summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-triangles.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-triangles.tex')
-rw-r--r--Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-triangles.tex403
1 files changed, 403 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-triangles.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-triangles.tex
new file mode 100644
index 00000000000..038e93892cb
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-triangles.tex
@@ -0,0 +1,403 @@
+\section{Triangles}
+
+\subsection{Definition of triangles \tkzcname{tkzDefTriangle}}
+The following macros will allow you to define or construct a triangle from \tkzname{at least} two points.
+
+ At the moment, it is possible to define the following triangles:
+ \begin{itemize}
+\item \tkzname{two angles} determines a triangle with two angles;
+\item \tkzname{equilateral} determines an equilateral triangle;
+\item \tkzname{half} determines a right-angled triangle such that the ratio of the measurements of the two adjacent sides to the right angle is equal to $2$;
+\item \tkzname{pythagore} determines a right-angled triangle whose side measurements are proportional to 3, 4 and 5;
+\item \tkzname{school} determines a right-angled triangle whose angles are 30, 60 and 90 degrees;
+\item \tkzname{golden} determines a right-angled triangle such that the ratio of the measurements on the two adjacent sides to the right angle is equal to $\Phi=1.618034$, I chose "golden triangle" as the denomination because it comes from the golden rectangle and I kept the denomination "gold triangle" or "Euclid's triangle" for the isosceles triangle whose angles at the base are 72 degrees;
+
+\item \tkzname{euclide} or \tkzname{gold} for the gold triangle;
+
+\item \tkzname{cheops} determines a third point such that the triangle is isosceles with side measurements proportional to $2$, $\Phi$ and $\Phi$.
+\end{itemize}
+
+\begin{NewMacroBox}{tkzDefTriangle}{\oarg{local options}\parg{A,B}}%
+The points are ordered because the triangle is constructed following the direct direction of the trigonometric circle. This macro is either used in partnership with \tkzcname{tkzGetPoint} or by using \tkzname{tkzPointResult} if it is not necessary to keep the name.
+
+\medskip
+\begin{tabular}{lll}%
+\toprule
+options & default & definition \\
+\midrule
+\TOline{two angles= \#1 and \#2}{no defaut}{triangle knowing two angles}
+\TOline{equilateral} {no defaut}{equilateral triangle }
+\TOline{pythagore}{no defaut}{proportional to the pythagorean triangle 3-4-5}
+\TOline{school} {no defaut}{angles of 30, 60 and 90 degrees }
+\TOline{gold}{no defaut}{angles of 72, 72 and 36 degrees, $A$ is the apex}
+\TOline{euclide} {no defaut}{same as above but $[AB]$ is the base}
+\TOline{golden} {no defaut}{B rectangle and $AB/AC = \Phi$}
+\TOline{cheops} {no defaut}{AC=BC, AC and BC are proportional to $2$ and $\Phi$.}
+\bottomrule
+\end{tabular}
+
+\medskip
+\tkzcname{tkzGetPoint} allows you to store the point otherwise \tkzname{tkzPointResult} allows for immediate use.
+\end{NewMacroBox}
+
+\subsubsection{Option \tkzname{golden}}
+\begin{tkzexample}[latex=6 cm,small]
+\begin{tikzpicture}[scale=.8]
+\tkzInit[xmax=5,ymax=3] \tkzClip[space=.5]
+ \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
+ \tkzDefTriangle[golden](A,B)\tkzGetPoint{C}
+ \tkzDrawPolygon(A,B,C) \tkzDrawPoints(A,B,C)
+ \tkzLabelPoints(A,B) \tkzDrawBisector(A,C,B)
+ \tkzLabelPoints[above](C)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Option \tkzname{equilateral}}
+\begin{tkzexample}[latex=7 cm,small]
+\begin{tikzpicture}
+ \tkzDefPoint(0,0){A}
+ \tkzDefPoint(4,0){B}
+ \tkzDefTriangle[equilateral](A,B)
+ \tkzGetPoint{C}
+ \tkzDrawPolygon(A,B,C)
+ \tkzDefTriangle[equilateral](B,A)
+ \tkzGetPoint{D}
+ \tkzDrawPolygon(B,A,D)
+ \tkzDrawPoints(A,B,C,D)
+ \tkzLabelPoints(A,B,C,D)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Option \tkzname{gold} or \tkzname{euclide} }
+\begin{tkzexample}[latex=7 cm,small]
+\begin{tikzpicture}
+ \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
+ \tkzDefTriangle[euclide](A,B)\tkzGetPoint{C}
+ \tkzDrawPolygon(A,B,C)
+ \tkzDrawPoints(A,B,C)
+ \tkzLabelPoints(A,B)
+ \tkzLabelPoints[above](C)
+ \tkzDrawBisector(A,C,B)
+\end{tikzpicture}
+\end{tkzexample}
+
+\newpage
+\subsection{Drawing of triangles}
+ \begin{NewMacroBox}{tkzDrawTriangle}{\oarg{local options}\parg{A,B}}%
+Macro similar to the previous macro but the sides are drawn.
