC$ as diameters, and suppose a circle drawn touching the all three semicircles. If $GH$ be the diameter of this circle, to find relation between $GH$ and $AC$.}} \end{minipage} }; \end{tikzpicture}% diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-main.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-main.tex index 7f5f8dc4fe0..e730bbd9666 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-main.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-main.tex @@ -22,10 +22,10 @@ ]{tkz-doc} %\usepackage{etoc} \gdef\tkznameofpack{tkz-euclide} -\gdef\tkzversionofpack{4.21c} +\gdef\tkzversionofpack{4.22c} \gdef\tkzdateofpack{\today} \gdef\tkznameofdoc{doc-tkz-euclide} -\gdef\tkzversionofdoc{4.21c} +\gdef\tkzversionofdoc{4.22c} \gdef\tkzdateofdoc{\today} \gdef\tkzauthorofpack{Alain Matthes} \gdef\tkzadressofauthor{} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-news.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-news.tex index 438c869ddfe..6f343a66bd1 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-news.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-news.tex @@ -79,6 +79,8 @@ As a reminder, the following changes have been made previously: \item Correction option isoceles right; +\item Correction of the macro |\tkzMarkAngle|; + \item |\tkzDefMidArc(O,A,B)| gives the middle of the arc center $O$ from $A$ to $B$; diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-pointsSpc.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-pointsSpc.tex index 0aac3cc4990..3755cb8e328 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-pointsSpc.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-pointsSpc.tex @@ -524,8 +524,8 @@ options & default & examples definition \\ \midrule \TOline{through} {}{through = center K1 angle 30 point B]} \TOline{R} {}{R = center K1 angle 30 radius \tkzcname{rAp}} -\TOline{through in rad} {}{through = center K1 angle pi/4 point B]} -\TOline{R} {}{R = center K1 angle pi/6 radius \tkzcname{rAp}} +\TOline{through in rad} {}{through in rad= center K1 angle pi/4 point B]} +\TOline{R in rad} {}{R in rad = center K1 angle pi/6 radius \tkzcname{rAp}} \end{tabular} \medskip diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-presentation.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-presentation.tex index 82241a6392d..e9fc2c6388f 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-presentation.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-presentation.tex @@ -51,7 +51,7 @@ Here are some comparisons between \tkzname{\TIKZ } and \tkzname{\tkznameofpack} Explanation : -The fourth tutorial of the \emph{PgfManual} is about geometric constructions. \emph{T. Tantau} proposes to get the drawing with its beautiful tool Ti\emph{k}Z. Here I propose the same construction with \emph{tkz-elements}. The color of the Ti\emph{k}Z code is green and that of \emph{tkz-elements} is red. +The fourth tutorial of the \emph{PgfManual} is about geometric constructions. \emph{T. Tantau} proposes to get the drawing with its beautiful tool Ti\emph{k}Z. Here I propose the same construction with \emph{tkz-elements}. The color of the Ti\emph{k}Z code is orange and that of \emph{tkz-elements} is red. \medskip diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/tkz-euclide.pdf b/Master/texmf-dist/doc/latex/tkz-euclide/tkz-euclide.pdf Binary files differindex d6d10543be1..075cafbc9c9 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/tkz-euclide.pdf +++ b/Master/texmf-dist/doc/latex/tkz-euclide/tkz-euclide.pdf |