diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/thuthesis/data/appendix01.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/thuthesis/data/appendix01.tex | 21 |
1 files changed, 11 insertions, 10 deletions
diff --git a/Master/texmf-dist/doc/latex/thuthesis/data/appendix01.tex b/Master/texmf-dist/doc/latex/thuthesis/data/appendix01.tex index a98b36a2073..f34536ed5b7 100644 --- a/Master/texmf-dist/doc/latex/thuthesis/data/appendix01.tex +++ b/Master/texmf-dist/doc/latex/thuthesis/data/appendix01.tex @@ -20,25 +20,26 @@ throughout the book$^{[2,3]}$. \section{Single-Objective Programming} The general form of single-objective programming (SOP) is written as follows, -\begin{equation}\tag*{(123)} % 如果附录中的公式不想让它出现在公式索引中,那就请 - % 用 \tag*{xxxx} +\begin{equation*} % 如果附录中的公式不想让它出现在公式索引中,那就请 + % 用 equation* \left\{\begin{array}{l} \max \,\,f(x)\\[0.1 cm] \mbox{subject to:} \\ [0.1 cm] \qquad g_j(x)\le 0,\quad j=1,2,\cdots,p \end{array}\right. -\end{equation} +\end{equation*} which maximizes a real-valued function $f$ of $x=(x_1,x_2,\cdots,x_n)$ subject to a set of constraints. +\newcommand\Real{\mathbf{R}} \newtheorem{mpdef}{Definition}[chapter] \begin{mpdef} In SOP, we call $x$ a decision vector, and $x_1,x_2,\cdots,x_n$ decision variables. The function $f$ is called the objective function. The set -\begin{equation}\tag*{(456)} % 这里同理,其它不再一一指定。 -S=\left\{x\in\Re^n\bigm|g_j(x)\le 0,\,j=1,2,\cdots,p\right\} -\end{equation} +\begin{equation*} +S=\left\{x\in\Real^n\bigm|g_j(x)\le 0,\,j=1,2,\cdots,p\right\} +\end{equation*} is called the feasible set. An element $x$ in $S$ is called a feasible solution. \end{mpdef} @@ -127,15 +128,15 @@ special-structural nonlinear programming based on the mathematical theory concerned with analyzing the structure of problems. \begin{figure}[h] \centering - \includegraphics{thu-lib-logo} + \includegraphics{thu-lib-logo.pdf} \caption*{Figure~1\quad This is an example for manually numbered figure, which would not appear in the list of figures} \label{tab:badfigure2} \end{figure} Now we consider a nonlinear programming which is confronted solely with -maximizing a real-valued function with domain $\Re^n$. Whether derivatives are -available or not, the usual strategy is first to select a point in $\Re^n$ which +maximizing a real-valued function with domain $\Real^n$. Whether derivatives are +available or not, the usual strategy is first to select a point in $\Real^n$ which is thought to be the most likely place where the maximum exists. If there is no information available on which to base such a selection, a point is chosen at random. From this first point an attempt is made to construct a sequence of @@ -238,7 +239,7 @@ the {\em branch-and-bound enumeration} developed by Balas (1965) and Dakin 跖,为天下害,而弗能教也,丘窃为先生羞之。丘请为先生往说之。” \begin{figure}[h] \centering - \includegraphics{thu-whole-logo} + \includegraphics{thu-whole-logo.pdf} \caption*{图~1\hskip1em 这是手动编号但不出现索引中的图片的例子} \label{tab:badfigure3} \end{figure} |