+
+\medskip
+\begin{tabular}{lll}%
+\toprule
+options & default & definition \\
+\midrule
+\TOline{two angles= \#1 and \#2}{equilateral}{triangle knowing two angles}
+\TOline{equilateral} {equilateral}{equilateral triangle }
+\TOline{pythagore}{equilateral}{proportional to the pythagorean triangle 3-4-5}
+\TOline{school} {equilateral}{the angles are 30, 60 and 90 degrees }
+\TOline{gold}{equilateral}{the angles are 72, 72 and 36 degrees, $A$ is the vertex }
+\TOline{euclide} {equilateral}{identical to the previous one but $[AB]$ is the base}
+\TOline{golden} {equilateral}{B rectangle and $AB/AC = \Phi$}
+\TOline{cheops} {equilateral}{isosceles in C and $AC/AB = \frac{\Phi}{2}$}
+\bottomrule
+ \end{tabular}
+
+\medskip
+In all its definitions, the dimensions of the triangle depend on the two starting points.
+\end{NewMacroBox}
+
+\subsubsection{Option \tkzname{pythagore}}
+This triangle has sides whose lengths are proportional to 3, 4 and 5.
+
+\begin{tkzexample}[latex=6 cm,small]
+\begin{tikzpicture}
+ \tkzDefPoint(0,0){A}
+ \tkzDefPoint(4,0){B}
+ \tkzDrawTriangle[pythagore,fill=blue!30](A,B)
+ \tkzMarkRightAngles(A,B,tkzPointResult)
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Option \tkzname{school}}
+The angles are 30, 60 and 90 degrees.
+
+\begin{tkzexample}[latex=6 cm,small]
+\begin{tikzpicture}
+ \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
+ \tkzDrawTriangle[school,fill=red!30](A,B)
+ \tkzMarkRightAngles(tkzPointResult,B,A)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Option \tkzname{golden}}
+\begin{tkzexample}[latex=6 cm,small]
+\begin{tikzpicture}[scale=1]
+ \tkzDefPoint(0,-10){M}
+ \tkzDefPoint(3,-10){N}
+ \tkzDrawTriangle[golden,color=brown](M,N)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Option \tkzname{gold}}
+\begin{tkzexample}[latex=6 cm,small]
+\begin{tikzpicture}[scale=1]
+ \tkzDefPoint(5,-5){I}
+ \tkzDefPoint(8,-5){J}
+ \tkzDrawTriangle[gold,color=blue!50](I,J)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Option \tkzname{euclide}}
+\begin{tkzexample}[latex=6 cm,small]
+ \begin{tikzpicture}[scale=1]
+ \tkzDefPoint(10,-5){K}
+ \tkzDefPoint(13,-5){L}
+ \tkzDrawTriangle[euclide,color=blue,fill=blue!10](K,L)
+ \end{tikzpicture}
+\end{tkzexample}
+
+
+\section{Specific triangles with \tkzcname{tkzDefSpcTriangle}}
+
+The centers of some triangles have been defined in the "points" section, here it is a question of determining the three vertices of specific triangles.
+
+\begin{NewMacroBox}{tkzDefSpcTriangle}{\oarg{local options}\parg{A,B,C}}
+The order of the points is important!
