summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/xymtex/xymyl.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/xymtex/xymyl.tex')
-rw-r--r--Master/texmf-dist/doc/latex/xymtex/xymyl.tex2900
1 files changed, 0 insertions, 2900 deletions
diff --git a/Master/texmf-dist/doc/latex/xymtex/xymyl.tex b/Master/texmf-dist/doc/latex/xymtex/xymyl.tex
deleted file mode 100644
index daae2314c7d..00000000000
--- a/Master/texmf-dist/doc/latex/xymtex/xymyl.tex
+++ /dev/null
@@ -1,2900 +0,0 @@
-%xymyl.tex
-%Copyright (C) 1998, Shinsaku Fujita, All rights reserved.
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-%This file is a part of xymtx200.tex that is the manual of the macro
-%package `XyMTeX' (version 2.00) for drawing chemical structural formulas.
-%This file is not permitted to be translated into Japanese and any other
-%languages.
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Introduction}
-
-\section{History}
-\subsection{Version 1.00 (1993)}
-
-The first version of the \XyMTeX{} system (version 1.00, 1993)
-with a detailed on-line manual
-has been depositted to NIFTY-Serve archives (FPRINT library No.\ 7)
-by the author\cite{fujita2a} and to the CTAN by volunteers\cite{fujita2b}.
-The articles on the construction and usage of \XyMTeX{} have appeared in
-Ref. \cite{fujita1,fujita1a}.
-Although the packages (style files) of the \XyMTeX{} system have
-originally aimed at using under
-the \LaTeX{}2.09 system, they also work effectively
-under the \LaTeXe{} system \cite{lamport2,goossens} without any changes. Thus,
-what you have to do is to rewrite a top statement for \LaTeX{}2.09 such as
-\begin{verbatim}
-\documentstyle[epic,carom,hetarom]{article}
-\end{verbatim}
-into the counterpart for \LaTeXe{}, {\em e.g.},
-\begin{verbatim}
-\documentclass{article}
-\usepackage{epic,carom,hetarom}
-\end{verbatim}
-
-\subsection{Version 1.01 (1996)}
-
-The Version 1.01 of the \XyMTeX{} system has been released in 1996,
-when the system with a detailed on-line manual
-was depositted to NIFTY-Serve archives (FPRINT library No.\ 7)
-by the author \cite{fujita2c}. The system is now available
-from Fujita's homepage \cite{fujita2d} via internet
-or from a CD-ROM that is attached to the referece manual published
-in 1997 \cite{XyMTeXbook}.\footnote{%
-The basic items described in the \XyMTeX book are
-common and applied also in Version 2.00.
-Please refer to the \XyMTeX book, when
-they are used without explanations in this manual.}
-
-The purpose of version 1.01 is
-the updating of \XyMTeX{} to meet the \LaTeXe{} way of
-preparing packages (option style files).
-The following items have
-been revised or added for encouraging the \XyMTeX{} users
-to write articles of chemical fields.
-
-\begin{enumerate}
-\item Each of the old sty files of \XyMTeX{} has been rewritten
-into a dtx file, from which we have prepared a new sty file by using
-the {\sf docstrip} utility of \LaTeXe.
-If you want to obtain the document of each source
-file, you may apply \LaTeXe{} to the corresponding drv file, which
-has also been prepared from the dtx file by using the {\sf docstrip}
-utility.
-\item Macros for drawing chair-form cyclohexanes and
-for drawing adamantanes of an alternative type have been added.
-\item Macros for drawing polymers have been added.
-\item The package {\sf chemist.sty}, which was originally
-prepared for \cite{fujita2}, has been rewritten into a dtx file and
-added to \XyMTeX{} as a new component. This package enables us
-to use various functions such as
- \begin{enumerate}
- \item the numbering and cross-reference
- of chemical compounds and derivatives,
- \item various arrows of fixed and flexible length for chemical equations,
- \item `chem' version and chemical environments for describing
- chemical equations, and
- \item various box-preparing macros for chemical or general use.
- \end{enumerate}
-\end{enumerate}
-
-\subsection{Version 1.02 (1998, not released)}
-
-The Version 1.02 of \XyMTeX{} has been devoted to the
-development of the nested-substitution method,
-which simplifies the coding of \XyMTeX{} commands.
-In \XyMTeX{} version 1.01, each subsitituent is assumed to be rather small
-so that it can be specified by means of a substitution list ``SUBSLIST''.
-For example, 1-fluorobenzene,
-\begin{center}
-\bzdrh{4==F}
-\end{center}
-is drawn by the following code:
-\begin{verbatim}
-\bzdrh{4==F}
-\end{verbatim}
-To draw a substituent with a complicated structure,
-a designation of the same line produces an insufficient result.
-Thus, if we simply write the code
-\begin{verbatim}
-\bzdrh{4==\bzdrh{}}
-\end{verbatim}
-to draw a biphenyl structure,
-we have a separate structure as follows:
-
-\vskip1.5\baselineskip
-\begin{center}
-\bzdrh{4==\bzdrh{}}
-\end{center}
-
-Within the scope of \XyMTeX version 1.01,
-such a substituent with a complicated structure
-can be treated by three distinct methods
-(see Chapters 14 and 15 of \XyMTeX book).
-
-\begin{enumerate}
-\item(Method I)
-When we write a code \verb/\bzdrh{4==}\bzdrh{}/
-to draw a biphenyl structure,
-we obtain an insufficient result such as
-\begin{center}
-\bzdrh{4==}\bzdrh{}
-\end{center}
-since each command has an area to draw its target sturucture.
-To remedy this situation, we can write
-\begin{verbatim}
-\bzdrh{4==}\kern-33pt\bzdrh{}
-\end{verbatim}
-Then, we obtain the following structure:
-\begin{center}
-\bzdrh{4==}\kern-33pt\bzdrh{}
-\end{center}
-However, a more complicated adjustment is
-necessary to apply this method to a case in which
-the components of a structual formula are not linearly aligned.
-\item (Method II)
-We can carry out the same task by using
-the \LaTeX{} picture einvironment.
-The code
-\begin{verbatim}
-\begin{picture}(1400,700)(0,0)
-\put(0,0){\bzdrh{4==}}
-\put(546,0){\bzdrh{}}
-\end{picture}
-\end{verbatim}
-produces the following structure:
-\begin{center}
-\begin{picture}(1400,700)(0,0)
-\put(0,0){\bzdrh{4==}}
-\put(546,0){\bzdrh{}}
-\end{picture}
-\end{center}
-This method realizes such a complicated adustment as mentioned above,
-since the \verb/\put/ is capable of putting components at arbitrary positions.
-\item (Method III)
-In a further method of drawing the biphenyl structure,
-one phenyl group is regarded as a substituent of the other phenyl.
-These two parts can be combined by writing a code,
-\begin{verbatim}
-\bzdrh{4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{}}}
-\end{verbatim}
-in which the commands \verb/\kern/ (for horizontal adjustment) and
-\verb/\lower/ (for vertical adjustment) are used to adjust the
-substitution site. Thereby, we have
-\begin{center}
-\bzdrh{4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{}}}
-\end{center}
-This method has a disadvantage of calculating
-adjustment values manually for every formula to be drawn.
-\end{enumerate}
-
-These three methods are useful for drawing complicated structure.
-However, they have an essential disadvantage: their codes give
-no, or at most partial, connectivity data between parts to be combined, though
-such parts appear to be combined as a picture.
-For example, the code
-\begin{verbatim}
-\bzdrh{4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{3==Cl}}}
-\end{verbatim}
-producing
-\begin{center}
-\bzdrh{4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{3==Cl}}}
-\end{center}
-has no connectivity data at the meta position to the chlorine
-atom of the scecond benzene ring.
-
-As clarified by the discussion in the preceding paragraphs,
-the \XyMTeX{} system should have a function to place
-substituents at appropriate sites without complex designation,
-where connectivity data are maintained during the process
-of drawing.
-The target of \XyMTeX{} Version 1.02 is to treat nested
-substitution with the automatic adjustment of subsitution sites
-(named as the nested-substitution method).
-Concretely speaking, for example,
-such a code as
-\begin{verbatim}
-\bzdrh{1==F;4==\bzdrh{1==(yl);3==Cl}}
-\end{verbatim}
-directly produces
-\begin{center}
-\bzdrh{1==F;4==\bzdrh{1==(yl);3==Cl}}
-\end{center}
-where the code shows that the second benzene ring is
-linked to the para position of the first benzene ring
-at the meta position to the chlorine atom.
-Thus the target accomplished by the ``yl''-function,
-as shown in this code.
-
-\section{Version 2.00 (1998)}
-
-The ``yl''-function developed in \XyMTeX{} Version 1.02
-is regarded as a modification of SUSBLISTs.
-As an extention of this mothodology,
-BONDLISTs can be modified to treat ring fusion,
-since each ring fusion is considered to be a kind of
-substitution on a bond. In addition,
-ATOMLIST can also be used to
-treat spiro rings, since each spiro ring
-is a kind of atom replacement at an appropriate vertex.
-
-To expand the scope of the \XyMTeX{} system,
-we introduce several new functions as follows.
-\begin{enumerate}
-\item Several bond modifiers are added to draw
-alternative up- and down-bonds as well as
-to treat ring fusion.
-\item The ``yl''-function for SUBSLISTs is further improved.
-The commands \verb/\ryl/ and \verb/\lyl/ are
-prepared to typeset intervening moieties.
-\item Ring fusion is treated by adding a fusing unit to
-the BONDLIST of each command.
-\item Several fusing units (three- to six-membered units)
-are developed (fusering.sty).
-\item A new function for typesetting a spiro ring is
-introduced in each command for general use.
-A spiro ring is treated by ring-replacement technique,
-where the corresponding code is
-written in the ATOMLIST of each command.
-\item Commands for typeseting zigzag polymethylenes are
-developed (methylen.sty).
-\item Commands for drawing six-six fused carbocycles
-and heterocycles are added.
-\item An optional argument SKBONDLIST is added to
-each command of general use for drawing
-boldfaced and dotted skeletal bonds.
-\item An optional argument OMIT is added to
-each command of general use for drawing related
-skeletons by bond deletion.
-\end{enumerate}
-
-The \XyMTeX{} system (version 2.00) consists of package files
-listed in Table \ref{tt:200a1}.
-The package file `\textsf{chemstr.sty}' is the basic file
-that is automatically read within any other package file of \XyMTeX{}.
-It contains macros for internal use, {\em e.g.},
-common commands for bond-setting and atom-setting.
-The other package files contain macros for users.
-These files are designed to work not only as packages for \LaTeXe
-but also as option style files for \LaTeX{}2.09 (native mode).
-\begin{table}[hpbt]
-\caption{Package Files of \protect\XyMTeX{}}
-\label{tt:200a1}
-\begin{center}
-\begin{tabular}{lp{10cm}}
-\hline
-package name & \multicolumn{1}{c}{included functions} \\
-\hline
-\textsf{aliphat.sty}
- & macros for drawing aliphatic compounds \\
-\textsf{carom.sty}
- & macros for drawing vertical and horizontal types
- of carbocyclic compounds \\
-\textsf{lowcycle.sty}
- & macros for drawing five-or-less-membered carbocyles. \\
-\textsf{ccycle.sty}
- & macros for drawing bicyclic compounds etc. \\
-\textsf{hetarom.sty}
- & macros for drawing vertical types of heterocyclic compounds \\
-\textsf{hetaromh.sty}
- & macros for drawing horizontal types of heterocyclic compounds \\
-\textsf{hcycle.sty}
- & macros for drawing pyranose and furanose derivatives \\
-\textsf{chemstr.sty}
- & basic commands for atom- and bond-typesetting \\
-\textsf{locant.sty}
- & commands for printing locant numeres \\
-\textsf{polymers.sty}
- & commands for drawing polymers \\
-\textsf{fusering.sty}
- & commands for drawing units for ring fusion \\
-\textsf{methylen.sty}
- & commands for drawing zigzag polymethylene chains \\
-\textsf{xymtex.sty}
- & a package for calling all package files \\
-\textsf{chemist.sty}
- & commands for using `chem' version and chemical environments \\
-\hline
-\end{tabular}
-\end{center}
-\end{table}
-
-The use of \textsf{xymtex.sty} calling all package files
-may sometimes cause the ``\TeX{} capacity exceeded'' error.
-In this case, you should call necessary packages distinctly
-by using the \verb/\usepackage/ command.
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Bond Modifiers Added}
-
-\section{Alternative Bond Modifiers for Up and Down Bonds}
-
-In addition to the original bond modifiers (see the \XyMTeX book),
-the present version of \XyMTeX{}
-provides us with several bond modifiers that can be used
-in the argument SUBSLIST of each \XyMTeX{} command.
-These modifiers are listed in Table \ref{tt:200a}
-along with the original bond modifiers.
-
-\begin{table}
-\caption{Locant numbering and bond modifiers for SUBSLIST}
-\label{tt:200a}
-\begin{center}
-\begin{tabular}{lp{12cm}}
-\hline
-Bond Modifiers & \multicolumn{1}{c}{Printed structures} \\
-\hline
-\multicolumn{2}{l}{\bfseries Original Bond Modifiers} \\
- $n$ or $n$S & exocyclic single bond at $n$-atom \\
- $n$D & exocyclic double bond at $n$-atom \\
- $n$A & alpha single bond at $n$-atom \\
- $n$B & beta single bond at $n$-atom \\
- $n$Sa & alpha (not specified) single bond at $n$-atom \\
- $n$Sb & beta (not specified) single bond at $n$-atom \\
- $n$SA & alpha single bond at $n$-atom (dotted line) \\
- $n$SB & beta single bond at $n$-atom (boldface) \\
-\hline
-\multicolumn{2}{l}{\bfseries Bond Modifiers Added} \\
- $n$Sd & alpha single bond at $n$-atom (dotted line)
- with an alternative direction to $n$SA \\
- $n$Su & beta single bond at $n$-atom (boldface)
- with an alternative direction to $n$SB \\
- $n$FA & alpha single bond at $n$-atom (dotted line)
- for ring fusion \\
- $n$FB & beta single bond at $n$-atom (boldface)
- for ring fusion \\
- $n$GA & alpha single bond at $n$-atom (dotted line)
- for the other ring fusion \\
- $n$GB & beta single bond at $n$-atom (boldface)
- for the other ring fusion \\
-\hline
-\end{tabular}
-\end{center}
-\end{table}
-
-The added bond modifiers, `Sd' (d for down) and `Su' (u for up), designate
-$\alpha$- and $\beta$-bonds in such an exchanged
-manner as the original bond modifiers, `SA' and `SB' designate.
-Figure \ref{ff:200a} shows the comparison between
-the added bond modifiers and the original ones
-by using a cyclohexane skeleton (\verb/\cyclohexanev/).
