diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-show.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-show.tex | 211 |
1 files changed, 211 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-show.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-show.tex new file mode 100644 index 00000000000..f52a7494307 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-show.tex @@ -0,0 +1,211 @@ +\section{The Show} + +\subsection{Show the constructions of some lines \tkzcname{tkzShowLine}} + + \begin{NewMacroBox}{tkzShowLine}{\oarg{local options}\parg{pt1,pt2} or \parg{pt1,pt2,pt3}}% +These constructions concern mediatrices, perpendicular or parallel lines passing through a given point and bisectors. The arguments are therefore lists of two or three points. Several options allow the adjustment of the constructions. The idea of this macro comes from \tkzimp{Yves Combe}. + + +\medskip +\begin{tabular}{lll}% +\toprule +options & default & definition \\ +\midrule +\TOline{mediator}{mediator}{displays the constructions of a mediator} +\TOline{perpendicular}{mediator}{constructions for a perpendicular} +\TOline{orthogonal}{mediator}{idem} +\TOline{bisector}{mediator}{constructions for a bisector} +\TOline{K}{1}{circle within a triangle } +\TOline{length}{1}{in cm, length of a arc} +\TOline{ratio} {.5}{arc length ratio} +\TOline{gap}{2}{placing the point of construction} +\TOline{size}{1}{radius of an arc (see bisector)} + \bottomrule +\end{tabular} + +You have to add, of course, all the styles of \TIKZ\ for tracings\dots +\end{NewMacroBox} + +\subsubsection{Example of \tkzcname{tkzShowLine} and \tkzname{parallel}} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoints{-1.5/-0.25/A,1/-0.75/B,-1.5/2/C} + \tkzDrawLine(A,B) + \tkzDefLine[parallel=through C](A,B) \tkzGetPoint{c} + \tkzShowLine[parallel=through C](A,B) + \tkzDrawLine(C,c) \tkzDrawPoints(A,B,C,c) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Example of \tkzcname{tkzShowLine} and \tkzname{perpendicular}} +\begin{tkzexample}[latex=5cm,small] +\begin{tikzpicture} +\tkzDefPoints{0/0/A, 3/2/B, 2/2/C} +\tkzDefLine[perpendicular=through C,K=-.5](A,B) \tkzGetPoint{c} +\tkzShowLine[perpendicular=through C,K=-.5,gap=3](A,B) +\tkzDefPointBy[projection=onto A--B](c)\tkzGetPoint{h} +\tkzMarkRightAngle[fill=lightgray](A,h,C) +\tkzDrawLines[add=.5 and .5](A,B C,c) +\tkzDrawPoints(A,B,C,h,c) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Example of \tkzcname{tkzShowLine} and \tkzname{bisector}} +\begin{tkzexample}[latex=7 cm,small] +\begin{tikzpicture}[scale=1.25] + \tkzDefPoints{0/0/A, 4/2/B, 1/4/C} + \tkzDrawPolygon(A,B,C) + \tkzSetUpCompass[color=brown,line width=.1 pt] + \tkzDefLine[bisector](B,A,C) \tkzGetPoint{a} + \tkzDefLine[bisector](C,B,A) \tkzGetPoint{b} + \tkzInterLL(A,a)(B,b) \tkzGetPoint{I} + \tkzDefPointBy[projection = onto A--B](I) + \tkzGetPoint{H} + \tkzShowLine[bisector,size=2,gap=3,blue](B,A,C) + \tkzShowLine[bisector,size=2,gap=3,blue](C,B,A) + \tkzDrawCircle[radius,color=blue,% + line width=.2pt](I,H) + \tkzDrawSegments[color=red!50](I,tkzPointResult) + \tkzDrawLines[add=0 and -0.3,color=red!50](A,a B,b) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Example of \tkzcname{tkzShowLine} and \tkzname{mediator}} +\begin{tkzexample}[latex=7 cm,small] +\begin{tikzpicture} +\tkzDefPoint(2,2){A} +\tkzDefPoint(5,4){B} +\tkzDrawPoints(A,B) +\tkzShowLine[mediator,color=orange,length=1](A,B) +\tkzGetPoints{i}{j} +\tkzDrawLines[add=-0.1 and -0.1](i,j) +\tkzDrawLines(A,B) +\tkzLabelPoints[below =3pt](A,B) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Constructions of certain transformations \addbs{tkzShowTransformation}} +\begin{NewMacroBox}{tkzShowTransformation}{\oarg{local options}\parg{pt1,pt2} or \parg{pt1,pt2,pt3}}% +These constructions concern orthogonal symmetries, central symmetries, orthogonal projections and translations. Several options allow the adjustment of the constructions. The idea of this macro comes from \tkzimp{Yves Combe}. + +\medskip +\begin{tabular}{lll}% +\toprule +options & default & definition \\ +\midrule +\TOline{reflection= over pt1--pt2}{reflection}{constructions of orthogonal symmetry} +\TOline{symmetry=center pt}{reflection}{constructions of central symmetry} +\TOline{projection=onto pt1--pt2}{reflection}{constructions of a projection} +\TOline{translation=from pt1 to pt2}{reflection}{constructions of a translation} +\TOline{K}{1}{circle within a triangle } +\TOline{length}{1}{arc length} +\TOline{ratio} {.5}{arc length ratio} +\TOline{gap}{2}{placing the point of construction} +\TOline{size}{1}{radius of an arc (see bisector)} +\end{tabular} +\end{NewMacroBox} + +\subsubsection{Example of the use of \tkzcname{tkzShowTransformation}} + + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[scale=.6] + \tkzDefPoint(0,0){O} \tkzDefPoint(2,-2){A} + \tkzDefPoint(70:4){B} \tkzDrawPoints(A,O,B) + \tkzLabelPoints(A,O,B) + \tkzDrawLine[add= 2 and 2](O,A) + \tkzDefPointBy[translation=from O to A](B) + \tkzGetPoint{C} + \tkzDrawPoint[color=orange](C) \tkzLabelPoints(C) + \tkzShowTransformation[translation=from O to A,% + length=2](B) + \tkzDrawSegments[->,color=orange](O,A B,C) + \tkzDefPointBy[reflection=over O--A](B) \tkzGetPoint{E} + \tkzDrawSegment[blue](B,E) + \tkzDrawPoint[color=blue](E)\tkzLabelPoints(E) + \tkzShowTransformation[reflection=over O--A,size=2](B) + \tkzDefPointBy[symmetry=center O](B) \tkzGetPoint{F} + \tkzDrawSegment[color=green](B,F) + \tkzDrawPoint[color=green](F)\tkzLabelPoints(F) + \tkzShowTransformation[symmetry=center O,% + length=2](B) + \tkzDefPointBy[projection=onto O--A](C) + \tkzGetPoint{H} + \tkzDrawSegments[color=magenta](C,H) + \tkzDrawPoint[color=magenta](H)\tkzLabelPoints(H) + \tkzShowTransformation[projection=onto O--A,% + color=red,size=3,gap=-2](C) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Another example of the use of \tkzcname{tkzShowTransformation}} + +You'll find this figure again, but without the construction features. +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.6] + \tkzDefPoints{0/0/A,8/0/B,3.5/10/I} + \tkzDefMidPoint(A,B) \tkzGetPoint{O} + \tkzDefPointBy[projection=onto A--B](I) + \tkzGetPoint{J} + \tkzInterLC(I,A)(O,A) \tkzGetPoints{M'}{M} + \tkzInterLC(I,B)(O,A) \tkzGetPoints{N}{N'} + \tkzDrawSemiCircle[diameter](A,B) + \tkzDrawSegments(I,A I,B A,B B,M A,N) + \tkzMarkRightAngles(A,M,B A,N,B) + \tkzDrawSegment[style=dashed,color=blue](I,J) + \tkzShowTransformation[projection=onto A--B, + color=red,size=3,gap=-3](I) + \tkzDrawPoints[color=red](M,N) + \tkzDrawPoints[color=blue](O,A,B,I) + \tkzLabelPoints(O) + \tkzLabelPoints[above right](N,I) + \tkzLabelPoints[below left](M,A) +\end{tikzpicture} +\end{tkzexample} + +%<----------------------------------------------------------------------> +\section{Different points} +%<----------------------------------------------------------------------> + +\subsection{\tkzcname{tkzDefEquiPoints}} +This macro makes it possible to obtain two points on a straight line equidistant from a given point. + +\begin{NewMacroBox}{tkzDefEquiPoints}{\oarg{local options}\parg{pt1,pt2}}% +\begin{tabular}{lll}% +arguments & default & definition \\ +\midrule +\TAline{(pt1,pt2)}{no default}{unordered list of two items} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll}% +\toprule \\ +options & default & definition \\ +\midrule +\TOline{dist} {2 cm} {half the distance between the two points} +\TOline{from=pt} {no default} {reference point} +\TOline{show} {false} {if true displays compass traces} +\TOline{/compass/delta} {0} {compass trace size } + +\end{tabular} +\end{NewMacroBox} + +\subsubsection{Using \tkzcname{tkzDefEquiPoints} with options} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzSetUpCompass[color=purple,line width=1pt] + \tkzDefPoint(0,1){A} + \tkzDefPoint(5,2){B} + \tkzDefPoint(3,4){C} + \tkzDefEquiPoints[from=C,dist=1,show, + /tkzcompass/delta=20](A,B) + \tkzGetPoints{E}{H} + \tkzDrawLines[color=blue](C,E C,H A,B) + \tkzDrawPoints[color=blue](A,B,C) + \tkzDrawPoints[color=red](E,H) + \tkzLabelPoints(E,H) + \tkzLabelPoints[color=blue](A,B,C) +\end{tikzpicture} +\end{tkzexample} +\endinput
\ No newline at end of file |