+
+
+\medskip
+\begin{tabular}{lll}%
+\toprule
+options & default & definition \\
+\midrule
+\TOline{in or incentral}{centroid}{two-angled triangle}
+\TOline{ex or excentral} {centroid}{equilateral triangle }
+\TOline{extouch}{centroid}{proportional to the pythagorean triangle 3-4-5}
+\TOline{intouch or contact} {centroid}{ 30, 60 and 90 degree angles }
+\TOline{centroid or medial}{centroid}{ angles of 72, 72 and 36 degrees, $A$ is the vertex }
+\TOline{orthic} {centroid}{same as above but $[AB]$ is the base}
+\TOline{feuerbach} {centroid}{B rectangle and $AB/AC = \Phi$}
+\TOline{euler} {centroid}{AC=BC, AC and BC are proportional to $2$ and $\Phi$.}
+\TOline{tangential} {centroid}{AC=BC, AC and BC are proportional to $2$ and $\Phi$.}
+\TOline{name} {no defaut}{AC=BC, AC and BC are proportional to $2$ and $\Phi$.}
+\midrule
+\end{tabular}
+
+\medskip
+\tkzcname{tkzGetPoint} allows you to store the point otherwise \tkzname{tkzPointResult} allows for immediate use.
+\end{NewMacroBox}
+
+\subsubsection{Option \tkzname{medial} or \tkzname{centroid} }
+The geometric centroid of the polygon vertices of a triangle is the point $G$ (sometimes also denoted $M$) which is also the intersection of the triangle's three triangle medians. The point is therefore sometimes called the median point. The centroid is always in the interior of the triangle.\\
+\href{http://mathworld.wolfram.com/TriangleCentroid.html}{Weisstein, Eric W. "Centroid triangle" From MathWorld--A Wolfram Web Resource.}
+
+In the following example, we obtain the Euler circle which passes through the previously defined points.
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[rotate=90,scale=.75]
+ \tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
+ \tkzDefTriangleCenter[centroid](A,B,C)
+ \tkzGetPoint{M}
+ \tkzDefSpcTriangle[medial,name=M](A,B,C){_A,_B,_C}
+ \tkzDrawPolygon[color=blue](A,B,C)
+ \tkzDrawSegments[dashed,red](A,M_A B,M_B C,M_C)
+ \tkzDrawPolygon[color=red](M_A,M_B,M_C)
+ \tkzDrawPoints(A,B,C,M)
+ \tkzDrawPoints[red](M_A,M_B,M_C)
+\tkzAutoLabelPoints[center=M,font=\scriptsize]%
+(A,B,C,M_A,M_B,M_C)
+ \tkzLabelPoints[font=\scriptsize](M)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Option \tkzname{in} or \tkzname{incentral} }
+
+The incentral triangle is the triangle whose vertices are determined by
+the intersections of the reference triangle’s angle bisectors with the
+respective opposite sides.\\
+\href{http://mathworld.wolfram.com/ContactTriangle.html}{Weisstein, Eric W. "Incentral triangle" From MathWorld--A Wolfram Web Resource.}
+
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[scale=1]
+ \tkzDefPoints{ 0/0/A,5/0/B,1/3/C}
+ \tkzDefSpcTriangle[in,name=I](A,B,C){_a,_b,_c}
+ \tkzInCenter(A,B,C)\tkzGetPoint{I}
+ \tkzDrawPolygon[red](A,B,C)
+ \tkzDrawPolygon[blue](I_a,I_b,I_c)
+ \tkzDrawPoints(A,B,C,I,I_a,I_b,I_c)
+ \tkzDrawCircle[in](A,B,C)
+ \tkzDrawSegments[dashed](A,I_a B,I_b C,I_c)
+ \tkzAutoLabelPoints[center=I,
+ blue,font=\scriptsize](I_a,I_b,I_c)
+ \tkzAutoLabelPoints[center=I,red,
+ font=\scriptsize](A,B,C,I_a,I_b,I_c)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Option \tkzname{ex} or \tkzname{excentral} }
+
+The excentral triangle of a triangle $ABC$ is the triangle $J_aJ_bJ_c$ with vertices corresponding to the excenters of $ABC$.