-
-\begin{figure}[h]
-\begin{center}
-\cyclohexanev{1Sd==1Sd;1Su==1Su;%
-2Sd==2Sd;2Su==2Su;3Sd==3Sd;3Su==3Su;%
-4Sd==4Sd;4Su==4Su;5Sd==5Sd;5Su==5Su;%
-6Sd==6Sd;6Su==6Su} \qquad\qquad
-\cyclohexanev{1SA==1SA;1SB==1SB;%
-2SA==2SA;2SB==2SB;3SA==3SA;3SB==3SB;%
-4SA==4SA;4SB==4SB;5SA==5SA;5SB==5SB;%
-6SA==6SA;6SB==6SB}
-\caption{Bond Modifiers for $\alpha$- and $\beta$-Bonds}
-\label{ff:200a}
-\end{center}
-\end{figure}
-
-\section{Bond Modifiers for Ring Fusion}
-
-In the present verstion (2.00), we have added a new function for ring fusion.
-Since the function requires bond modifiers
-for desiginating substitution at such fused positions,
-we have added the modifiers, `FA', `FB', `GA', and `GB'.
-These modifiers are illustrated in Figure \ref{ff:200b}
-
-
-\begin{figure}
-\begin{center}
-\cyclohexanev{1FA==1FA;1GB==1GB;3FA==3FA;3GB==3GB;5FA==5FA;5GB==5GB}
-\qquad\qquad
-\cyclohexanev{1FB==1FB;1GA==1GA;3FB==3FB;3GA==3GS;5FB==5FB;5GA==5GA}
-
-
-\cyclohexanev{2FA==2FA;2GB==2GB;4FA==4FA;4GB==4GB;6FA==6FA;6GB==6GB}
-\qquad\qquad
-\cyclohexanev{2FB==2FB;2GA==2GA;4FB==4FB;4GA==4GA;6FB==6FB;6GA==6GA}
-\caption{Bond Modifiers for Ring Fusion}
-\label{ff:200b}
-\end{center}
-\end{figure}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Nested-Substituent Method}
-
-\section{Introduction}
-
-Chapter 14 (Combining Structures)
-and Chapter 15 (Large Substituents) of the \XyMTeX book
-have described several techniques to draw complicated formulas.
-Among them, the nested-substituent method is most promising.
-For example, the code
-\begin{verbatim}
-\bzdrh{1==Cl;4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{3==F}}}
-\end{verbatim}
-gives a combined structure,
-\begin{center}
-\bzdrh{1==Cl;4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{3==F}}}
-\end{center}
-Although the code shows the connectivity between the two phenyl
-groups, the following disadvantages remain:
-\begin{enumerate}
-\item The code contains no data indicating that the connection site
-is the meta-position concerning the fluorine atom.
-\item The commands \verb/\kern/ (for horizontal adjustment) and
-\verb/\lower/ (for vertical adjustment) are necessary to adjust the
-subsitutution site.
-\end{enumerate}
-
-As clarified by the above examples, the main target of \XyMTeX{}
-Version 2.00 is to extend the nested-substituent method
-so that it provides a function of indicating full connectivity data
-as well as a function of
-automatical adjustment without using such commands
-as \verb/\kern/ and \verb/\lower/.
-
-\section{``yl''-Functions}
-
-In \XyMTeX{} Version 2.00, the ``yl''-function is
-added so as to improve the nested-subsituent method.
-Thereby, any structure drawn by a \XyMTeX{}
-command (except a few special commands)
-can be converted into the corresponding substituent
-by adding the code \verb/(yl)/ with a locant number.
-The resulting code for the substituent can be added
-to the SUBSLIST of any other command for
-drawing a mother skeleton, where the final code
-contains the full connectivity data of the combined structure.
-For example, the code
-\begin{verbatim}
-\bzdrh{1==Cl;4==\bzdrh{1==(yl);3==F}}
-\end{verbatim}
-typesets the following structure,
-\begin{center}
-\bzdrh{1==Cl;4==\bzdrh{1==(yl);3==F}}
-\end{center}
-Thus, fluorobenzene produced by the command \verb/\bzdrh{3==F}/
-is converted into a subsituent, i.e. 3-fluorophenyl,
-by adding the code \verb/(yl)/, as shown in the
-code, \verb/\bzdrh{1==(yl);3==F}/. Then, the resulting code
-is added to the SUBSLIST of another command \verb/\bzdrh/.
-
-The connectivity at the meta-position is
-represented by the statement \verb/1==(yl)/ of
-the innner code \verb/\bzdrh{1==(yl);3==F}/.
-Note that the inner code \verb/\bzdrh{1==(yl);3==F}/ produces
-a substituent with no height and no width and that
-the reference point of the substituent is shifted to
-the point no.~1 by the (yl)-statement in order to
-link to the mother structure (the phenyl group
-produced by the code \verb/\bzdrh{1==Cl;4=={...}}/).
-
-The shift of a reference point becomes clear when
-we examine a formula,
-\begin{center}
-\vspace*{2cm}
-\bzdrh{1==Cl;3==\bzdrh{6==(yl);3==F}}
-\end{center}
-generated by the code,
-\begin{verbatim}
-\bzdrh{1==Cl;3==\bzdrh{6==(yl);3==F}}
-\end{verbatim}
-The original structure of the substituent with no ``yl'' function
-is found to be
-\begin{center}
-\begin{picture}(700,800)(0,0)
-\put(0,0){\bzdrh{3==F}}
-\put(0,0){\circle*{50}}
-\end{picture}
-\end{center}
-as generated by the code
-\begin{verbatim}
-\begin{picture}(700,800)(0,0)
-\put(0,0){\bzdrh{3==F}}
-\put(0,0){\circle*{50}}
-\end{picture}
-\end{verbatim}
-where the solid circle is the reference point.
-The picture shown above
-indicates that the reference point
-is different from any vertices of the benzene ring.
-On the other hand, the code with a ``yl''-function,
-\begin{verbatim}
-\begin{picture}(700,800)(0,-200)
-\put(0,0){\bzdrh{6==(yl);3==F}}
-\put(0,0){\circle*{50}}
-\end{picture}
-\end{verbatim}
-typesets the following structure,
-\begin{center}
-\begin{picture}(700,800)(0,-200)
-\put(0,0){\bzdrh{6==(yl);3==F}}
-\put(0,0){\circle*{50}}
-\end{picture}
-\end{center}
-The picture shown above
-indicates that the reference point is shifted to the position
-no.~6 of the benzene ring.
-
-The code \verb/\bzdrh{1==(yl);3==F}/ producing the substituent
-can be used in the argument of any structure-drawing command
-of \XyMTeX{}. The following example is the one
-in which it is placed in the argument of a command \verb/\bzdrv/.
-Thus, the code
-\begin{verbatim}
-\bzdrv{1==Cl;3==\bzdrh{1==(yl);3==F}}
-\end{verbatim}
-typesets the following structure,
-\begin{center}
-\bzdrv{1==Cl;3==\bzdrh{1==(yl);3==F}}
-\end{center}
-
-The structural formula of 1-chloro-4-morphorinobenzene
-can be drawn in two different ways. The codes,
-\begin{verbatim}
-\bzdrh{1==Cl;4==\sixheteroh[]{1==N;4==O}{1==(yl)}}
-\hskip 6cm
-\sixheteroh[]{1==N;4==O}{1==\bzdrh{1==Cl;4==(yl)}}
-\end{verbatim}
-produce the following formulas:
-\begin{center}
-\bzdrh{1==Cl;4==\sixheteroh[]{1==N;4==O}{1==(yl)}}
-\hskip 6cm
-\sixheteroh[]{1==N;4==O}{1==\bzdrh{1==Cl;4==(yl)}}
-\end{center}
-In the former code,
-the morphorino group is regareded as a substituent,
-as the name ``1-chloro-4-morphori\-nobenzene'' indicates.
-On the other hand, the chlorophenyl group
-is considered to be a substituent in the latter code
-so as to correspond to the name ``N-(4-chlorophenyl)morphorine''.
-
-The ``yl''-function is quite versatile, as indicated by the code,
-\begin{verbatim}
-\decaheterov[]{4a==N}{4D==O;7B==HO;{{10}A}==H;%
-5==\bzdrv{3==OMe;4==OMe;6==Br;1==(yl)}}
-\end{verbatim}
-producing the following structure:
-\begin{center}
-\decaheterov[]{4a==N}{4D==O;7B==HO;{{10}A}==H;%
-5==\bzdrv{3==OMe;4==OMe;6==Br;1==(yl)}}
-\end{center}
-\par\vskip2cm
-\noindent
-where the substituted phenyl group is regarded as a substituent.
-An opposite view can be realized by the code
-\begin{verbatim}
-\bzdrv{3==OMe;4==OMe;6==Br;%
-1==\decaheterov[]{4a==N}{4D==O;7B==HO;{{10}A}==H;5==(yl)}}
-\end{verbatim}
-which typesets the same structure:
-\vskip2cm
-\begin{center}
-\bzdrv{3==OMe;4==OMe;6==Br;%
-1==\decaheterov[]{4a==N}{4D==O;7B==HO;{{10}A}==H;5==(yl)}}
-\end{center}
-where the moiety drawn by the command \verb/\decaheterov/ is
-regarded as a substituent.
-
-Two or more substituents generated by the ``yl''-function
-can be introduced into an ATOMLIST. For example,
-\begin{verbatim}
-\bzdrh{1==\bzdrh{4==(yl)};4==\bzdrh{1==(yl);3==F}}
-\end{verbatim}
-typesets the following structure,
-\begin{center}
-\bzdrh{1==\bzdrh{4==(yl)};4==\bzdrh{1==(yl);3==F}}
-\end{center}
-
-The structural formula of hexaphenylbenzene can be
-drawn by this technique. Thus the code,
-\begin{verbatim}
-\bzdrv{1==\bzdrv{4==(yl)};%
-2==\bzdrv{5==(yl)};3==\bzdrv{6==(yl)};%
-4==\bzdrv{1==(yl)};5==\bzdrv{2==(yl)};%
-6==\bzdrv{3==(yl)}}
-\end{verbatim}
-generates the following formula:
-\begin{center}
-\vspace*{1cm}
-\bzdrv{1==\bzdrv{4==(yl)};%
-2==\bzdrv{5==(yl)};3==\bzdrv{6==(yl)};%
-4==\bzdrv{1==(yl)};5==\bzdrv{2==(yl)};%
-6==\bzdrv{3==(yl)}}
-
-\vspace*{1cm}
-\end{center}
-
-\section{Nested ``yl''-functions}
-
-Two or more ``yl''-functions can be nested.
-For example, a structure
-\begin{center}
-\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)}}
-\end{center}
-depicted by the code,
-\begin{verbatim}
-\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)}}
-\end{verbatim}
-can be converted into a substituent by adding
-``yl''-function, as shown in the following code:
-\begin{verbatim}
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}
-\end{verbatim}
-Then this substituent is nested in the SUBSLIST of
-the command \verb/\cyclohexaneh/ to give a code,
-\begin{verbatim}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\end{verbatim}
-Thereby we have the structural formula of
-benzoylcyclohexane:
-\begin{center}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\end{center}
-
-The resulting structure can be further converted into
-a substituent by adding ``yl''-function. The
-following example shows that the substituent is
-linked to the 4-position of a naphthol ring:
-\begin{center}
-\naphdrh{1==HO;4==%
-\cyclohexaneh[]{1==(yl);4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}}
-\end{center}
-which is typeset by the triply nested code:
-\begin{verbatim}
-\naphdrh{1==HO;4==%
-\cyclohexaneh[]{1==(yl);4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}}
-\end{verbatim}
-The same structural formula can be drawn by regarding
-the 1-naphthol-4-yl group and the benzoyl group as
-substituents, as shown in the following code:
-\begin{verbatim}
-\cyclohexaneh[]{%
-1==\naphdrh{1==HO;4==(yl)};%
-4==\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\end{verbatim}
-Accordingly, we have
-\begin{center}
-\cyclohexaneh[]{%
-1==\naphdrh{1==HO;4==(yl)};%
-4==\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\end{center}
-
-\bigskip
-The structure of benzoylcyclohexane can also be drawn by considering
-the \verb/\tetrahedral/ moiety as a mother skeleton,
-as shown in the code:
-\begin{verbatim}
-\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};2==\cyclohexaneh[]{4==(yl)}}
-\end{verbatim}
-Thereby, we have the formula,
-\begin{center}
-\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};2==\cyclohexaneh[]{4==(yl)}}
-\end{center}
-which shows that
-two or more substituents produced by the ``yl''-function
-can be written in a SUBSLIST.
-This treatment corresponds to the alternative name of
-benzoylcyclohexane, i.e., cyclohexyl phenyl ketone,
-since the codes \verb/\cyclohexaneh{4==(yl)}/ and
-\verb/\bzdrh{1==(yl)}/ represent
-a cyclohexyl and a phenyl group, respectively.
