summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-intersec.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-intersec.tex')
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-intersec.tex390
1 files changed, 390 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-intersec.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-intersec.tex
new file mode 100644
index 00000000000..70492509f7f
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-intersec.tex
@@ -0,0 +1,390 @@
+\section{Intersections}
+
+It is possible to determine the coordinates of the points of intersection between two straight lines, a straight line and a circle, and two circles.
+
+The associated commands have no optional arguments and the user must determine the existence of the intersection points himself.
+
+\subsection{Intersection de deux droites}
+
+ \begin{NewMacroBox}{tkzInterLL}{\parg{$A,B$}\parg{$C,D$}}
+Defines the intersection point \tkzname{tkzPointResult} of the two lines $(AB)$ and $(CD)$. The known points are given in pairs (two per line) in brackets, and the resulting point can be retrieved with the macro \tkzcname{tkzDefPoint}.
+
+\end{NewMacroBox}
+
+\medskip
+\subsubsection{Example of intersection between two straight lines}
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[rotate=-45,scale=.75]
+ \tkzDefPoint(2,1){A}
+ \tkzDefPoint(6,5){B}
+ \tkzDefPoint(3,6){C}
+ \tkzDefPoint(5,2){D}
+ \tkzDrawLines(A,B C,D)
+ \tkzInterLL(A,B)(C,D)
+ \tkzGetPoint{I}
+ \tkzDrawPoints[color=blue](A,B,C,D)
+ \tkzDrawPoint[color=red](I)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Intersection of a straight line and a circle} % (fold)
+\label{sub:intersection_d_une_droite_et_d_un_cercle}
+
+As before, the line is defined by a couple of points. The circle
+ is also defined by a couple:
+\begin{itemize}
+\item $(O,C)$ which is a pair of points, the first is the centre and the second is any point on the circle.
+\item $(O,r)$ The $r$ measure is the shelf measure. It is expressed soint en \emph{cm}, that is to say in \emph{pt}.
+\end{itemize}
+
+\begin{NewMacroBox}{tkzInterLC}{\oarg{options}\parg{$A,B$}\parg{$O,C$} or \parg{$O,r$} or \parg{$O,C,D$}}
+So the arguments are two couples.
+
+\medskip
+\begin{tabular}{lll}
+\toprule
+options & default & definition \\
+\midrule
+\TOline{N} {N} { (O,C) determines the circle}
+\TOline{R} {N} { (O, 1 cm) ou (O, 120 pt)}
+\TOline{with nodes}{N} { (O,C,D) CD is a radius}
+\bottomrule
+\end{tabular}
+
+\medskip
+The macro defines the intersection points $I$ and $J$ of the line $(AB)$ and the center circle $O$ with radius $r$ if they exist; otherwise, an error will be reported in the .log file.
+\end{NewMacroBox}
+
+\subsubsection{Simple example of a line-circle intersection}
+
+In the following example, the drawing of the circle uses two points and the intersection of the straight line and the circle uses two pairs of points
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[scale=.75]
+ \tkzInit[xmax=5,ymax=4]
+ \tkzDefPoint(1,1){O}
+ \tkzDefPoint(0,4){A}
+ \tkzDefPoint(5,0){B}
+ \tkzDefPoint(3,3){C}
+ \tkzInterLC(A,B)(O,C) \tkzGetPoints{D}{E}
+ \tkzDrawCircle(O,C)
+ \tkzDrawPoints[color=blue](O,A,B,C)
+ \tkzDrawPoints[color=red](D,E)
+ \tkzDrawLine(A,B)
+ \tkzLabelPoints[above right](O,A,B,C,D,E)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{More complex example of a line-circle intersection}
+\url{http://gogeometry.com/problem/p190_tangent_circle}
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[scale=.75]
+ \tkzDefPoint(0,0){A}
+ \tkzDefPoint(8,0){B}
+ \tkzDefMidPoint(A,B)
+ \tkzGetPoint{O}
+ \tkzDrawCircle(O,B)
+ \tkzDefMidPoint(O,B)
+ \tkzGetPoint{O'}
+ \tkzDrawCircle(O',B)
+ \tkzDefTangent[from=A](O',B)
+ \tkzGetSecondPoint{E}
+ \tkzInterLC(A,E)(O,B)
+ \tkzGetSecondPoint{D}
+ \tkzDefPointBy[projection=onto A--B](D)
+ \tkzGetPoint{F}
+ \tkzMarkRightAngle(D,F,B)
+ \tkzDrawSegments(A,D A,B D,F)
+ \tkzDrawSegments[color=red,line width=1pt,
+ opacity=.4](A,O F,B)
+ \tkzDrawPoints(A,B,O,O',E,D)
+ \tkzLabelPoints(A,B,O,O',E,D)
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\newpage
+\subsubsection{Circle defined by a center and a measure, and special cases}
+Let's look at some special cases like straight lines tangent to the circle.
