summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/xsim/examples/xsim.texsx-13635.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/xsim/examples/xsim.texsx-13635.tex')
-rw-r--r--Master/texmf-dist/doc/latex/xsim/examples/xsim.texsx-13635.tex70
1 files changed, 70 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/xsim/examples/xsim.texsx-13635.tex b/Master/texmf-dist/doc/latex/xsim/examples/xsim.texsx-13635.tex
new file mode 100644
index 00000000000..3b52ce46b24
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/xsim/examples/xsim.texsx-13635.tex
@@ -0,0 +1,70 @@
+% https://tex.stackexchange.com/q/13635/
+\documentclass{article}
+\usepackage{xsim}
+
+\DeclareExerciseEnvironmentTemplate{theorem:remark}
+ {
+ \par\addvspace{\baselineskip}
+ \noindent
+ \textit{%
+ \IfInsideSolutionF{\XSIMmixedcase{\GetExerciseName}~}%
+ \GetExerciseProperty{counter}}%
+ \GetExercisePropertyT{subtitle}{ \textup{(#1)}}%
+ . %
+ }
+ {\par\addvspace{\baselineskip}}
+
+\DeclareExerciseHeadingTemplate{exercises}{\subsection*{Exercises}}
+
+\xsimsetup{
+ exercise/template = theorem:remark ,
+ exercise/within = section ,
+ exercise/the-counter = \thesection.\arabic{exercise} ,
+ print-collection/headings = true ,
+ print-collection/headings-template = exercises
+}
+
+\DeclareExerciseCollection{prime numbers}
+\DeclareExerciseCollection{Zeta function}
+
+\begin{document}
+
+\collectexercises{prime numbers}
+\section{Prime Numbers}
+
+A \emph{prime number} is a positive integer other than $1$ that is only
+divisible by $1$ and itself.
+
+\begin{exercise}[subtitle=Euclid's Theorem]
+ \label{ex:euclid}
+ Show that there are infinitely many prime numbers.
+\end{exercise}
+
+As you will show in Exercise \ref{ex:euclid}, there are infinitely many
+primes. The number of primes that are smaller than a given natural number $n$
+is denoted $\pi(n)$.
+
+\begin{exercise}
+ Find an asymptotic formula for $\pi(n)$. \emph{Hint:} You might find
+ Exercise \ref{ex:zeta} helpful.
+\end{exercise}
+\collectexercisesstop{prime numbers}
+
+\printcollection{prime numbers}
+
+\collectexercises{Zeta function}
+\section{Zeta function}
+
+The zeta function is given by $\zeta(s) = \sum_{n=1}^\infty n^{-s}$, where $s$
+is a complex number with real part bigger than $1$.
+\begin{exercise}\label{ex:zeta}
+ Extend $\zeta$ as far as possible and find all zeros
+ of the function.
+\end{exercise}
+For example $\zeta(2) = \frac{\pi^2}{6}$.
+
+\collectexercisesstop{Zeta function}
+
+\printcollection{Zeta function}
+
+\end{document}