-
-Although
-the resulting structure cannot be used as a substituent concerning
-the cyclohexane ring, the SUBSLIST of the command \verb/\cyclohexaneh/
-is capable of accomodating the substituent \verb/\naphdrh{1==HO;4==(yl)}/
-to give
-\begin{verbatim}
-\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};%
-2==\cyclohexaneh[]{4==(yl);1==\naphdrh{1==HO;4==(yl)}}}
-\end{verbatim}
-which typesets the same structural formula:
-\begin{center}
-\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};%
-2==\cyclohexaneh[]{4==(yl);1==\naphdrh{1==HO;4==(yl)}}}
-
-\vspace*{1cm}
-\end{center}
-
-
-The formula,
-\begin{center}
-\vspace*{2cm}
-\bzdrv{%
-1==\bzdrv{4==(yl);2==\bzdrv{5==(yl)}};%
-2==\bzdrv{5==(yl);3==\bzdrv{6==(yl)}};%
-3==\bzdrv{6==(yl);4==\bzdrv{1==(yl)}};%
-4==\bzdrv{1==(yl);5==\bzdrv{2==(yl)}};%
-5==\bzdrv{2==(yl);6==\bzdrv{3==(yl)}};%
-6==\bzdrv{3==(yl);1==\bzdrv{4==(yl)}}}
-
-\vspace*{2cm}
-\end{center}
-illustrates the more complicated structure of a code
-with nested ``yl''-functions:
-\begin{verbatim}
-\bzdrv{%
-1==\bzdrv{4==(yl);2==\bzdrv{5==(yl)}};%
-2==\bzdrv{5==(yl);3==\bzdrv{6==(yl)}};%
-3==\bzdrv{6==(yl);4==\bzdrv{1==(yl)}};%
-4==\bzdrv{1==(yl);5==\bzdrv{2==(yl)}};%
-5==\bzdrv{2==(yl);6==\bzdrv{3==(yl)}};%
-6==\bzdrv{3==(yl);1==\bzdrv{4==(yl)}}}
-\end{verbatim}
-
-To simplify the coding, we define a macro
-drawing a biphenyl unit as follows:
-\begin{verbatim}
-\def\biph#1#2#3{\bzdrv{#1==(yl);#2==\bzdrv{#3==(yl)}}}
-\end{verbatim}
-Then, this macro is used in the SUBSLIST of \verb/\bzdrv/
-to give the code,
-\begin{verbatim}
-\bzdrv{%
-1==\biph{4}{2}{5};%
-2==\biph{5}{3}{6};%
-3==\biph{6}{4}{1};%
-4==\biph{1}{5}{2};%
-5==\biph{2}{6}{3};%
-6==\biph{3}{1}{4}}
-\end{verbatim}
-Thereby, we have
-\begin{center}
-\vspace*{2cm}
-\def\biph#1#2#3{\bzdrv{#1==(yl);#2==\bzdrv{#3==(yl)}}}
-\bzdrv{%
-1==\biph{4}{2}{5};%
-2==\biph{5}{3}{6};%
-3==\biph{6}{4}{1};%
-4==\biph{1}{5}{2};%
-5==\biph{2}{6}{3};%
-6==\biph{3}{1}{4}}
-
-\vspace*{2cm}
-\end{center}
-
-A more complex nested code,
-
-\begin{verbatim}
-\vspace*{8cm}
-\bzdrv{%
-1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);%
-3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);4==\bzdrv{1==(yl);%
-4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);5==\bzdrv{2==(yl);%
-5==\bzdrv{2==(yl)}}}}}}}}}};%
-2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);%
-4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);5==\bzdrv{2==(yl);%
-5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);6==\bzdrv{3==(yl);%
-6==\bzdrv{3==(yl)}}}}}}}}}};%
-3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);%
-5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);6==\bzdrv{3==(yl);%
-6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);1==\bzdrv{4==(yl);%
-1==\bzdrv{4==(yl)}}}}}}}}}};%
-4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);%
-6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);1==\bzdrv{4==(yl);%
-1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);2==\bzdrv{5==(yl);%
-2==\bzdrv{5==(yl)}}}}}}}}}};%
-5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);%
-1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);2==\bzdrv{5==(yl);%
-2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);3==\bzdrv{6==(yl);%
-3==\bzdrv{6==(yl)}}}}}}}}}};%
-6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);%
-2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);3==\bzdrv{6==(yl);%
-3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);4==\bzdrv{1==(yl);%
-4==\bzdrv{1==(yl)}}}}}}}}}}}
-\end{verbatim}
-produces the following formula:
-
-\clearpage%to avoid ! TeX capacity exceeded
-
-\begin{center}
-\vspace*{8cm}
-\bzdrv{%
-1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);%
-3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);4==\bzdrv{1==(yl);%
-4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);5==\bzdrv{2==(yl);%
-5==\bzdrv{2==(yl)}%
-}}}%
-}}}%
-}}};%
-2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);%
-4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);5==\bzdrv{2==(yl);%
-5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);6==\bzdrv{3==(yl);%
-6==\bzdrv{3==(yl)}%
-}}}%
-}}}%
-}}};%
-3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);%
-5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);6==\bzdrv{3==(yl);%
-6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);1==\bzdrv{4==(yl);%
-1==\bzdrv{4==(yl)}%
-}}}%
-}}}%
-}}};%
-4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);%
-6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);1==\bzdrv{4==(yl);%
-1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);2==\bzdrv{5==(yl);%
-2==\bzdrv{5==(yl)}%
-}}}%
-}}}%
-}}};%
-5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);%
-1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);2==\bzdrv{5==(yl);%
-2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);3==\bzdrv{6==(yl);%
-3==\bzdrv{6==(yl)}%
-}}}%
-}}}%
-}}};%
-6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);%
-2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);3==\bzdrv{6==(yl);%
-3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);4==\bzdrv{1==(yl);%
-4==\bzdrv{1==(yl)}%
-}}}%
-}}}%
-}}}}
-\end{center}
-
-\clearpage
-
-The code to draw this structural formula is
-too complicated to cause the ``\TeX{} capacity exceeded'' error.
-To avoid the error, we use \verb/\clearpage/ commands before
-and after the output of the formula.
-In addition, we call only necessary packages
-to treat this cocument without the use of \textsf{xymtex.sty}
-calling all package files.
-
-\section{Remarks}
-\subsection{Drawing Domains}
-Substituents produced by the ``yl''-function have no dimensions.
-For example, benzoylcyclohexane
-\begin{center}
-\fbox{%
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}%
-}
-\end{center}
-produced by the code
-\begin{verbatim}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\end{verbatim}
-has a drawing domain around the cyclohexane mother skeleton,
-as encircled by a frame. Since the bezoyl moiety occupies no area,
-it may be superimposed on other contexts
-so as to require some space adjustments.
-For example, the above code duplicated without
-any space adjustment,
-\begin{verbatim}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}%
-\end{verbatim}
-gives an insufficient result:
-\begin{center}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}%
-\end{center}
-This superposition can be avoided by a horizontal spacing. Thus
-the code
-\begin{verbatim}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\hskip2cm
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}%
-\end{verbatim}
-typesets improved formulas:
-\begin{center}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\hskip2cm
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}%
-\end{center}
-
-If a more thorough adjustment is required,
-a formula should be placed in a \LaTeX{} picture environment
-as follows.
-\begin{verbatim}
-\begin{picture}(1600,900)(0,0)
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\end{picture}
-\end{verbatim}
-This code produces
-\begin{center}
-\fbox{%
-\begin{picture}(1600,900)(0,0)
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\end{picture}
-}
-\end{center}
-where a frame is added by means of a \verb/\fbox/ command.
-
-A drawing domain around a formula depends upon a mother skeleton
-selected. For example, the formula of benzoylcyclohexane at the top
-of this section has a drawing domain shown by the frame, since
-a \verb/\cyclohexaneh/ is selected as a mother skeleton.
-On the other hand, the alternative formula
-of benzoylcyclohexane depicted by the code,
-\begin{verbatim}
-\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};2==\cyclohexaneh[]{4==(yl)}}
-\end{verbatim}
-has a drawing domain due to the \verb/\tetrahedral/ skeleton.
-Thus, the code gives the following output:
-\begin{center}
-\fbox{%
-\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};2==\cyclohexaneh[]{4==(yl)}}
-}
-\end{center}
-where the frame indicates such a drawing domain,
-when an \verb/\fbox/ command is used around
-the \verb/\tetrahedral/ command.
-The domain shown by the frame (due to \verb/\fbox/) is equal to
-any domain based on the simple use of the \verb/\tetrahedral/ command
-(without using the ``yl''-function).
-For example, compare the above frame with the one
-appearing in the formula,
-\begin{center}
-\fbox{\tetrahedral{0==C;1D==O;4==Cl;2==Cl}}
-\end{center}
-depicted by the code,
-\begin{verbatim}
-\fbox{\tetrahedral{0==C;1D==O;4==Cl;2==Cl}}
-\end{verbatim}
-
-\subsection{Reference Points}
-
-Each \XyMTeX{} command for drawing a mother skeleton
-has its reference point and its inner reference point.
-These points can be printed out by switching
-\verb/\origpt/ on. For example, the code
-\begin{verbatim}
-{
-\origpttrue
-\cyclohexanev{}
-}
-\end{verbatim}
-generates the diagram:
-\begin{center}
-{
-\origpttrue
-\cyclohexanev{}
-}
-\end{center}
-where the solid circle indicates the reference point (0,0) and
-the open circle indicates the inner reference point (400,240).
-The values of cooridates are output on a display and in a log file:
-\begin{verbatim}
-command `sixheterov' origin: (0,0) ---> (400,240)
-\end{verbatim}
-since \verb/\cyclohexanev/ is based on \verb/\sixheterov/.
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Linking Units}
-
-The commands \verb/\ryl/ and \verb/\lyl/ described
-in this chapter are added to
-the {\sf chemstr} package (file name: chemstr.sty).
-The \verb/\divalenth/ command is added to
-the {\sf aliphat} package (file name: aliphat.sty).
-
-\section{$\backslash$ryl command}.
-
-The ``yl''-function provides us with
-a tool to generate a substituent that
-is linked {\itshape directly} to a substitution site
-of a mother skeleton. There are, however,
-many cases in which a substituent
-is linked to a substitution site by an intervening unit
-(e.g., O, SO$_{2}$ and NH).
-The command \verb/\ryl/ is used to
-generate a right-hand substituent with a linking unit.
-For example, the code
-\begin{verbatim}
-\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}
-\end{verbatim}
-produces a benzenesulfonamido substituent,
-\bigskip
-\begin{center}
-\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}
-
-\vspace*{1cm}
-\end{center}
-The resulting unit is added to the SUBSLIST of
-a command for drawing a skeletal command.
-For example, the code
-\begin{verbatim}
-\bzdrh{3==\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}}
-\end{verbatim}
-generates the following formula:
-\begin{center}
-\vspace*{1cm}
-\bzdrh{3==\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}}
-\end{center}
-
-The \verb/\ryl/ command takes two arguments.
-\begin{verbatim}
-\ryl(LINK){GROUP}
-\end{verbatim}
-The first argument LINK in the parentheses indicates
-an intervening unit with an integer showing
-the slope of a left incidental bond.
-For example, the number 5 of the code \verb/5==NH--SO$_{2}$/
-shown above represents that the left terminal is to be linked
-through $(-5,-3)$ bond, though the linking bond
-is not typeset by the \verb/\ryl/ command only.
-The slopes of the linking bonds are designated by
-integers between 0 and 8:
-\begin{center}
-\begin{tabular}{cc|cc|cc}
-0 & $(0,1)$ & 1 & $(-3,5)$ & 2 & $(-1,1)$ \\
-3 & $(-5,3)$ & 4 & $(-1,0)$ & 5 & $(-5,-3)$ \\
-6 & $(-1,-1)$ & 7 & $(-3,-5)$ & 8 & $(0,-1)$ \\
-\end{tabular}
-\end{center}
-
-The second argument GROUP of \verb/\ryl/ is
-a substituent produced by a ``yl''-function,
-where a number before a delimiter (==) indicates
-the slope of a right incidental bond.
-For example, the number 4 of the code
-\verb/4==\bzdrh{1==(yl)}/ shown above
-represents that the right terminal is to be linked
-through $(1,0)$ bond to the benzene ring generated by
-the \verb/\bzdrh/ command.
-The slopes of the linking bonds are designated by
-integers between 0 and 8:
-\begin{center}
-\begin{tabular}{cc|cc|cc}
-0 & $(0,1)$ & 1 & $(3,5)$ & 2 & $(1,1)$ \\
-3 & $(5,3)$ & 4 & $(1,0)$ & 5 & $(5,-3)$ \\
-6 & $(1,-1)$ & 7 & $(3,-5)$ & 8 & $(0,-1)$ \\
-\end{tabular}
-\end{center}
-
-To illustrate linking bonds with various slopes,
-the code
-\begin{verbatim}
-\cyclohexanev[]{%
-1==\ryl(8==NH--SO$_{2}$){1==\bzdrh{6==(yl)}};
-2==\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};
-3==\ryl(3==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};%
-4==\ryl(0==NH--SO$_{2}$){7==\bzdrh{2==(yl)}}}
-\end{verbatim}
-is written to give
-
-\vspace*{2cm}
-\begin{center}
-\cyclohexanev[]{%
-1==\ryl(8==NH--SO$_{2}$){1==\bzdrh{6==(yl)}};
-2==\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};
-3==\ryl(3==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};%
-4==\ryl(0==NH--SO$_{2}$){7==\bzdrh{2==(yl)}}}
-\end{center}
-\vspace*{2cm}
-
-Other examples are drawn by the code
-\begin{verbatim}
-\cyclohexaneh[]{%
-3==\ryl(7==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};
-5==\ryl(1==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};%
-4==\ryl(4==NH--SO$_{2}$--NH){4==\bzdrh{1==(yl)}}}
-\end{verbatim}
-giving
-\vspace*{1cm}
-\begin{center}
-\cyclohexaneh[]{%
-3==\ryl(7==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};
-5==\ryl(1==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};%
-4==\ryl(4==NH--SO$_{2}$--NH){4==\bzdrh{1==(yl)}}}
-\end{center}
-\vspace*{1cm}
-
-The first argument in the parentheses of the
-command \verb/\ryl/ contains a string of letters
-after an intermediate delimiter ==, where
-a left linking site is shifted according to the
-length of the letter string.
-The above formula shows such an example
-as having NH--SO$_{2}$--NH.
-
-
-The following examples compare the
-``yl''-function with the \verb/\ryl/ command.
-\begin{verbatim}
-\cyclohexaneh{4==\bzdrh{1==(yl)}}
-\hskip2cm
-\cyclohexaneh{4==\ryl(4==O){4==\bzdrh{1==(yl)}}}
-\end{verbatim}
-
-\begin{center}
-\cyclohexaneh{4==\bzdrh{1==(yl)}}
-\hskip2cm
-\cyclohexaneh{4==\ryl(4==O){4==\bzdrh{1==(yl)}}}
-\end{center}
-
-The compound {\bfseries 21}
-on page 299 of the \XyMTeX book
-%``\XyMTeX{}---Typesetting Chemical
-%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997)
-can be alternatively drawn by using
-the \verb/\ryl/ command, as shown in the code:
-\begin{verbatim}
-\fiveheterov[d]{1==N;5==N}{4==NC;1==\bzdrv{1==(yl)};2D==O;%
-3D==\ryl(5==N-NH){4==\bzdrh{1==(yl);2==\lmoiety{MeO};5==SO$_{2}$Cl}}}
-\end{verbatim}
-which typeset the following formula:
-\begin{center}
-\vspace*{1cm}
-\fiveheterov[d]{1==N;5==N}{4==NC;1==\bzdrv{1==(yl)};2D==O;%
-3D==\ryl(5==N-NH){4==\bzdrh{1==(yl);2==\lmoiety{MeO};5==SO$_{2}$Cl}}}
-
-\vspace*{2cm}
-\end{center}
-
-The first argument of the \verb/\ryl/ is optional; i.e., it can be
-omitted. Such an omitted case is useful to draw a methylene as
-a vertex. For example, a methylene is represented as
-a character string ``CH$_{2}$'', as shown in the formula,
-\begin{center}
-\sixheterov[d]{2==S}{5==\null;%
-3==\ryl(3==CH$_{2}$){3==\sixheterov[d]{2==S}{5==(yl)}}}
-\end{center}
-This formula is generated by the code,
-\begin{verbatim}
-\sixheterov[d]{2==S}{5==\null;%
-3==\ryl(3==CH$_{2}$){3==\sixheterov[d]{2==S}{5==(yl)}}}
-\end{verbatim}
-where the \verb/\ryl/ command takes an optional argument
-in parentheses to draw CH$_{2}$ exciplicitly.
-Such a methylene can alternatively be represented as a simple vertex,
-as shown in the formula,
-\begin{center}
-\sixheterov[d]{2==S}{5==\null;%
-3==\ryl{3==\sixheterov[d]{2==S}{5==(yl)}}}
-\end{center}
-This formula is generated by the code,
-\begin{verbatim}
-\sixheterov[d]{2==S}{5==\null;%
-3==\ryl{3==\sixheterov[d]{2==S}{5==(yl)}}}
-\end{verbatim}
-where the \verb/\ryl/ command takes no optional argument.