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[scale=.5]
+ \tkzDefPoint(0,8){A} \tkzDefPoint(8,0){B}
+ \tkzDefPoint(8,8){C} \tkzDefPoint(4,4){I}
+ \tkzDefPoint(2,7){E} \tkzDefPoint(6,4){F}
+ \tkzDrawCircle[R](I,4 cm)
+ \tkzInterLC[R](A,C)(I,4 cm) \tkzGetPoints{I1}{I2}
+ \tkzInterLC[R](B,C)(I,4 cm) \tkzGetPoints{J1}{J2}
+ \tkzInterLC[R](A,B)(I,4 cm) \tkzGetPoints{K1}{K2}
+ \tkzDrawPoints[color=red](I1,J1,K1,K2)
+ \tkzDrawLines(A,B B,C A,C)
+ \tkzInterLC[R](E,F)(I,4 cm) \tkzGetPoints{I2}{J2}
+ \tkzDrawPoints[color=blue](E,F)
+ \tkzDrawPoints[color=red](I2,J2)
+ \tkzDrawLine(I2,J2)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{More complex example}
+\tkzHandBomb\ Be careful with the syntax. First of all, calculations for the points can be done during the passage of the arguments, but the syntax of \tkzname{xfp} must be respected. You can see that I use the term \tkzname{pi} because \NamePack{xfp} works in radians!. Furthermore, when calculations require the use of parentheses, they must be inserted in a group... \TEX \{ \dots \}.
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[scale=1.25]
+ \tkzDefPoint(0,1){J}
+ \tkzDefPoint(0,0){O}
+ \tkzDrawArc[R,line width=1pt,color=red](J,2.5 cm)(180,0)
+ \foreach \i in {0,-5,-10,...,-85,-90}{
+ \tkzDefPoint({2.5*cosd(\i)},{1+2.5*sind(\i)}){P}
+ \tkzDrawSegment[color=orange](J,P)
+ \tkzInterLC[R](P,J)(O,1 cm)
+ \tkzGetPoints{M}{N}
+ \tkzDrawPoints[red](N)
+ }
+ \foreach \i in {-90,-95,...,-175,-180}{
+ \tkzDefPoint({2.5*cosd(\i)},{1+2.5*sind(\i)}){P}
+ \tkzDrawSegment[color=orange](J,P)
+ \tkzInterLC[R](P,J)(O,1 cm)
+ \tkzGetPoints{M}{N}
+ \tkzDrawPoints[red](M)
+ }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Calculation of radius dimension}
+ With \tkzname{pgfmath} and \tkzcname{pgfmathsetmacro}
+
+The radius measurement may be the result of a calculation that is not done within the intersection macro, but before.
+A length can be calculated in several ways. It is possible of course,
+ to use the module \tkzname{pgfmath} and the macro \tkzcname{pgfmathsetmacro}. In some cases, the results obtained are not precise enough, so the following calculation $0.0002 \div 0.0001$ gives $1.98$ with pgfmath while xfp will give $2$.
+
+\subsubsection{Calculation of radius dimension 1}
+With \tkzname{xfp} and \tkzcname{fpeval}
+
+\begin{tkzexample}[latex=7cm,small]
+ \begin{tikzpicture}
+ \tkzDefPoint(2,2){A}
+ \tkzDefPoint(5,4){B}
+ \tkzDefPoint(4,4){O}
+ \edef\tkzLen{\fpeval{0.0002/0.0001}}
+ \tkzDrawCircle[R](O,\tkzLen cm)
+ \tkzInterLC[R](A,B)(O, \tkzLen cm)
+ \tkzGetPoints{I}{J}
+ \tkzDrawPoints[color=blue](A,B)
+ \tkzDrawPoints[color=red](I,J)
+ \tkzDrawLine(I,J)
+\end{tikzpicture}
+ \end{tkzexample}
+
+\subsubsection{Calculation of radius dimension 2}
+ With \TEX\ and \tkzcname{tkzLength}.
+
+ This dimension was created with \tkzcname{newdimen}. 2 cm has been transformed into points. It is of course possible to use \TEX to calculate.