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[scale=.6]
+ \tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
+ \tkzDefSpcTriangle[excentral,name=J](A,B,C){_a,_b,_c}
+ \tkzDefSpcTriangle[extouch,name=T](A,B,C){_a,_b,_c}
+ \tkzDrawPolygon[blue](A,B,C)
+ \tkzDrawPolygon[red](J_a,J_b,J_c)
+ \tkzDrawPoints(A,B,C)
+ \tkzDrawPoints[red](J_a,J_b,J_c)
+ \tkzLabelPoints(A,B,C)
+ \tkzLabelPoints[red](J_b,J_c)
+ \tkzLabelPoints[red,above](J_a)
+ \tkzClipBB \tkzShowBB
+ \tkzDrawCircles[gray](J_a,T_a J_b,T_b J_c,T_c)
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Option \tkzname{intouch}}
+The contact triangle of a triangle $ABC$, also called the intouch triangle, is the triangle formed by the points of tangency of the incircle of $ABC$ with $ABC$.\\
+\href{http://mathworld.wolfram.com/ContactTriangle.html}{Weisstein, Eric W. "Contact triangle" From MathWorld--A Wolfram Web Resource.}
+
+We obtain the intersections of the bisectors with the sides.
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[scale=.75]
+ \tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
+ \tkzDefSpcTriangle[intouch,name=X](A,B,C){_a,_b,_c}
+ \tkzInCenter(A,B,C)\tkzGetPoint{I}
+ \tkzDrawPolygon[red](A,B,C)
+ \tkzDrawPolygon[blue](X_a,X_b,X_c)
+ \tkzDrawPoints[red](A,B,C)
+ \tkzDrawPoints[blue](X_a,X_b,X_c)
+ \tkzDrawCircle[in](A,B,C)
+ \tkzAutoLabelPoints[center=I,blue,font=\scriptsize]%
+(X_a,X_b,X_c)
+ \tkzAutoLabelPoints[center=I,red,font=\scriptsize]%
+(A,B,C)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Option \tkzname{extouch}}
+The extouch triangle $T_aT_bT_c$ is the triangle formed by the points of tangency of a triangle $ABC$ with its excircles $J_a$, $J_b$, and $J_c$. The points $T_a$, $T_b$, and $T_c$ can also be constructed as the points which bisect the perimeter of $A_1A_2A_3$ starting at $A$, $B$, and $C$.\\
+\href{http://mathworld.wolfram.com/ExtouchTriangle.html}{Weisstein, Eric W. "Extouch triangle" From MathWorld--A Wolfram Web Resource.}
+
+We obtain the points of contact of the exinscribed circles as well as the triangle formed by the centres of the exinscribed circles.
+
+\begin{tkzexample}[latex=8cm,small]
+\begin{tikzpicture}[scale=.7]
+\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
+\tkzDefSpcTriangle[excentral,
+ name=J](A,B,C){_a,_b,_c}
+\tkzDefSpcTriangle[extouch,
+ name=T](A,B,C){_a,_b,_c}
+\tkzDefTriangleCenter[nagel](A,B,C)
+\tkzGetPoint{N_a}
+\tkzDefTriangleCenter[centroid](A,B,C)
+\tkzGetPoint{G}
+\tkzDrawPoints[blue](J_a,J_b,J_c)
+\tkzClipBB \tkzShowBB
+\tkzDrawCircles[gray](J_a,T_a J_b,T_b J_c,T_c)
+\tkzDrawLines[add=1 and 1](A,B B,C C,A)
+\tkzDrawSegments[gray](A,T_a B,T_b C,T_c)
+\tkzDrawSegments[gray](J_a,T_a J_b,T_b J_c,T_c)
+\tkzDrawPolygon[blue](A,B,C)
+\tkzDrawPolygon[red](T_a,T_b,T_c)
+\tkzDrawPoints(A,B,C,N_a)
+\tkzLabelPoints(N_a)
+\tkzAutoLabelPoints[center=Na,blue](A,B,C)
+\tkzAutoLabelPoints[center=G,red,
+ dist=.4](T_a,T_b,T_c)
+\tkzMarkRightAngles[fill=gray!15](J_a,T_a,B
+ J_b,T_b,C J_c,T_c,A)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Option \tkzname{feuerbach}}
+The Feuerbach triangle is the triangle formed by the three points of tangency of the nine-point circle with the excircles.\\
+\href{http://mathworld.wolfram.com/FeuerbachTriangle.html}{Weisstein, Eric W. "Feuerbach triangle" From MathWorld--A Wolfram Web Resource.}
+
+ The points of tangency define the Feuerbach triangle.