-
-The second argument of the \verb/\ryl/ command can
-accomodate substituents other than a substituent
-generated by the ``yl'' function. For example,
-the inner code \verb/\ryl{0A==Me;...}/ in the code,
-\begin{verbatim}
-\sixheterov({bB}{eA}){3==O;5==O}{1A==Me;4Sa==\null;4Sb==\null;%
-6==\pentamethylenei[a]{}{4B==OH;5B==Me;5==(yl)};%
-2==\ryl{0A==Me;5==\sixheterov({eA}){3==O;5==O}{6==(yl);1B==Me;%
-4Sa==\null;4Sb==\null}}}
-\end{verbatim}
-represents a methyl group on a vertex due to the command \verb/\ryl/.
-Thereby, we have
-\begin{center}
-\vspace*{1cm}
-\sixheterov({bB}{eA}){3==O;5==O}{1A==Me;4Sa==\null;4Sb==\null;%
-6==\pentamethylenei[a]{}{4B==OH;5B==Me;5==(yl)};%
-2==\ryl{0A==Me;5==\sixheterov({eA}){3==O;5==O}{6==(yl);1B==Me;%
-4Sa==\null;4Sb==\null}}}
-
-\vspace*{1cm}
-\end{center}
-
-
-
-\section{$\backslash$lyl command}
-
-The command \verb/\lyl/ is the left-hand
-counterpart of the command \verb/\ryl/.
-\begin{verbatim}
-\lyl(LINK){GROUP}
-\end{verbatim}
-The slopes of the linking bonds
-concerning the right terminal are designated by
-integers between 0 and 8:
-\begin{center}
-\begin{tabular}{cc|cc|cc}
-0 & $(0,1)$ & 1 & $(3,5)$ & 2 & $(1,1)$ \\
-3 & $(5,3)$ & 4 & $(1,0)$ & 5 & $(5,-3)$ \\
-6 & $(1,-1)$ & 7 & $(3,-5)$ & 8 & $(0,-1)$ \\
-\end{tabular}
-\end{center}
-The slopes of the linking bonds concerning
-the left terminal are designated by
-integers between 0 and 8:
-\begin{center}
-\begin{tabular}{cc|cc|cc}
-0 & $(0,1)$ & 1 & $(-3,5)$ & 2 & $(-1,1)$ \\
-3 & $(-5,3)$ & 4 & $(-1,0)$ & 5 & $(-5,-3)$ \\
-6 & $(-1,-1)$ & 7 & $(-3,-5)$ & 8 & $(0,-1)$ \\
-\end{tabular}
-\end{center}
-
-To illustrate linking bonds with various slopes,
-the code
-\begin{verbatim}
-\cyclohexanev[]{%
-1==\lyl(8==SO$_{2}$--HN){1==\bzdrh{5==(yl)}};%
-6==\lyl(5==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
-5==\lyl(3==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
-4==\lyl(0==SO$_{2}$--HN){7==\bzdrh{3==(yl)}}}
-\end{verbatim}
-is written to give
-
-
-\vspace*{2cm}
-\begin{center}
-\cyclohexanev[]{%
-1==\lyl(8==SO$_{2}$--HN){1==\bzdrh{5==(yl)}};%
-6==\lyl(5==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
-5==\lyl(3==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
-4==\lyl(0==SO$_{2}$--HN){7==\bzdrh{3==(yl)}}}
-\end{center}
-\vspace*{2cm}
-
-Other examples are drawn by the code
-\begin{verbatim}
-\cyclohexaneh[]{%
-2==\lyl(7==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};
-6==\lyl(1==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
-1==\lyl(4==NH--SO$_{2}$--HN){4==\bzdrh{4==(yl)}}}
-\end{verbatim}
-giving
-\vspace*{1cm}
-\begin{center}
-\cyclohexaneh[]{%
-2==\lyl(7==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};
-6==\lyl(1==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
-1==\lyl(4==NH--SO$_{2}$--NH){4==\bzdrh{4==(yl)}}}
-\end{center}
-\vspace*{1cm}
-
-The first argument in the parentheses of the
-command \verb/\lyl/ contains a string of letters
-after an intermediate delimiter ==, where
-a left linking site is shifted according to the
-length of the letter string.
-The above formula shows such an example
-as having NH--SO$_{2}$--NH.
-
-The structural formula of adonitoxin,
-which has once been depicted in a different way
-in Chapter 15 of the \XyMTeX book
-%``\XyMTeX{}---Typesetting Chemical
-%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997)
-can be obtained by the code,
-\begin{verbatim}
-\steroid{{{10}}==\lmoiety{OHC};{{14}}==OH;%
-{{13}}==\lmoiety{H$_{3}$C};{{16}}==OH;%
-{{17}}==\fiveheterov[e]{3==O}{4D==O;1==(yl)};%
-3==\lyl(3==O){8==%
-\pyranose{1Sb==(yl);1Sa==H;2Sb==H;2Sa==OH;3Sb==H;3Sa==OH;4Sb==HO;%
-4Sa==H;5Sb==H;5Sa==CH$_{3}$}}}
-\end{verbatim}
-
-\begin{quotation}
-\vspace*{1cm}
-\hspace*{4cm}
-\steroid{{{10}}==\lmoiety{OHC};{{14}}==OH;%
-{{13}}==\lmoiety{H$_{3}$C};{{16}}==OH;%
-{{17}}==\fiveheterov[e]{3==O}{4D==O;1==(yl)};%
-3==\lyl(3==O){8==%
-\pyranose{1Sb==(yl);1Sa==H;2Sb==H;2Sa==OH;3Sb==H;3Sa==OH;4Sb==HO;%
-4Sa==H;5Sb==H;5Sa==CH$_{3}$}}}
-\end{quotation}
-
-\vskip1cm
-
-
-\section{Nested $\backslash$ryl and $\backslash$lyl commands}
-
-Two or more \verb/\ryl/ and \verb/\lyl/ commands can be nested.
-Let us illustrate nesting processes by drawing a cyan
-dye releaser, which has once been depicted in different ways
-(see Chapters 14 and 15 of the \XyMTeX book).
-%in ``\XyMTeX{}---Typesetting Chemical
-%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997)).
-
-\vspace*{1cm}
-\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
-2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);%
-5==\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;%
-8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}}}}}}
-
-\vskip3cm
-First, the code
-\begin{verbatim}
-\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\null}}
-\end{verbatim}
-generates a substituent:
-\begin{quotation}
-\vspace*{1cm}
-\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\null}}
-
-\vspace*{1cm}
-\end{quotation}
-in which the command \verb/\null/ is used to show a further
-substitution site. The resulting substituent is
-nested in the SUBSLIT of another \verb/\bzdrv/ command
-as shown in the code:
-\begin{verbatim}
-\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
-2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\null}}}
-\end{verbatim}
-Thereby we have
-\begin{quotation}
-\vskip1cm
-\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
-2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\null}}}
-\end{quotation}
-
-\vskip1cm \noindent
-The inner code \verb/5==\null/ is replaced by a further
-code of substitution:
-\begin{verbatim}
-5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);5==\null}}%
-\end{verbatim}
-to give a code,
-\begin{verbatim}
-\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
-2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);5==\null}}%
-}}}
-\end{verbatim}
-This code generates the following structure (Formula A):
-\begin{quotation}
-\vskip1cm
-\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
-2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);%
-5==\null}}}}}
-\end{quotation}
-
-\vskip1cm
-Another substituent is typeset by the code,
-\begin{verbatim}
-\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;%
-8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}
-\end{verbatim}
-Then, we have a substituent (Formula B):
-\begin{quotation}
-\vskip1cm
-\hspace*{4cm}\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;%
-8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}
-\end{quotation}
-
-\vspace{3cm}
-Finally, the inner code \verb/5==\null/ for Formula A is replaced
-by the code for Formula B
-in order to combine Formula A with Formula B.
-Then we obtain a code represented by
-\begin{verbatim}
-\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
-2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);%
-5==\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;%
-8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}}}}}}
-\end{verbatim}
-Thereby, we have a target formula:
-
-\vspace*{1cm}
-\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
-2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);%
-5==\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;%
-8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}}}}}}
-
-\vskip3cm
-
-The structural formula of adonitoxin,
-which has benn drawn by considering the steroid nucleus to be
-a mother skeleton in the preceding subsection,
-can be alternatively drawn by nesting
-a ``yl''-function and a \verb/\ryl/ command.
-In this case, the pyranose ring is regarded as a mother skeleton.
-Thus, the code
-\begin{verbatim}
-\pyranose{1Sa==H;2Sb==H;2Sa==OH;3Sb==H;3Sa==OH;4Sb==HO;%
-4Sa==H;5Sb==H;5Sa==CH$_{3}$;%
-1Sb==\ryl(8==O){3==%
-\steroid{3==(yl);{{10}}==\lmoiety{OHC};{{14}}==OH;%
-{{13}}==\lmoiety{H$_{3}$C};{{16}}==OH;%
-{{17}}==\fiveheterov[e]{3==O}{4D==O;1==(yl)}}}}
-\end{verbatim}
-typesets the following formula:
-\begin{quotation}
-\vspace*{4cm}
-\pyranose{1Sa==H;2Sb==H;2Sa==OH;3Sb==H;3Sa==OH;4Sb==HO;%
-4Sa==H;5Sb==H;5Sa==CH$_{3}$;%
-1Sb==\ryl(8==O){3==%
-\steroid{3==(yl);{{10}}==\lmoiety{OHC};{{14}}==OH;%
-{{13}}==\lmoiety{H$_{3}$C};{{16}}==OH;%
-{{17}}==\fiveheterov[e]{3==O}{4D==O;1==(yl)}}}}
-\end{quotation}
-
-\section{$\backslash$divalenth command}
-
-The command \verb/\divalenth/ generates a divalent skeleton
-with variable length.
-\begin{verbatim}
-\divalenth{GROUP}{SUBSLIST}
-\end{verbatim}
-The divalent skeleton is given by
-a string of alphabets in the GROUP argument.
-The locant number in the GROUP argument is fixed to be zero.
-For example, the code
-\begin{verbatim}
-\divalenth{0==NHCONH}{1==CH$_{3}$;2==CH$_{3}$}
-\end{verbatim}
-generates a linear formula:
-\begin{center}
-\divalenth{0==NHCONH}{1==CH$_{3}$;2==CH$_{3}$}
-\end{center}
-
-4,4$^{\prime}$-Methylenedibenzoic acid can be drawn in the same line.
-The code
-\begin{verbatim}
-\divalenth{0==CH$_{2}$}{1==\bzdrh{4==(yl);1==HOOC};2==\bzdrh{1==(yl);4==COOH}}
-\end{verbatim}
-generates
-\begin{center}
-\divalenth{0==CH$_{2}$}{1==\bzdrh{4==(yl);1==HOOC};2==\bzdrh{1==(yl);4==COOH}}
-\end{center}
-
-In place of the CH$_{2}$ unit described in the preceding example,
-we introduce the O--CH$_{2}$--O unit so as to give
-4,4$^{\prime}$-methylenedioxydibenzoic acid. The structurel formula
-can be drawn to be
-\begin{center}
-\divalenth{0==O--CH$_{2}$--O}%
-{1==\bzdrh{4==(yl);1==HOOC};2==\bzdrh{1==(yl);4==COOH}}
-\end{center}
-by means of the code:
-\begin{verbatim}
-\divalenth{0==O--CH$_{2}$--O}%
-{1==\bzdrh{4==(yl);1==HOOC};2==\bzdrh{1==(yl);4==COOH}}
-\end{verbatim}
-Note that the starting point of the moiety
-generated by the code \verb/2==\bzdrh{1==(yl);4==COOH}/ is
-automatically shifted so as to accomodate the O--CH$_{2}$--O unit.
-
-
-An additional example of the use of the \verb/\divalenth/ command
-is the drawing of
-1,6$^{\prime}$-ureylenedi-2-naphthalenesulfonic acid
-\begin{quotation}
-\vspace*{2cm}\hspace*{4cm}
-\divalenth{0==NH--CO--NH}%
-{1==\naphdrh{4==(yl);3==SO$_{3}$H};2==\naphdrv{6==(yl);2==SO$_{3}$H}}
-
-\vspace*{2cm}
-\end{quotation}
-by means of the code
-\begin{verbatim}
-\divalenth{0==NH--CO--NH}%
-{1==\naphdrh{4==(yl);3==SO$_{3}$H};2==\naphdrv{6==(yl);2==SO$_{3}$H}}
-\end{verbatim}
-
-
-$p$-[2-($m$-Carboxyphenoxy)ethyl]benzoic acid is
-drawn by the code
-\begin{verbatim}
-\divalenth{0==O--CH$_{2}$--CH$_{2}$}%
-{1==\bzdrh{4==(yl);6==COOH};2==\bzdrh{1==(yl);4==COOH}}
-\end{verbatim}
-which generates a formula:
-\begin{center}
-\divalenth{0==O--CH$_{2}$--CH$_{2}$}%
-{1==\bzdrh{4==(yl);6==COOH};2==\bzdrh{1==(yl);4==COOH}}
-
-\vspace*{1cm}
-\end{center}
-The same structure can be depicted by applying
-the ``yl''-function to the \verb/\divalenth/ command.
-The code
-\begin{verbatim}
-\bzdrh{6==COOH;4==%
-\divalenth{0==O--CH$_{2}$--CH$_{2}$}{1==(yl);2==\bzdrh{1==(yl);4==COOH}}}
-\end{verbatim}
-generates the same formula:
-\begin{center}
-\bzdrh{6==COOH;4==%
-\divalenth{0==O--CH$_{2}$--CH$_{2}$}{1==(yl);2==\bzdrh{1==(yl);4==COOH}}}
-
-\vspace*{1cm}
-\end{center}
-This type of usage gives an equivalent function of
-the command \verb/\ryl/ or \verb/\lyl/. Compare this with
-an example using the \verb/\ryl/ command:
-\begin{verbatim}
-\bzdrh{6==COOH;4==%
-\ryl(4==O--CH$_{2}$--CH$_{2}$){4==\bzdrh{1==(yl);4==COOH}}}
-\end{verbatim}
-This code gives the same formula:
-\begin{center}
-\bzdrh{6==COOH;4==%
-\ryl(4==O--CH$_{2}$--CH$_{2}$){4==\bzdrh{1==(yl);4==COOH}}}
-\end{center}
-
-\section{Remarks}
-
-The use of \verb/\divalenth/ with a ``yl''-function has
-no means of adjusting the left-hand point of linking.