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \tkzDefPoints{2/2/A,5/4/B,4/4/0}
+ \tkzLength=2cm
+ \tkzDrawCircle[R](O,\tkzLength)
+ \tkzInterLC[R](A,B)(O,\tkzLength)
+ \tkzGetPoints{I}{J}
+ \tkzDrawPoints[color=blue](A,B)
+ \tkzDrawPoints[color=red](I,J)
+ \tkzDrawLine(I,J)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Squares in half a disc}
+A Sangaku look! It is a question of proving that one can inscribe in a half-disc, two squares, and to determine the length of their respective sides according to the radius.
+
+\begin{tkzexample}[latex=6cm,small]
+\begin{tikzpicture}[scale=.75]
+ \tkzDefPoints{0/0/A,8/0/B,4/0/I}
+ \tkzDefSquare(A,B) \tkzGetPoints{C}{D}
+ \tkzInterLC(I,C)(I,B)\tkzGetPoints{E'}{E}
+ \tkzInterLC(I,D)(I,B)\tkzGetPoints{F'}{F}
+ \tkzDefPointsBy[projection = onto A--B](E,F){H,G}
+ \tkzDefPointsBy[symmetry = center H](I){J}
+ \tkzDefSquare(H,J)\tkzGetPoints{K}{L}
+ \tkzDrawSector[fill=brown!30](I,B)(A)
+ \tkzFillPolygon[color=red!40](H,E,F,G)
+ \tkzFillPolygon[color=blue!40](H,J,K,L)
+ \tkzDrawPolySeg[color=red](H,E,F,G)
+ \tkzDrawPolySeg[color=red](J,K,L)
+ \tkzDrawPoints(E,G,H,F,J,K,L)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Option "with nodes"}
+\begin{tkzexample}[latex=8cm,small]
+\begin{tikzpicture}[scale=.75]
+\tkzDefPoints{0/0/A,4/0/B,1/1/D,2/0/E}
+\tkzDefTriangle[equilateral](A,B)
+\tkzGetPoint{C}
+\tkzDrawCircle(C,A)
+\tkzInterLC[with nodes](D,E)(C,A,B)
+\tkzGetPoints{F}{G}
+\tkzDrawPolygon(A,B,C)
+\tkzDrawPoints(A,...,G)
+\tkzDrawLine(F,G)
+\end{tikzpicture}
+\end{tkzexample}
+
+\clearpage \newpage
+\subsection{Intersection of two circles}
+
+The most frequent case is that of two circles defined by their center and a point, but as before the option \tkzname{R} allows to use the radius measurements.
+
+\begin{NewMacroBox}{tkzInterCC}{\oarg{options}\parg{$O,A/r$}\parg{$O',A'/r'$}\marg{$I$}\marg{$J$}}
+
+\medskip
+\begin{tabular}{lll}
+\toprule
+options & defect & definition \\
+\midrule
+\TOline{N} {N} {OA and O'A' are radii, O and O' are the centres}
+\TOline{R} {N} {$r$ et $r'$ shave dimensions and measure the radii}
+\TOline{with nodes} {N} {$r$ et $r'$ are dimensions and measure the radii}
+\end{tabular}
+
+\medskip
+
+This macro defines the intersection point(s) $I$ and $J$ of the two center circles $O$ and $O'$. If the two circles do not have a common point then the macro ends with an error that is not handled. \\
+It is also possible to use directly \tkzcname{tkzInterCCN} and \tkzcname{tkzInterCCR}.
+\end{NewMacroBox}
+
+
+\subsubsection{Construction of an equilateral triangle}
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[trim left=-1cm,scale=.5]
+ \tkzDefPoint(1,1){A}
+ \tkzDefPoint(5,1){B}
+ \tkzInterCC(A,B)(B,A)\tkzGetPoints{C}{D}
+ \tkzDrawPoint[color=black](C)
+ \tkzDrawCircle[dashed](A,B)
+ \tkzDrawCircle[dashed](B,A)
+ \tkzCompass[color=red](A,C)
+ \tkzCompass[color=red](B,C)
+ \tkzDrawPolygon(A,B,C)
+ \tkzMarkSegments[mark=s|](A,C B,C)
+ \tkzLabelPoints[](A,B)
+ \tkzLabelPoint[above](C){$C$}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Example a mediator}
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[scale=.5]
+ \tkzDefPoint(0,0){A}
+ \tkzDefPoint(2,2){B}
+ \tkzDrawCircle[color=blue](B,A)
+ \tkzDrawCircle[color=blue](A,B)
+ \tkzInterCC(B,A)(A,B)\tkzGetPoints{M}{N}
+ \tkzDrawLine(A,B)
+ \tkzDrawPoints(M,N)
+ \tkzDrawLine[color=red](M,N)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{An isosceles triangle.}
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[rotate=120,scale=.75]
+ \tkzDefPoint(1,2){A}
+ \tkzDefPoint(4,0){B}
+ \tkzInterCC[R](A,4cm)(B,4cm)
+ \tkzGetPoints{C}{D}
+ \tkzDrawCircle[R,dashed](A,4 cm)
+ \tkzDrawCircle[R,dashed](B,4 cm)
+ \tkzCompass[color=red](A,C)
+ \tkzCompass[color=red](B,C)
+ \tkzDrawPolygon(A,B,C)
+ \tkzDrawPoints[color=blue](A,B,C)
+ \tkzMarkSegments[mark=s|](A,C B,C)
+ \tkzLabelPoints[](A,B)
+ \tkzLabelPoint[above](C){$C$}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Segment trisection}
+ The idea here is to divide a segment with a ruler and a compass into three segments of equal length.