+
+
+\begin{tkzexample}[latex=8cm,small]
+\begin{tikzpicture}[scale=1]
+ \tkzDefPoint(0,0){A}
+ \tkzDefPoint(3,0){B}
+ \tkzDefPoint(0.5,2.5){C}
+ \tkzDefCircle[euler](A,B,C) \tkzGetPoint{N}
+ \tkzDefSpcTriangle[feuerbach,
+ name=F](A,B,C){_a,_b,_c}
+ \tkzDefSpcTriangle[excentral,
+ name=J](A,B,C){_a,_b,_c}
+ \tkzDefSpcTriangle[extouch,
+ name=T](A,B,C){_a,_b,_c}
+ \tkzDrawPoints[blue](J_a,J_b,J_c,F_a,F_b,F_c,A,B,C)
+ \tkzClipBB \tkzShowBB
+ \tkzDrawCircle[purple](N,F_a)
+ \tkzDrawPolygon(A,B,C)
+ \tkzDrawPolygon[blue](F_a,F_b,F_c)
+ \tkzDrawCircles[gray](J_a,F_a J_b,F_b J_c,F_c)
+ \tkzAutoLabelPoints[center=N,dist=.3,
+ font=\scriptsize](A,B,C,F_a,F_b,F_c,J_a,J_b,J_c)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Option \tkzname{tangential}}
+The tangential triangle is the triangle $T_aT_bT_c$ formed by the lines tangent to the circumcircle of a given triangle $ABC$ at its vertices. It is therefore antipedal triangle of $ABC$ with respect to the circumcenter $O$.\\
+\href{http://mathworld.wolfram.com/TangentialTriangle.html}{Weisstein, Eric W. "Tangential Triangle." From MathWorld--A Wolfram Web Resource. }
+
+
+\begin{tkzexample}[latex=8cm,small]
+\begin{tikzpicture}[scale=.5,rotate=80]
+ \tkzDefPoints{0/0/A,6/0/B,1.8/4/C}
+ \tkzDefSpcTriangle[tangential,
+ name=T](A,B,C){_a,_b,_c}
+ \tkzDrawPolygon[red](A,B,C)
+ \tkzDrawPolygon[blue](T_a,T_b,T_c)
+ \tkzDrawPoints[red](A,B,C)
+ \tkzDrawPoints[blue](T_a,T_b,T_c)
+ \tkzDefCircle[circum](A,B,C)
+ \tkzGetPoint{O}
+ \tkzDrawCircle(O,A)
+ \tkzLabelPoints[red](A,B,C)
+ \tkzLabelPoints[blue](T_a,T_b,T_c)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Option \tkzname{euler}}
+The Euler triangle of a triangle $ABC$ is the triangle $E_AE_BE_C$ whose vertices are the midpoints of the segments joining the orthocenter $H$ with the respective vertices. The vertices of the triangle are known as the Euler points, and lie on the nine-point circle.
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[rotate=90,scale=1.25]
+ \tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
+ \tkzDefSpcTriangle[medial,
+ name=M](A,B,C){_A,_B,_C}
+ \tkzDefTriangleCenter[euler](A,B,C)
+ \tkzGetPoint{N} % I= N nine points
+ \tkzDefTriangleCenter[ortho](A,B,C)
+ \tkzGetPoint{H}
+ \tkzDefMidPoint(A,H) \tkzGetPoint{E_A}
+ \tkzDefMidPoint(C,H) \tkzGetPoint{E_C}
+ \tkzDefMidPoint(B,H) \tkzGetPoint{E_B}
+ \tkzDefSpcTriangle[ortho,name=H](A,B,C){_A,_B,_C}
+ \tkzDrawPolygon[color=blue](A,B,C)
+ \tkzDrawCircle(N,E_A)
+ \tkzDrawSegments[blue](A,H_A B,H_B C,H_C)
+ \tkzDrawPoints(A,B,C,N,H)
+ \tkzDrawPoints[red](M_A,M_B,M_C)
+ \tkzDrawPoints[blue]( H_A,H_B,H_C)
+ \tkzDrawPoints[green](E_A,E_B,E_C)
+ \tkzAutoLabelPoints[center=N,font=\scriptsize]%
+(A,B,C,M_A,M_B,M_C,H_A,H_B,H_C,E_A,E_B,E_C)
+\tkzLabelPoints[font=\scriptsize](H,N)
+\tkzMarkSegments[mark=s|,size=3pt,
+ color=blue,line width=1pt](B,E_B E_B,H)
+ \tkzDrawPolygon[color=red](M_A,M_B,M_C)
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\endinput \ No newline at end of file