-For example, the code,
-\begin{verbatim}
-\bzdrv{2==COOH;4==%
-\divalenth{0==O--CH$_{2}$--CH$_{2}$}{1==(yl);2==\bzdrh{1==(yl);4==COOH}}}
-\end{verbatim}
-give an insufficient formula:
-\begin{center}
-\bzdrv{2==COOH;4==%
-\divalenth{0==O--CH$_{2}$--CH$_{2}$}{1==(yl);2==\bzdrh{1==(yl);4==COOH}}}
-
-\vspace*{1cm}
-\end{center}
-where the left-hand point of linking should be shifted to
-a more appropiate direction. On the other hand,
-the \verb/\ryl/ (or \verb/\lyl/) command can correctly
-specify the left-hand point of linking. Thus the code,
-\begin{verbatim}
-\bzdrv{2==COOH;4==%
-\ryl(0==O--CH$_{2}$--CH$_{2}$){4==\bzdrh{1==(yl);4==COOH}}}
-\end{verbatim}
-typesets a formula:
-\begin{center}
-\bzdrv{2==COOH;4==%
-\ryl(0==O--CH$_{2}$--CH$_{2}$){4==\bzdrh{1==(yl);4==COOH}}}
-
-\vspace*{1cm}
-\end{center}
-where the code \verb/0==O--CH$_{2}$--CH$_{2}$/ specifies
-the left-hand terminal of the unit O--CH$_{2}$--CH$_{2}$
-is linked at the upper point of the oxygen atom.
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Ring Fusion}
-
-\section{Ring Fusion on Carbocyclic Compounds}
-\subsection{Designation of Fused Bonds}
-
-A unit to be fused is written in the BONDLIST of a command with
-a bond specifier (a lowercase or uppercase alphabet).
-For example, the code
-\begin{verbatim}
-\hanthracenev[{A\sixfusev{}{}{d}}]{}
-\end{verbatim}
-gives a perhydroanthracene with a fused six-membered ring
-at the bond `a' of the perhydroanthracene nucleus:
-\begin{quotation}
-\vskip1cm
-\hanthracenev[{A\sixfusev{}{}{d}}]{}
-\end{quotation}
-The letter `A' of the code
-\verb/{A\sixfusev{}{}{d}}/ is a bond specifier that represents
-the older terminal of the bond `a' of the
-perhydroanthracene nucleus
-(For the designation of the bonds of perhydroanthracene,
-see Chapter 5 of the \XyMTeX book.%
-%``\XyMTeX{}---Typesetting Chemical
-%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997).%
-\footnote{%
-The word `older' or `younger' is concerned with the order of numbering
-of vertices. For a six-membered ring, the numbering
-1---2---3---4---5---6---1 shows that
-the terminal 1 of the
-bond `a' (1---2) is youger, while the terminal 2 of the bond
-`a' is older. It should be noted that the terminal 6 of the
-bond `f' (6---1) is youger, while the terminal 1 of the bond
-`f' is older.}
-Note that the younger
-terminal of the bond `a' is designated by the letter `a'.
-On the other hand,
-the code \verb/\sixfusev{}{}{d}/ of \verb/{A\sixfusev{}{}{d}}/
-in the BONDLIST represents the fused six-membered ring
-with the bond `d' omitted. The letter `d' indicates
-that the fusing point of the unit is the youger terminal
-of the omitted bond `d'. If the the fusing point of the unit
-is the other (older) terminal, the
-corresponding uppercase letter `D' should be used.
-
-Accordingly, the same formula can be drawn by the
-code exchanging uppercase and lowercase letters,
-\begin{verbatim}
-\hanthracenev[{a\sixfusev{}{}{D}}]{}
-\end{verbatim}
-Thereby, we have
-\begin{quotation}
-\vskip1cm
-\hanthracenev[{a\sixfusev{}{}{D}}]{}
-\end{quotation}
-
-Two or more rings can be fused. For example,
-the code
-\begin{verbatim}
-\hanthracenev[{A\sixfusev{}{}{d}}{C\sixfusev{}{}{f}}]{}
-\end{verbatim}
-generates a formula with two fused rings at the
-bonds `a' and `c' of a perhydroanthracene nucleus.
-\begin{quotation}
-\vskip1cm
-\hanthracenev[{A\sixfusev{}{}{d}}{C\sixfusev{}{}{f}}]{}
-
-\vskip1cm
-\end{quotation}
-
-The BONDLIST can accomodates usual bond specifiers without
-a fusing unit in order to designate inner double bonds.
-For example, the code
-\begin{verbatim}
-\hanthracenev[aco{A\sixfusev[a]{}{}{d}}]{}
-\end{verbatim}
-gives a hydroanthracene that have inner double bonds
-as well as a fused six-membered ring:
-\begin{quotation}
-\vskip1cm
-\hanthracenev[aco{A\sixfusev[a]{}{}{d}}]{}
-\end{quotation}
-Note that the command \verb/\sixfusev/ can take
-an optional argument to designate inner double bonds,
-as shown by the code \verb/\sixfusev[a]{}{}{d}/.
-
-In order to specify substituents in addition,
-we can use the SUBSLIST of the command \verb/\hanthracenev/ as well
-as the one of the command \verb/\sixfusev/. For example, the code
-\begin{verbatim}
-\hanthracenev[aco{A\sixfusev[a]{}{1==F;2==Cl}{d}}]{5==OH;6==HO}
-\end{verbatim}
-gives a hydroanthracene having additional substituents:
-\begin{quotation}
-\vspace*{1cm}
-\hanthracenev[aco{A\sixfusev[a]{}{1==F;2==Cl}{d}}]{5==OH;6==HO}
-\end{quotation}
-
-The compound {\bfseries 13} on page 294
-(Chapter IV-4) of the \XyMTeX book
-%``\XyMTeX{}---Typesetting Chemical
-%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997)
-can alternatively be drawn by applying the
-present technique. Thus, the code
-\begin{verbatim}
-\hanthracenev[achjop{b\sixfusev{}{2==R}{E}}]{%
-1==OCH$_{3}$;4==OH;{10}D==O;%
-9==\lyl(8==C\rlap{O}){4==CH$_{3}$O}}
-\end{verbatim}
-gives the following formula:
-\begin{quotation}
-\hanthracenev[achjop{b\sixfusev{}{2==R}{E}}]{%
-1==OCH$_{3}$;4==OH;{10}D==O;%
-9==\lyl(8==C\rlap{O}){4==CH$_{3}$O}}
-\end{quotation}
-
-
-\section{Ring Fusion on Heterocyclic Compounds}
-
-The methodology of ring fusion for heterocyclic compounds
-is the same as described for carbocyclic compounds.
-Thus, a unit to be fused is written in the BONDLIST of
-a command with a bond specifier (a lowercase or uppercase alphabet).
-For example, the code
-\begin{verbatim}
-\nonaheterov[begj{b\sixfusev[ac]{}{}{e}}]{1==N}{1==H}
-\end{verbatim}
-gives the structural formula of carbazole:
-\begin{quotation}
-\nonaheterov[begj{b\sixfusev[ac]{}{}{e}}]{1==N}{1==H}
-\end{quotation}
-which is depicted by attaching a six-membered ring
-(\verb/\sixfusev[ac]{}{}{e}}/)
-to the bond `b' of an indole nucleus.
-
-Let us consider the substitution of a carbon atom
-with a nitrogen atom at one of the fused positions
-in the above compound, as shown by the following formula:
-\begin{quotation}
-\nonaheterov[begj{b\sixfusev[ac]{6==\null}{}{e}}]{1==N;3==N}{1==H}
-\end{quotation}
-This formula is obtained by writing the code:
-\begin{verbatim}
-\nonaheterov[begj{b\sixfusev[ac]{6==\null}{}{e}}]{1==N;3==N}{1==H}
-\end{verbatim}
-where the code \verb/6==\null/ in the ATOMLIST of
-\verb/\sixfusev/ (for the fused six-membered ring)
-and the code \verb/3==N/ in the ATOMLIST of
-\verb/\nonaheterov/ produces the nitrogen
-atom at the fused position.
-The specification of the nitrogen atom
-is also available by exchanging \verb/\null/ and \verb/N/.
-Thus the code
-\begin{verbatim}
-\nonaheterov[begj{b\sixfusev[ac]{6==N}{}{e}}]{1==N;3==\null}{1==H}
-\end{verbatim}
-gives the same structural formula:
-\begin{quotation}
-\nonaheterov[begj{b\sixfusev[ac]{6==N}{}{e}}]{1==N;3==\null}{1==H}
-\end{quotation}
-
-The ring fusion at the bond `a' of perhydroindole
-is represented by the code
-\begin{verbatim}
-\nonaheterov[{a\sixfusev{6==\null}{}{f}}]{1==N}{}
-\end{verbatim}
-which gives a heterocycle:
-\begin{quotation}
-\nonaheterov[{a\sixfusev{6==\null}{}{f}}]{1==N}{}
-\end{quotation}
-
-
-
-Benz[{\itshape h}]isoquinoline,
-\begin{quotation}
-\vspace*{1cm}
-\decaheterovt[acfhk{h\sixfusev[df]{}{}{B}}]{2==N}{}
-\end{quotation}
-can be typset by the code,
-\begin{verbatim}
-\decaheterovt[acfhk{h\sixfusev[df]{}{}{B}}]{2==N}{}
-\end{verbatim}
-in which the bond specifier `h' corresponds to
-the {\itshape h} of the IUPAC name.
-Note that the IUPAC name regards the structure as
-an isoquinoline (drawn by \verb/\decaheterovt/) fused by a benzo moiety.
-The same structure
-can be drawn by the alternative code:
-\begin{verbatim}
-\decaheterov[acfhk{a\sixfusev[bf]{1==N}{}{D}}]{}{}
-\end{verbatim}
-which regards the structure as a naphthalene (drawn by
-\verb/\decaheterov/) with
-a fused heterocycle. Thereby, we have
- \begin{quotation}
-\vspace*{1cm}
-\decaheterov[acfhk{a\sixfusev[bf]{1==N}{}{D}}]{}{}
-\end{quotation}
-
-\section{Neted Ring Fusion}
-
-The \verb/\sixfusev/ command is capable of
-accomodating another \verb/\sixfusev/ command in
-a nested fashion. By this technique,
-the carbazole structure can take a further
-fused ring so as to produce the structural formula
-of 7{\itshape H}-pyrazino[2,3-{\itshape c}]carbaozole.
-Thus, the code,
-\begin{verbatim}
-\nonaheterov[begj{b\sixfusev[%
-ac{a\sixfusev[bf]{6==N;3==N}{}{D}}]{}{}{e}}]{1==N}{1==H}
-\end{verbatim}
-gives the structural formula of the fused heterocycle:
-\begin{quotation}
-\vspace*{1cm}
-\nonaheterov[begj{b\sixfusev[%
-ac{a\sixfusev[bf]{6==N;3==N}{}{D}}]{}{}{e}}]{1==N}{1==H}
-\end{quotation}
-which is depicted by attaching a six-membered ring
-(\verb/\sixfusev[ac]{}{}{e}}/)
-to the bond `b' of an indole nucleus.
-
-The structural formula of
-pyrido[1$^{\prime}$,2$^{\prime}$:1,2]imidazo[4,5-{\itshape b}]quinoxaline,
-\begin{center}
-\nonaheterov[adh%
-{b\sixfusev[ac]{6==\null}{}{e}}%
-{f\sixfusev[ace]{}{}{b}}]{1==N;3==N;4==N;7==N}{}
-\end{center}
-is generated by the code,
-\begin{verbatim}
-\nonaheterov[adh%
-{b\sixfusev[ac]{6==\null}{}{e}}%
-{f\sixfusev[ace]{}{}{b}}]{1==N;3==N;4==N;7==N}{}
-\end{verbatim}
-Since this code is intended to contain no nested ring fusion,
-the order of structure construction is different
-from that of the IUPAC name.
-
-The IUPAC name,
-pyrido[1$^{\prime}$,2$^{\prime}$:1,2]imidazo[4,5-{\itshape b}]quinoxaline,
-corresponds to a quinaxaline with a fused five-membered ring (an imidazo
-moiety) which is in turn fused by a six-membered ring (a pyrido moiety).
-The order of constructing the IUPAC name is realized in the code
-with nested ring fusion,
-\begin{verbatim}
-\decaheterov[acegi%
-{b\fivefusev[a{b\sixfusev[ac]{6==\null}{}{e}}]{1==N;3==N}{}{d}}]
-{1==N;4==N}{}
-\end{verbatim}
-which produces the same structure,
-\begin{center}
-\decaheterov[acegi%
-{b\fivefusev[a{b\sixfusev[ac]{6==\null}{}{e}}]{1==N;3==N}{}{d}}]
-{1==N;4==N}{}
-\end{center}
-
-Note that the indicators `1$^{\prime}$,2$^{\prime}$' and `1,2'of
-the locant [1$^{\prime}$,2$^{\prime}$:1,2] in the IUPAC name
-correspond respectively to the
-bond specifiers , `E' and `b', appeared in the code,
-\verb/{b\sixfusev[ac]{6==\null}{}{E}}/.
-On the other hand, the indicators,
-`4,5' and `{\itshape b}' of of the locant [4,5-{\itshape b}]
-are respectively associated with
-the specifiers, `d' and `b', appeared in the code,
-\verb/{b\fivefusev[...]{1==N;3==N}{}{d}}/.
-
-An alkaloid with a coryanthe skeleton
-(R. T. Brown and C. L. Chapple, {\itshape Chem. Commun.},
-1973, 887) can be typeset by the code with nested fusion,
-\begin{verbatim}
-\nonaheterov[begj{b\sixfusev[%
-{c\sixfusev{1==\null}{3SB==H;3SA==Et;%
-4GA==H;%
-4B==\dimethylenei[a]{}{1==(yl);2W==OMe;1W==MeOCO}}{F}}]%
-{3==N}{4GB==H;2B==COOMe}{e}}]{1==N}{1==H}
-\end{verbatim}
-where a six-five ring drawn by the command \verb/\nonaheterov/
-is regarded as a mother skeleton. Thus, we have
-\begin{quotation}
-\nonaheterov[begj{b\sixfusev[%
-{c\sixfusev{1==\null}{3SB==H;3SA==Et;%
-4GA==H;%
-4B==\dimethylenei[a]{}{1==(yl);2W==OMe;1W==MeOCO}}{F}}]%
-{3==N}{4GB==H;2B==COOMe}{e}}]{1==N}{1==H}
-\vspace*{2cm}
-\end{quotation}
-For the command \verb/\dimethylenei/, see the chapter at issue.