+
+\begin{tkzexample}[latex=9cm,small]
+\begin{tikzpicture}[scale=.8]
+ \tkzDefPoint(0,0){A}
+ \tkzDefPoint(3,2){B}
+ \tkzInterCC(A,B)(B,A)
+ \tkzGetPoints{C}{D}
+ \tkzInterCC(D,B)(B,A)
+ \tkzGetPoints{A}{E}
+ \tkzInterCC(D,B)(A,B)
+ \tkzGetPoints{F}{B}
+ \tkzInterLC(E,F)(F,A)
+ \tkzGetPoints{D}{G}
+ \tkzInterLL(A,G)(B,E)
+ \tkzGetPoint{O}
+ \tkzInterLL(O,D)(A,B)
+ \tkzGetPoint{J}
+ \tkzInterLL(O,F)(A,B)
+ \tkzGetPoint{I}
+ \tkzDrawCircle(D,A)
+ \tkzDrawCircle(A,B)
+ \tkzDrawCircle(B,A)
+ \tkzDrawCircle(F,A)
+ \tkzDrawSegments[color=red](O,G
+ O,B O,D O,F)
+ \tkzDrawPoints(A,B,D,E,F,G,I,J)
+ \tkzLabelPoints(A,B,D,E,F,G,I,J)
+ \tkzDrawSegments[blue](A,B B,D A,D%
+ A,F F,G E,G B,E)
+ \tkzMarkSegments[mark=s|](A,I I,J J,B)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Angle trisection}
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \tikzset{arc/.style={color=gray,style=dashed}}
+ \tkzDefPoints{0/0/a,0/5/I,5/0/J}
+ \tkzDrawArc[angles](O,I)(0,90)
+ \tkzDrawArc[angles,/tikz/arc](I,O)(90,180)
+ \tkzDrawArc[angles,/tikz/arc](J,O)(-90,0)
+ \tkzInterCC(O,I)(I,O)\tkzGetPoints{B}{C}
+ \tkzInterCC(O,I)(J,O)\tkzGetPoints{D}{A}
+ \tkzInterCC(I,O)(J,O)\tkzGetPoints{L}{K}
+ \tkzDrawPoints(A,B,K)
+ \foreach \point in {I,A,B,J,K}{%
+ \tkzDrawSegment(O,\point)}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{with the option \tkzimp{with nodes}}
+\begin{tkzexample}[latex=6cm,small]
+\begin{tikzpicture}[scale=.5]
+ \tkzDefPoints{0/0/a,0/5/B,5/0/C}
+ \tkzDefPoint(54:5){F}
+ \tkzDrawCircle[color=gray](A,C)
+ \tkzInterCC[with nodes](A,A,C)(C,B,F)
+ \tkzGetPoints{a}{e}
+ \tkzInterCC(A,C)(a,e) \tkzGetFirstPoint{b}
+ \tkzInterCC(A,C)(b,a) \tkzGetFirstPoint{c}
+ \tkzInterCC(A,C)(c,b) \tkzGetFirstPoint{d}
+ \tkzDrawPoints(a,b,c,d,e)
+ \tkzDrawPolygon[color=red](a,b,c,d,e)
+ \foreach \vertex/\num in {a/36,b/108,c/180,
+ d/252,e/324}{%
+ \tkzDrawPoint(\vertex)
+ \tkzLabelPoint[label=\num:$\vertex$](\vertex){}
+ \tkzDrawSegment[color=gray,style=dashed](A,\vertex)
+ }
+\end{tikzpicture}
+\end{tkzexample}
+
+ \endinput
+