-
-When a six-six ring drawn by the command \verb/\decaheterovb/
-is regarded as a mother skeleton, as shown in the code with
-another nested ring fusion,
-\begin{verbatim}
-\decaheterovb[f{f\fivefusev[d{d\sixfusev[df]{}{}{b}}]%
-{1==N}{1==H}{b}}]{8a==N}{9B==H;2SA==Et;2SB==H;8B==COOMe;%
-3GA==H;%
-3B==\dimethylenei[a]{}{1==(yl);2W==OMe;1W==MeOCO}}
-\end{verbatim}
-we find another way of drawing the same structural formula,
-\begin{center}
-\decaheterovb[f{f\fivefusev[d{d\sixfusev[df]{}{}{b}}]%
-{1==N}{1==H}{b}}]{8a==N}{9B==H;2SA==Et;2SB==H;8B==COOMe;%
-3GA==H;%
-3B==\dimethylenei[a]{}{1==(yl);2W==OMe;1W==MeOCO}}
-
-\vspace*{1cm}
-\end{center}
-
-The following example shows a code with complicated
-nested structure:
-\begin{verbatim}
-\cyclohexanev[%
-{a\sixfusev[{b\sixfusev[{c\sixfusev[{c\sixfusev[%
-{d\sixfusev[{d\sixfusev[{d\sixfusev[%
-{e\sixfusev[{e\sixfusev[{e\sixfusev[{e\sixfusev[%
-{f\sixfusev[{f\sixfusev[]{}{}{C}}]{}{}{C}}%
-]{}{}{B}}]{}{}{B}}]{}{}{B}}]{}{}{B}}%
-]{}{}{A}}]{}{}{A}}]{}{}{A}}]{}{}{F}}%
-]{}{}{F}}]{}{}{E}}]{}{}{D}}%
-{c\sixfusev[{d\sixfusev[{e\sixfusev[{e\sixfusev[%
-{f\sixfusev[{f\sixfusev[{f\sixfusev[%
-{a\sixfusev[{a\sixfusev[{a\sixfusev[{a\sixfusev[%
-{b\sixfusev[{b\sixfusev[]{}{}{E}}]{}{}{E}}%
-]{}{}{D}}]{}{}{D}}]{}{}{D}}]{}{}{D}}%
-]{}{}{C}}]{}{}{C}}]{}{}{C}}]{}{}{B}}%
-]{}{}{B}}]{}{}{A}}]{}{}{F}}%
-{e\sixfusev[{f\sixfusev[{a\sixfusev[{a\sixfusev[%
-{b\sixfusev[{b\sixfusev[{b\sixfusev[%
-{c\sixfusev[{c\sixfusev[{c\sixfusev[{c\sixfusev[%
-{d\sixfusev[{d\sixfusev[]{}{}{A}}]{}{}{A}}%
-]{}{}{F}}]{}{}{F}}]{}{}{F}}]{}{}{F}}%
-]{}{}{E}}]{}{}{E}}]{}{}{E}}]{}{}{D}}%
-]{}{}{D}}]{}{}{C}}]{}{}{B}}%
-]{}
-\end{verbatim}
-This code generates a multiply fused formula:
-
-\clearpage
-
-\begin{center}
-\vspace*{8cm}
-\cyclohexanev[%
-{a\sixfusev[{b\sixfusev[{c\sixfusev[{c\sixfusev[%
-{d\sixfusev[{d\sixfusev[{d\sixfusev[%
-{e\sixfusev[{e\sixfusev[{e\sixfusev[{e\sixfusev[%
-{f\sixfusev[{f\sixfusev[]{}{}{C}}]{}{}{C}}%
-]{}{}{B}}]{}{}{B}}]{}{}{B}}]{}{}{B}}%
-]{}{}{A}}]{}{}{A}}]{}{}{A}}%
-]{}{}{F}}%
-]{}{}{F}}]{}{}{E}}]{}{}{D}}%
-{c\sixfusev[{d\sixfusev[{e\sixfusev[{e\sixfusev[%
-{f\sixfusev[{f\sixfusev[{f\sixfusev[%
-{a\sixfusev[{a\sixfusev[{a\sixfusev[{a\sixfusev[%
-{b\sixfusev[{b\sixfusev[]{}{}{E}}]{}{}{E}}%
-]{}{}{D}}]{}{}{D}}]{}{}{D}}]{}{}{D}}%
-]{}{}{C}}]{}{}{C}}]{}{}{C}}%
-]{}{}{B}}%
-]{}{}{B}}]{}{}{A}}]{}{}{F}}%
-{e\sixfusev[{f\sixfusev[{a\sixfusev[{a\sixfusev[%
-{b\sixfusev[{b\sixfusev[{b\sixfusev[%
-{c\sixfusev[{c\sixfusev[{c\sixfusev[{c\sixfusev[%
-{d\sixfusev[{d\sixfusev[]{}{}{A}}]{}{}{A}}%
-]{}{}{F}}]{}{}{F}}]{}{}{F}}]{}{}{F}}%
-]{}{}{E}}]{}{}{E}}]{}{}{E}}%
-]{}{}{D}}%
-]{}{}{D}}]{}{}{C}}]{}{}{B}}%
-]{}
-\end{center}
-
-
-
-\clearpage
-
-
-
-\section{Remarks}
-
-\subsection{OPT Arguments}
-
-It should be noted that the OPT arguments of
-such commands as \verb/\bzdrv/, \verb/\naphdrv/,
-and \verb/\anthracenev/ cannot be used
-for the ring-fusion technique. In place of the OPT argument,
-the BONDLIST argument of the corresponding general
-command, e.g. \verb/\cyclohexanev/ or \verb/\sixheterov/
-correspoding to \verb/\bzdrv/,
-should be used for the purpose of ring fusion. .
-For example, a bezene ring of the formula,
-\begin{center}
-\vspace*{1cm}
-\cyclohexanev[ace{a\sixfusev{}{}{D}}]{}
-\end{center}
-should be drawn by using the \verb/\cyclohexanev/ command,
-as shown in the code:
-\begin{verbatim}
-\cyclohexanev[ace{a\sixfusev{}{}{D}}]{}
-\end{verbatim}
-
-\subsection{\protect\XyMTeX{} Warning}
-
-An incorrect result due to
-a wrong specification of a fused bond is
-notified by a \XyMTeX{} warning.
-For example, the code,
-\begin{verbatim}
-\hanthracenev[{a\sixfusev{}{}{d}}]{}
-\end{verbatim}
-gives a formula of wrong fusion:
-\begin{center}
-\vspace*{2cm}
-\hanthracenev[{a\sixfusev{}{}{d}}]{}
-\end{center}
-According to this wrong situation,
-a \XyMTeX{} warning appears in a display or in a log file, e.g.,
-\begin{verbatim}
- XyMTeX Warning: Mismatched fusion at bond `a, i, or other'
- on input line 1904
-\end{verbatim}
-There are two ways to correct the wrong fusion and,
-as a result, to avoid such a \XyMTeX{} warning.
-First, the code
-\begin{verbatim}
-\hanthracenev[{A\sixfusev{}{}{d}}]{}
-\end{verbatim}
-in which the acceptor bond specifier `a' is changed into `A',
-gives a correct result, as found in the top example of
-this chapter. Alternatively,
-the donor bond specifier `d' can be changed into `D'.
-Thus, the code,
-\begin{verbatim}
-\hanthracenev[{a\sixfusev{}{}{D}}]{}
-\end{verbatim}
-also typesets the second formula with correct fusion.
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Fusing Units}
-
-The commands described in this chapter are stored in
-the {\sf fusering} package (file name: fusering.sty).
-
-\section{Six-membered Fusing Units}
-\subsection{Vertical Units of Normal and Inverse Types}
-In \XyMTeX{} version 1.01, we can use \verb/\sixunitv/
-and \verb/\fiveunitv/ as building blocks, where
-one or more bonds can be omitted.
-In the present version, we prepare
-such commands as \verb/\sixfusev/ an \verb/\sixfusevi/,
-producing building blocks with only one deleted bond.
-These commands can be used in the BONDLIST of another
-command so as to give a fused structural formula,
-as described in the preceding chapter.
-The commands \verb/\sixfusev/ and \verb/\sixfusevi/ have formats
-represented by
-\begin{verbatim}
-\sixfusev[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\sixfusevi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\end{verbatim}
-where the argument FUSE is an alphabetical character (a--f)
-or the uppercase counterpart (A--F),
-each of which is a bond specifier representing one bond to be omitted.
-A lowercase character (a--f) represents the younger terminal of
-the omitted bond.
-The corresponding uppercase character (A--F) designates
-the other terminal of the bond to be omitted.
-The other arguments have the same formats as described
-in the general conventions (see \XyMTeX book).
-The locant numbers and the bond specifiers of
-the command \verb/\sixfusev/ correspond to
-those of the command \verb/\sixheterov/ (see \XyMTeX book).
-The command \verb/\sixfusevi/ is the inverse counterpart
-of \verb/\sixfusev/ and corresponds to the command \verb/\sixheterovi/.
-Moreover, the BONDLIST is capbable of
-accormodating the ring-fusion function described
-in the preseding chapter,
-the ATOMLIST can accomodate the spiro-ring function
-described afterward, and
-the SUBSLIST serves a method producing subsituents (``yl''-function)
-describe previously.
-
-For example, the last argument `F' of the \verb/\sixfusev/
-appearing in the code,
-\begin{verbatim}
-\sixfusev[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}
-\end{verbatim}
-results in the deletion of the bond `f' between atom no.~6 (youger
-teminal) and atom no.~1 (older terminal) from a hexagon,
-typesetting the following building block:
-\begin{center}
-\sixfusev[]{1==\null}{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}
-
-\vspace*{3cm}
-\end{center}
-where the reference point for superposition is
-the older terminal (i.e. atom no.~1) of the bond `f'.
-The code \verb/1==\null/ gives a vacancy at the position of atom no.~1.
-When the building block is used in the BONDLIST of
-the \verb/\decaheterov/, as shown in the code,
-\begin{verbatim}
-\decaheterov[fhk%
-{c\sixfusev[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==CH$_3$O;7==CH$_3$O}
-\end{verbatim}
-we have the following structure,
-\begin{center}
-\decaheterov[fhk%
-{c\sixfusev[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==CH$_3$O;7==CH$_3$O}
-\vspace*{2cm}
-\end{center}
-
-The last argument `F' of the \verb/\sixfusev/
-can be changed into `f', as found in the code,
-\begin{verbatim}
-\decaheterovi[fhk%
-{a\sixfusev[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{f}}]{2==N}{6==CH$_3$O;7==CH$_3$O}
-\end{verbatim}
-where we use \verb/\decaheterovi/ in place of
-\verb/\decaheterov/ for drawing the bicyclic mother skeleton.
-Thereby, we have the following structure,
-\begin{center}
-\decaheterovi[fhk%
-{a\sixfusev[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{f}}]{2==N}{6==CH$_3$O;7==CH$_3$O}
-\vspace*{2cm}
-\end{center}
-
-The vertically opposite formula can be drawn by the combination of
-\verb/\sixfusevi/ and \verb/\decaheterovi/ with no other changes
-of designation (in comparison with the first code of this
-section), i.e.
-\begin{verbatim}
-\decaheterovi[fhk%
-{c\sixfusevi[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==CH$_3$O;7==CH$_3$O}
-\end{verbatim}
-Thereby we have
-\begin{center}
-\vspace*{2cm}
-\decaheterovi[fhk%
-{c\sixfusevi[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==CH$_3$O;7==CH$_3$O}
-\end{center}
-
-\subsection{Horizontal Units of Normal and Inverse Types}
-
-For drawing horizontal fusing units,
-we can use the commands \verb/\sixfuseh/ and \verb/\sixfusehi/,
-which are represented by
-\begin{verbatim}
-\sixfuseh[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\sixfusehi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\end{verbatim}
-
-The horizontal formula of normal type related to the tricyclic
-formulas described in the preceding subsection
-can be drawn by the combination of
-\verb/\sixfuseh/ and \verb/\decaheteroh/ with few changes
-of designation (CH$_{3}$O to OCH$_{3}$), i.e.
-\begin{verbatim}
-\decaheteroh[fhk%
-{c\sixfuseh[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==OCH$_3$;7==OCH$_3$}
-\end{verbatim}
-which typsets the following structure,
-\begin{center}
-\vspace*{1cm}
-\decaheteroh[fhk%
-{c\sixfuseh[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==OCH$_3$;7==OCH$_3$}
-\end{center}
-
-The horizontally opposite formula can be drawn by the combination of
-\verb/\sixfusehi/ and \verb/\decaheterohi/ with
-slight changes concerning the handedness of subsitutents, i.e.
-\begin{verbatim}
-\decaheterohi[fhk%
-{c\sixfusehi[]{1==\null}%
-{3==C$_2$H$_5$;4==C$_2$H$_5$OCOCH$_2$}{F}}]{3==N}{6==OCH$_3$;7==OCH$_3$}
-\end{verbatim}
-Thereby we have
-\begin{center}
-\vspace*{1cm}
-\decaheterohi[fhk%
-{c\sixfusehi[]{1==\null}%
-{3==C$_2$H$_5$;4==C$_2$H$_5$OCOCH$_2$}{F}}]{3==N}{6==OCH$_3$;7==OCH$_3$}
-\end{center}
-
-\section{Five-membered Fusing Units}
-\subsection{Vertical Units of Normal and Inverse Types}
-To obtain a vertical five-membered building block,
-we can use \verb/\fivefusev/ and \verb/\fivefusevi/:
-\begin{verbatim}
-\fivefusev[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\fivefusevi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\end{verbatim}
-where the argument FUSE is an alphabetical character (a--e)
-or the uppercase counterpart (A--E),
-each of which is a bond specifier representing one bond to be omitted.
-The other specifications have the same formats
-as found in the preceding section.
-
-The following example (left) gives the use of the \verb/\fivefusevi/
-command by itself, where its SUBSLIST contains some substituents:
-\begin{verbatim}
-\fivefusevi{4==O}{2D==;3D==O}{E} \hskip 3cm
-\fivefusevi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}
-\end{verbatim}
-\begin{center}
-%\vspace*{1cm}
-\fivefusevi{4==O}{2D==;3D==O}{E} \hskip 3cm
-\fivefusevi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}
-
-\vspace*{2cm}
-\end{center}
-To show hydrogen substitution at the fused positions, we
-add the designation of \verb/1GA==H;5GB==H/ to the
-SUBSLIST of the \verb/\fivefusevi/ command (right above).
-Then, the latter code is written in the BONDLIST of
-a command \verb/\decalinev/, as found in the code:
-\begin{verbatim}
-\decalinev[h{c\fivefusevi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}}]%
-{6D==O;5A==;0FB==;0GA==H}
-\end{verbatim}
-Thereby, we obtain
-\begin{center}
-\decalinev[h{c\fivefusevi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}}]%
-{6D==O;5A==;0FB==;0GA==H}
-
-\vspace*{1cm}
-\end{center}
-
-Fusing units such as \verb/\fivefusev/
-can be multiply nested in itself and in other types of fusing units.
-The following example shows such a trebly-nested case.
-\begin{verbatim}
-\decaheterovi[AB%
-{b\fivefusev[{a\sixfusev[ce%
-{c\sixfusev{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
-{2==N}{}{D}}]{1==N}{}
-\end{verbatim}
-\begin{quotation}
-\decaheterovi[AB%
-{b\fivefusev[{a\sixfusev[ce%
-{c\sixfusev{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
-{2==N}{}{D}}]{1==N}{}
-
-\vspace*{2cm}
-\end{quotation}
-
-When all of the commands in the above code are
-changed into the inverse counterparts
-(\verb/\decaheterovi/ to \verb/\decaheterov/;
-\verb/\fivefusev/ and \verb/\fivefusevi/; and
-\verb/\sixfusev/ to \verb/\sixfusevi/),
-the code is transformed into another code,
-\begin{verbatim}
-\decaheterov[AB%
-{b\fivefusevi[{a\sixfusevi[ce%
-{c\sixfusevi{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
-{2==N}{}{D}}]{1==N}{}
-\end{verbatim}
-Thereby, we can obtain the formula of vertically inverse type.
-\begin{quotation}
-\vspace*{2cm}
-\decaheterov[AB%
-{b\fivefusevi[{a\sixfusevi[ce%
-{c\sixfusevi{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
-{2==N}{}{D}}]{1==N}{}
-\end{quotation}
-
-\subsection{Horizontal Units of Normal and Inverse Types}
-Horizontal five-membered building block are
-obtained by using \verb/\fivefuseh/ and \verb/\fivefusehi/:
-\begin{verbatim}
-\fivefuseh[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\fivefusehi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\end{verbatim}
-where the argument FUSE is an alphabetical character (a--e)
-or the uppercase counterpart (A--E),
-each of which is a bond specifier representing one bond to be omitted.
-The other specifications have the same formats
-as found in the preceding section.
-
-The example given for \verb/\fivefusevi/ is
-changed into the one using the horizontal counterpart \verb/\fivefusehi/:
-\begin{verbatim}
-\decalineh[h{c\fivefusehi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}}]{5A==;6D==O}
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\decalineh[h{c\fivefusehi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}}]{5A==;6D==O}
-\end{center}
-Note that no changes of other designation are necessary except that
-\verb/\decalineh/ and \verb/\fivefusehi/ are used
-in place of the vertical counterpart described above.
-
-The multiply nested example described above for drawing
-a structure of vertical type can be changed into
-the corresponding one of horizontal type,
-if all of the commmands are changed into horizontal types
-(\verb/\decaheterovi/ to \verb/\decaheterohi/;
-\verb/\fivefusev/ to \verb/\fivefuseh/; and
-\verb/\sixfusev/ to \verb/\sixfuseh/).
-
-\begin{verbatim}
-\decaheterohi[AB%
-{b\fivefuseh[{a\sixfuseh[ce%
-{c\sixfuseh{3==O}{4D==O;5SB==OH;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
-{2==N}{}{D}}]{1==N}{}
-\end{verbatim}
-\begin{quotation}
-\vspace*{2cm}\hspace*{4cm}
-\decaheterohi[AB%
-{b\fivefuseh[{a\sixfuseh[ce%
-{c\sixfuseh{3==O}{4D==O;5SB==OH;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
-{2==N}{}{D}}]{1==N}{}
-\end{quotation}
-
-When all the commands in the above code are
-changed into the inverse counterparts
-(\verb/\decaheterohi/ to \verb/\decaheteroh/;
-\verb/\fivefuseh/ and \verb/\fivefusehi/; and
-\verb/\sixfuseh/ to \verb/\sixfusehi/),
-the code is transformed into another code,
-\begin{verbatim}
-\decaheteroh[AB%
-{b\fivefusehi[{a\sixfusehi[ce%
-{c\sixfusehi{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
-{2==N}{}{D}}]{1==N}{}
-\end{verbatim}
-Thereby, we can obtain the formula of horizontally inverse type.
-\begin{quotation}
-\vspace*{2cm}\hspace*{4cm}
-\decaheteroh[AB%
-{b\fivefusehi[{a\sixfusehi[ce%
-{c\sixfusehi{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
-{2==N}{}{D}}]{1==N}{}
-\end{quotation}
-
-\section{Four-membered Fusing Units}
-
-To obtain a four-membered building block,
-we can use \verb/\fourfuse/:
-\begin{verbatim}
-\fourfuse[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\end{verbatim}
-where the argument FUSE is an alphabetical character (a--d)
-or the uppercase counterpart (A--D),
-each of which is a bond specifier representing one bond to be omitted.
-The assignment of characters (a to d) and locants (1 to 4)
-for the command \verb/\fourhetero/ is applied
-in the same way to this case.
-The other specifications have the same formats
-as those of the command \verb/\fourhetero/.
-
-For example, the code,
-\begin{verbatim}
-\sixheterov[{e\fourfuse{}{}{b}}]{}{}
-\sixheterov[{b\fourfuse{}{}{d}}]{}{}
-\sixheteroh[{b\fourfuse{}{}{a}}]{}{}
-\sixheteroh[{e\fourfuse{}{}{c}}]{}{}
-\end{verbatim}
-produces the following structural formulas.
-\begin{center}
-\sixheterov[{e\fourfuse{}{}{b}}]{}{}
-\sixheterov[{b\fourfuse{}{}{d}}]{}{}
-\sixheteroh[{b\fourfuse{}{}{a}}]{}{}
-\sixheteroh[{e\fourfuse{}{}{c}}]{}{}
-\end{center}
-
-A hetero atom at a fused position is designated in the ATOMLIST
-of \verb/\fourfuse/, which is associated the code \verb/\null/
-in the ATOMLIST of a command for drawing a mother skeleton.
-For example, the code
-\begin{verbatim}
-\sixheterov[{e\fourfuse{3==N}{}{b}}]{6==\null}{}
-\sixheterov[{b\fourfuse{4==N}{}{d}}]{2==\null}{}
-\sixheteroh[{b\fourfuse{2==N}{}{a}}]{3==\null}{}
-\sixheteroh[{e\fourfuse{3==N}{}{c}}]{5==\null}{}
-\end{verbatim}
-produces the following structural formulas.
-\begin{center}
-\sixheterov[{e\fourfuse{3==N}{}{b}}]{6==\null}{}
-\sixheterov[{b\fourfuse{4==N}{}{d}}]{2==\null}{}
-\sixheteroh[{b\fourfuse{2==N}{}{a}}]{3==\null}{}
-\sixheteroh[{e\fourfuse{3==N}{}{c}}]{5==\null}{}
-\end{center}
-
-Penicillin G can be drawn by using the \verb/\fourfuse/ command
-in the code,
-\begin{verbatim}
-\fiveheterovi[{d\fourfuse{2==\null}{1D==O;4Su==PhCH$_{2}$CONH;4Sd==H}{b}}]%
-{1==S;4==N}{2Sa==CH$_{3}$;2Sb==CH$_{3}$;3SA==COOH;3SB==H;5GA==H}
-\end{verbatim}
-which typeset the following formula:
-\begin{center}
-\fiveheterovi[{d\fourfuse{2==\null}{1D==O;4Su==PhCH$_{2}$CONH;4Sd==H}{b}}]%
-{1==S;4==N}{2Sa==CH$_{3}$;2Sb==CH$_{3}$;3SA==COOH;3SB==H;5GA==H}
-\end{center}
-
-\section{Three-membered Fusing Units}
-\subsection{Vertical Units of Normal and Inverse Types}
-To obtain three-membered building blocks of
-vertical type, we can use \verb/\threefusev/ and \verb/\threefusevi/:
-\begin{verbatim}
-\threefusev[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\threefusevi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\end{verbatim}
-where the argument FUSE is an alphabetical character (a--c)
-or the uppercase counterpart (A--C),
-each of which is a bond specifier representing one bond to be omitted.
-The assignment of characters (a to c) and locants (1 to 3)
-for the command \verb/\threeheterov/ or \verb/\threeheterovi/ is applied
-in the same way to this case.
-The other specifications have the same formats
-as those of the command \verb/\threeheterov/ or \verb/\threeheterovi/.
-
-For example, the code using \verb/\threefusev/,
-\begin{verbatim}
-\sixheteroh[{a\threefusev{}{}{a}}]{}{}
-\sixheteroh[{e\threefusev{}{}{b}}]{}{}
-\sixheteroh[{c\threefusev{}{}{c}}]{}{}
-\end{verbatim}
-produces the following structural formulas.
-\begin{center}
-\sixheteroh[{a\threefusev{}{}{a}}]{}{}
-\sixheteroh[{e\threefusev{}{}{b}}]{}{}
-\sixheteroh[{c\threefusev{}{}{c}}]{}{}
-\end{center}
-The use of the inverse type is shown in the code,
-\begin{verbatim}
-\sixheteroh[{F\threefusevi{}{}{a}}]{}{}
-\sixheteroh[{B\threefusevi{}{}{b}}]{}{}
-\sixheteroh[{D\threefusevi{}{}{c}}]{}{}
-\end{verbatim}
-which produces the following structural formulas.
-\begin{center}
-\sixheteroh[{F\threefusevi{}{}{a}}]{}{}
-\sixheteroh[{B\threefusevi{}{}{b}}]{}{}
-\sixheteroh[{D\threefusevi{}{}{c}}]{}{}
-\end{center}
-
-Hetero-atoms at fused positions can be typeset by designating
-ATOMLISTs. For example, the code,
-\begin{verbatim}
-\sixheteroh[{a\threefusev{1==N}{}{a}}]{1==\null}{}
-\sixheteroh[{e\threefusev{2==N}{}{b}}]{5==\null}{}
-\sixheteroh[{c\threefusev{3==N}{}{c}}]{3==\null}{}
-\end{verbatim}
-produces the following structural formulas.
-\begin{center}
-\sixheteroh[{a\threefusev{1==N}{}{a}}]{1==\null}{}
-\sixheteroh[{e\threefusev{2==N}{}{b}}]{5==\null}{}
-\sixheteroh[{c\threefusev{3==N}{}{c}}]{3==\null}{}
-\end{center}
-
-\subsection{Horizontal Units of Normal and Inverse Types}
-Three-membered building blocks of
-horizontal type can be obtained by using
-\verb/\threefuseh/ and \verb/\threefusehi/:
-\begin{verbatim}
-\threefuseh[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\threefusehi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\end{verbatim}
-where the argument FUSE is an alphabetical character (a--c)
-or the uppercase counterpart (A--C),
-each of which is a bond specifier representing one bond to be omitted.
-The assignment of characters (a to c) and locants (1 to 3)
-for the command \verb/\threeheteroh/ or \verb/\threeheterohi/ is applied
-in the same way to this case.
-The other specifications have the same formats
-as those of the command \verb/\threeheteroh/ or \verb/\threeheterohi/.
-
-For example, the code using \verb/\threefuseh/,
-\begin{verbatim}
-\sixheterov[{F\threefuseh{}{}{a}}]{}{}
-\sixheterov[{B\threefuseh{}{}{b}}]{}{}
-\sixheterov[{D\threefuseh{}{}{c}}]{}{}
-\end{verbatim}
-produces the following structural formulas.
-\begin{center}
-\sixheterov[{F\threefuseh{}{}{a}}]{}{}
-\sixheterov[{B\threefuseh{}{}{b}}]{}{}
-\sixheterov[{D\threefuseh{}{}{c}}]{}{}
-\end{center}
-The use of the inverse type is shown in the code,
-\begin{verbatim}
-\sixheterov[{a\threefusehi{}{}{a}}]{}{}
-\sixheterov[{e\threefusehi{}{}{b}}]{}{}
-\sixheterov[{c\threefusehi{}{}{c}}]{}{}
-\end{verbatim}
-which produces the following structural formulas.
-\begin{center}
-\sixheterov[{a\threefusehi{}{}{a}}]{}{}
-\sixheterov[{e\threefusehi{}{}{b}}]{}{}
-\sixheterov[{c\threefusehi{}{}{c}}]{}{}
-\end{center}
-
-Hetero-atoms at fused positions can be typeset by designating
-ATOMLISTs. For example, the code,
-\begin{verbatim}
-\sixheterov[{F\threefuseh{1==N}{}{a}}]{1==\null}{}
-\sixheterov[{B\threefuseh{2==N}{}{b}}]{3==\null}{}
-\sixheterov[{D\threefuseh{3==N}{}{c}}]{5==\null}{}
-\end{verbatim}
-produces the following structural formulas.
-\begin{center}
-\sixheterov[{F\threefuseh{1==N}{}{a}}]{1==\null}{}
-\sixheterov[{B\threefuseh{2==N}{}{b}}]{3==\null}{}
-\sixheterov[{D\threefuseh{3==N}{}{c}}]{5==\null}{}
-\end{center}
-
-An aziridine derivative,
-\begin{center}
-\sixheterov[{B\threefuseh{1==N}{1==COOC$_{2}$H$_{5}$}{b}}]{}{}
-\end{center}
-can be drawn by the code,
-\begin{verbatim}
-\sixheterov[{B\threefuseh{1==N}{1==COOC$_{2}$H$_{5}$}{b}}]{}{}
-\end{verbatim}
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Spiro Rings}
-\section{General Conventions for Spiro-Ring Attachment}
-
-There are several ways for naming spiro compounds
-in the light of the IUPAC nomenclature.
-Rule A-41.4 allows us to use such a name as
-spiro[cyclopentane-1,1$^{\prime}$-indene]
-for representing the following structure:
-\begin{center}
-\vspace*{1cm}
-\nonaheterovi[begj]{1s==\fiveheterov{}{1==(yl)}}{}
-\end{center}
-The same structure is named indene-1-spiro-1$^{\prime}$-cyclohexane
-in terms of Rule A-42.1.
-Spiro[5.5]undecane, the name due to Rule A-41.1 and A-41.2,
-is alternatively referred to as
-cyclohexanespirocyclohexane in terms of Rule A-42.1:
-\begin{center}
-\vspace*{1cm}
-\sixheterov[]{1s==\sixheterov[]{}{4==(yl)}}{}
-\end{center}
-where the `cyclohexanespiro' shows the replacement of a
-carbon atom in a cyclohexne by another cyclohexane ring.
-These rules essentially have the same methodology as the
-IUPAC replacement nomenclature, e.g.,
-oxacyclohexane (more formally, oxane or tetrahydropyran)
-for the formula
-\begin{center}
-\sixheterov[]{1==O}{}
-\end{center}
-generated by the code,
-\begin{verbatim}
-\sixheterov[]{1==O}{}
-\end{verbatim}
-where the prefix `oxa' shows the replacement of a
-carbon atom with an oxygen atom.
-Obviously, the prefix `cyclohexanespiro' of the name
-`cyclohexanespirocyclohexane' is akin to
-the prefix `oxa' of the name `oxacyclohexane' or `oxane'
-from the viewpoint of the construction of names.
-Since the unit due to the latter prefix is designated by
-the \verb/1==O/ involved in the ATOMLIST,
-the former prefix can be treated in the same way.
-Hence, spiro compounds are drawn as follows:
-\begin{enumerate}
-\item
-\XyMTeX{} regards a spiro ring
-as a unit for the IUPAC replacement nomenclature,
-which is generated from an appropriate structure by ``yl''-function.
-\item the code of the unit due to the ``yl''-function is added to
-the ATOMLIST of a mother skeleton.
-\end{enumerate}
-
-Spiro[5.5]undecane is regarded as `cyclohexana'-cyclohexane
-(more formally, `cyclohexanespiro'-cyclo\-hexane),
-as found in the code,
-\begin{verbatim}
-\sixheterov[]{1s==\sixheterov[]{}{4==(yl)}}{}
-\end{verbatim}
-where the code
-\verb/\sixheterov[]{}{4==(yl)}/ produced by the ``yl''-function
-corresponds to the suffix `cyclohexana' and
-is written in the ATOMLIST of the outer \verb/sixheterov/ command.
-Thereby, we can obtain
-\begin{center}
-\vspace*{1cm}
-\sixheterov[]{1s==\sixheterov[]{}{4==(yl)}}{}
-\end{center}
-
-Note that the atom modifier `s' in the code
-\verb/1s==\sixheterov[]{}{4==(yl)}/ represents no
-hetero-atom at the spiro position.
-When a hetero-atom is present at the spiro position,
-an atom modifier `h' is used in place of `s'.
-For example, the code
-\begin{verbatim}
-\sixheterov[]{1h==\sixheterov[]{4==N}{4==(yl)}}{}
-\end{verbatim}
-typeset the following formula:
-\begin{center}
-\vspace*{1cm}
-\sixheterov[]{1h==\sixheterov[]{4==N}{4==(yl)}}{}
-\end{center}
-
-It should be noted that the absence of such atom
-modifiers represents a usual replacement by
-a hetero atom, as found in the formula of
-oxane shown above or in the one of
-thiacyclohexane (tetrahydrothiane):
-\begin{center}
-\sixheterov[]{1==S}{}
-\end{center}
-generated by the code,
-\begin{verbatim}
-\sixheterov[]{1==S}{}
-\end{verbatim}
-
-\section{Several Examples}
-
-Spiro[cyclopentane-1,1$^{\prime}$-indene] described above
-can be drawn in two ways:
-\begin{center}
-\vspace*{1cm}
-\nonaheterovi[begj]{1s==\fiveheterov{}{1==(yl)}}{}
-\fiveheterov{1s==\nonaheterovi[begj]{}{1==(yl)}}{}
-
-\vspace*{1cm}
-\end{center}
-where we use two different codes:
-\begin{verbatim}
-\nonaheterovi[begj]{1s==\fiveheterov{}{1==(yl)}}{}
-\fiveheterov{1s==\nonaheterovi[begj]{}{1==(yl)}}{}
-\end{verbatim}
-which correspond to
-`cyclohexane-1-spiro-1$^{\prime}$-indene' and
-`indene-1-spiro-1$^{\prime}$-cyclohexane' (formal),
-respectively.
-
-A spiro dienone
-\begin{center}
-\vspace*{1cm}
-\sixheterov[be]{%
-1s==\fiveheterov{4==N}{1==(yl);3SB==H;3SA==COOCH$_{2}$Ph;%
-4==PhCH$_{2}$OCO;5D==O}}{4D==O}
-\end{center}
-can be drawn by writing a code,
-\begin{verbatim}
-\sixheterov[be]{%
-1s==\fiveheterov{4==N}{1==(yl);3SB==H;3SA==COOCH$_{2}$Ph;%
-4==PhCH$_{2}$OCO;5D==O}}{4D==O}
-\end{verbatim}
-
-1-Azaspiro[5.5]undecene
-which is the skeleton present in histrionicotoxin
-(Tetrahedron Lett., 1981, {\bf 22}, 2247)
-\begin{center}
-\sixheterov[]{1==N;6s==\cyclohexanev[a]{3==(yl)}}{1==CH$_{2}$Ph}
-\end{center}
-can be drawn by the code,
-\begin{verbatim}
-\sixheterov[]{1==N;6s==\cyclohexanev[a]{3==(yl)}}{1==CH$_{2}$Ph}
-\end{verbatim}
-
-The following example shows a case
-to which both ring fusion and spiro attachment are applied.
-The code,
-\begin{verbatim}
-\decaheterov[fhk%
-{g\fivefusev{1==O;4==O}{}{b}}%
-]{1s==\cyclohexanev[be]{1D==O;4==(yl)}}{}
-\end{verbatim}
-gives the following formula:
-\begin{center}
-\vspace*{2cm}
-\decaheterov[fhk%
-{g\fivefusev{1==O;4==O}{}{b}}%
-]{1s==\cyclohexanev[be]{1D==O;4==(yl)}}{}
-\end{center}
-
-A 1,3-dioxolane derivative
-\begin{center}
-\fiveheterov{2==O;5==O;%
-1s==\trimethylenei{}{3==(yl);1W==PhSO$_{2}$;3W==R}}{}%
-\end{center}
-can be drawn by the code,
-\begin{verbatim}
-\fiveheterov{2==O;5==O;1s==\trimethylenei{}{3==(yl);1W==PhSO$_{2}$;3W==R}}{}%
-\end{verbatim}
-The same compound is also drawn by usual techniques
-as follows:
-\begin{verbatim}
-\fiveheterov{2==O;5==O}{1Sb==\dimethylenei{}{2==(yl);1W==PhSO$_{2}$};1Sa==R}
-\end{verbatim}
-\begin{center}
-\fiveheterov{2==O;5==O}{1Sb==\dimethylenei{}{2==(yl);1W==PhSO$_{2}$};1Sa==R}
-\end{center}
-
-\begin{verbatim}
-\fiveheterov{2==O;5==O}{1G==\dimethylenei{}{2==(yl);1W==PhSO$_{2}$};1F==R}
-\end{verbatim}
-\begin{center}
-\fiveheterov{2==O;5==O}{1G==\dimethylenei{}{2==(yl);1W==PhSO$_{2}$};1F==R}
-\end{center}
-
-1,2,3,4-Tetrahydroquinoline-4-spiro-4$^{\prime}$-piperidine,
-\begin{quotation}
-\vspace*{2cm}
-\decaheterovi[fhk]{1==N;4s==\sixheterov[]{1==N}{4==(yl);1==H}}{1==H}
-\end{quotation}
-can be drawn by writing a code,
-\begin{verbatim}
-\decaheterovi[fhk]{1==N;4s==\sixheterov[]{1==N}{4==(yl);1==H}}{1==H}
-\end{verbatim}
-
-3,3$^{\prime}$-Spirobi[3{\it H}-indole],
-\begin{quotation}
-\vspace*{1cm}
-\nonaheterovi[begj]{3==N;%
-1s==\fiveheterov[bd{b\sixfusev[ac]{}{}{e}}]{4==N}{1==(yl)}}{}
-\end{quotation}
-is typeset by the code,
-\begin{verbatim}
-\nonaheterovi[begj]{3==N;%
-1s==\fiveheterov[bd{b\sixfusev[ac]{}{}{e}}]{4==N}{1==(yl)}}{}
-\end{verbatim}
-
-The code,
-\begin{verbatim}
-\sixheterov[]{1s==\fiveheterov{2==O;5==O}{1==(yl)}}{%
-5==\threeheteroh{1==O}{3Sb==Me$_{3}$Si;3==(yl)}}
-\end{verbatim}
-typesets the following structure:
-\begin{center}
-\vspace*{1cm}
-\sixheterov[]{1s==\fiveheterov{2==O;5==O}{1==(yl)}}{%
-5==\threeheteroh{1==O}{3Sb==Me$_{3}$Si;3==(yl)}}
-\end{center}
-
-A spiro intermediate during spiro annelation
-(T.\ S.\ T.\ Wang, {\em Tetrahedron Lett.}, 1975, 1637),
-\begin{quotation}
-\vspace*{1cm}
-\nonaheterov[aA]{1==N;%
-3s==\decaheterovb[B]{8==N}{5==(yl);8==\dimethylenei{}{1D==O;1==(yl)}}}{}
-\end{quotation}
-can be drawn by the code,
-\begin{verbatim}
-\nonaheterov[aA]{1==N;%
-3s==\decaheterovb[B]{8==N}{5==(yl);8==\dimethylenei{}{1D==O;1==(yl)}}}{}
-\end{verbatim}
-
-A lactone intermediate containing a protected ketone
-(A. Grieco and M. Nishizawa, {\em Chem. Commun.}, 1976, 582),
-\begin{center}
-\decaheterov[h{c\fivefusevi{4==O}{1GA==H;5GB==H;2B==;3D==O}{E}}]{%
-6s==\fiveheterovi{1==O;3==O}{2==(yl)}}{5A==;{10}B==;9A==H}
-
-\vspace*{1cm}
-\end{center}
-is drawn by the code,
-\begin{verbatim}
-\decaheterov[h{c\fivefusevi{4==O}{1GA==H;5GB==H;2B==;3D==O}{E}}]{%
-6s==\fiveheterovi{1==O;3==O}{2==(yl)}}{5A==;{10}B==;9A==H}
-\end{verbatim}
-
-\section{Multi-Spiro Derivatives}
-
-Multi-sipro derivatives are drawn by nesting spiro function.
-For example, cyclohexanespirocyclopentane-3$^{\prime}$-%
-spirocyclohexane (Rule A-42.4),
-\begin{center}
-\sixheteroh[]{4s==\fiveheterov{%
-2s==\sixheteroh[]{}{1==(yl)}}{5==(yl)}}{}
-\end{center}
-is typeset by the code,
-\begin{verbatim}
-\sixheteroh[]{4s==\fiveheterov{%
-2s==\sixheteroh[]{}{1==(yl)}}{5==(yl)}}{}
-\end{verbatim}
-When \verb/\fiveheterov/ is a mother skeleton,
-such a nested command is unnecessary:
-\begin{verbatim}
-\fiveheterov{2s==\sixheteroh[]{}{1==(yl)};%
-5s==\sixheteroh[]{}{4==(yl)}}{}
-\end{verbatim}
-\begin{center}
-\fiveheterov{2s==\sixheteroh[]{}{1==(yl)};%
-5s==\sixheteroh[]{}{4==(yl)}}{}
-\end{center}
-
-The name (Rule A-42.4),
-fluorene-9-spiro-1$^{\prime}$-cyclohexane-4$^{\prime}$-%
-spiro-1$^{\prime}$-indene, corresponds to the code,
-\begin{verbatim}
-\nonaheterovi[begj{b\sixfusev[ac]{}{}{E}}]{%
-1s==\sixheterov[]{1s==\nonaheterov[begj]{}{1==(yl)}}{4==(yl)}}{}
-\end{verbatim}
-which gives
-\begin{quotation}
-\vspace*{2cm}
-\nonaheterovi[begj{b\sixfusev[ac]{}{}{E}}]{%
-1s==\sixheterov[]{1s==\nonaheterov[begj]{}{1==(yl)}}{4==(yl)}}{}
-\end{quotation}
-
-
-\section{Atom Replacement}
-
-The ATOMLIST of each command is capable of
-accommodating a group if a sufficient space is available.
-For example, compare two codes,
-\begin{verbatim}
-\sixheteroh{4==NCOOEt}{}
-\hskip 2cm
-\sixheteroh{4==N}{4==COOEt}
-\end{verbatim}
-generating formulas equivalent chemically to each other:
-\begin{center}
-\sixheteroh{4==NCOOEt}{}
-\hskip 2cm
-\sixheteroh{4==N}{4==COOEt}
-\end{center}
-Note that the former example uses an ATOMLIST and
-the latter uses an SUBSLIST for describing substituents.
-
-Even when no such space is available, the use of
-a command, \verb/\upnobond/ or \verb/\downnobond/,
-give a solution (see \XyMTeX book pages 259--260).
-Compare the following formulas,
-\begin{center}
-\sixheterov{4==\downnobond{N}{COOEt}}{}
-\sixheterov{4==N}{4==COOEt}
-\sixheterov{1==\upnobond{N}{COOEt}}{}
-\sixheterov{1==N}{1==COOEt}
-\end{center}
-generated by the code,
-\begin{verbatim}
-\sixheterov{4==\downnobond{N}{COOEt}}{}
-\sixheterov{4==N}{4==COOEt}
-\sixheterov{1==\upnobond{N}{COOEt}}{}
-\sixheterov{1==N}{1==COOEt}
-\end{verbatim}
-
-These examples show that a substituent (e.g. NCOOEt) can
-be regarded as a component for atom replacement using a ATOMLIST.
-This methodology can be applied to a case in which
-such a substituent is generated by the ``yl''-function or
-by such a linking command as \verb/\ryl/ or \verb/\lyl/.
-The following example shows the use the \verb/\ryl/ command
-in the ATOMLIST of \verb/\sixheteroh/.
-\begin{verbatim}
-\sixheteroh{4h==\ryl(4==NCOO){4==\bzdrh{1==(yl)}}}{}
-\hskip2cm
-\sixheterov{3h==\ryl(4==NCOO){4==\bzdrh{1==(yl)}}}{}
-\hskip2cm
-\sixheterov{4h==\ryl(0==N){8==\bzdrv{1==(yl)}}}{}
-\end{verbatim}
-\begin{center}
-\sixheteroh{4h==\ryl(4==NCOO){4==\bzdrh{1==(yl)}}}{}
-\hskip2cm
-\sixheterov{3h==\ryl(4==NCOO){4==\bzdrh{1==(yl)}}}{}
-\hskip2cm
-\sixheterov{4h==\ryl(0==N){8==\bzdrv{1==(yl)}}}{}
-
-\vspace*{1cm}
-\end{center}
-
-A bond bewtween a COO unit and a phenyl group is frequently
-omitted. For this purpose, we use command \verb/\ayl/
-defined as
-\begin{verbatim}
-\makeatletter
-\def\ayl{\@ifnextchar({\@ayl@}{\@ayl@(10,40)}}
-\def\@ayl@(#1,#2)#3{%
-\begingroup\yl@xdiff=0 \yl@ydiff=0%
-\kern#1\unitlength\raise#2\unitlength\hbox to0pt{#3\hss}%
-\endgroup}
-\makeatother
-\end{verbatim}
-Thereby, we have the following examples.
-\begin{verbatim}
-\sixheteroh{4==NCOO\ayl{\bzdrh{1==(yl)}}}{}
-\hskip2cm
-\sixheterov{3==NCOO\ayl{\bzdrh{1==(yl)}}}{}
-\hskip2cm
-\sixheterov{4==\downnobond{N}{COO\ayl{\bzdrh{1==(yl)}}}}{}
-\end{verbatim}
-\begin{center}
-\sixheteroh{4==NCOO\ayl{\bzdrh{1==(yl)}}}{}
-\hskip2cm
-\sixheterov{3==NCOO\ayl{\bzdrh{1==(yl)}}}{}
-\hskip2cm
-\sixheterov{4==\downnobond{N}{COO\ayl{\bzdrh{1==(yl)}}}}{}
-\end{center}
-
-\begin{verbatim}
-\tetramethylene[a]{3==\downnobond{N}{COO\ayl{\bzdrh{1==(yl)}}}}{}
-\hskip2cm
-\tetramethylene[a]{3==N}{3==COO\ayl{\bzdrh{1==(yl)}}}
-\end{verbatim}
-\begin{center}
-\tetramethylene[a]{3==\downnobond{N}{COO\ayl{\bzdrh{1==(yl)}}}}{}
-\hskip2cm
-\tetramethylene[a]{3==N}{3==COO\ayl{\bzdrh{1==(yl)}}}
-\end{center}
-
-
-\endinput
-
-
-\begin{verbatim}
-\end{verbatim}
-\begin{center}
-\end{center}
-
-
-\begin{verbatim}
-\end{verbatim}
-\begin{quotation}
-\end{quotation}
-
- \ No newline at end of file