summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/resolsysteme/ResolSysteme-doc.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/resolsysteme/ResolSysteme-doc.tex')
-rw-r--r--Master/texmf-dist/doc/latex/resolsysteme/ResolSysteme-doc.tex264
1 files changed, 209 insertions, 55 deletions
diff --git a/Master/texmf-dist/doc/latex/resolsysteme/ResolSysteme-doc.tex b/Master/texmf-dist/doc/latex/resolsysteme/ResolSysteme-doc.tex
index 28b9e5b397a..1f7bc605474 100644
--- a/Master/texmf-dist/doc/latex/resolsysteme/ResolSysteme-doc.tex
+++ b/Master/texmf-dist/doc/latex/resolsysteme/ResolSysteme-doc.tex
@@ -2,9 +2,9 @@
% arara: lualatex: {shell: yes, synctex: no, interaction: batchmode}
% arara: lualatex: {shell: yes, synctex: no, interaction: batchmode} if found('log', '(undefined references|Please rerun|Rerun to get)')
-\documentclass[a4paper,11pt]{article}
-\def\TPversion{0.1.2}
-\def\TPdate{8 Février 2023}
+\documentclass[french,a4paper,11pt]{article}
+\def\TPversion{0.1.3}
+\def\TPdate{10 Février 2023}
\usepackage[executable=python.exe]{pyluatex}
\usepackage[table,svgnames]{xcolor}
\usepackage{amsmath,amssymb}
@@ -55,6 +55,7 @@
\usepackage[french]{babel}
\usepackage[most]{tcolorbox}
+\usetikzlibrary{calc}
\tcbuselibrary{minted}
\NewTCBListing{PresentationCode}{ O{blue} m }{%
sharp corners=downhill,enhanced,arc=12pt,skin=bicolor,%
@@ -85,7 +86,23 @@
#2
}
+\tcbset{vignettes/.style={%
+ nobeforeafter,box align=base,boxsep=0pt,enhanced,sharp corners=all,rounded corners=southeast,%
+ boxrule=0.75pt,left=7pt,right=1pt,top=0pt,bottom=0.25pt,%
+ }
+}
+
+\tcbset{vignetteMaJ/.style={%
+ fontupper={\vphantom{pf}\footnotesize\ttfamily},
+ vignettes,colframe=ForestGreen!50!black,coltitle=white,colback=ForestGreen!25,%
+ overlay={\begin{tcbclipinterior}%
+ \fill[fill=ForestGreen!75]($(interior.south west)$) rectangle node[rotate=90]{\tiny \sffamily{\textcolor{Black}{\scalebox{0.85}[0.75]{\textbf{MàJ}}}}} ($(interior.north west)+(5pt,0pt)$);%
+ \end{tcbclipinterior}}
+ }
+}
+
\newcommand\Cle[1]{{\bfseries\sffamily\textlangle #1\textrangle}}
+\newcommand\cmaj[1]{\tcbox[vignetteMaJ]{#1}\xspace}
\begin{document}
@@ -106,9 +123,9 @@
\begin{tabular}{c}
{\Huge \texttt{ResolSysteme [fr]}}\\
\\
- {\LARGE Des outils pour des} \\
+ {\LARGE Des outils pour des matrices, } \\
\\
- {\LARGE systèmes linéaires,} \\
+ {\LARGE des systèmes linéaires,} \\
\\
{\LARGE avec xint ou pyluatex.} \\
\end{tabular}
@@ -121,8 +138,6 @@
\end{minipage}
\end{center}
-\vspace{0.5cm}
-
\begin{center}
\begin{tabular}{c}
\texttt{Cédric Pierquet}\\
@@ -137,36 +152,44 @@
\smallskip
-{$\blacktriangleright$~~Des commandes pour calculer le déterminant et l'inverse de matrices carrées (2x2, 3x3 ou 4x4).}
+{$\blacktriangleright$~~Quelques commandes pour effectuer des calculs matriciels (produit, carré, puissance).}
\smallskip
-{$\blacktriangleright$~~Des commandes pour résoudre des systèmes linéaires (2x2, 3x3 ou 4x4).}
+{$\blacktriangleright$~~Des commandes pour calculer le déterminant et l'inverse de matrices carrées (2x2, 3x3 ou 4x4).}
\smallskip
+{$\blacktriangleright$~~Des commandes pour résoudre des systèmes linéaires (2x2, 3x3 ou 4x4).}
+
\vspace{1cm}
\begin{center}
\begin{tcolorbox}[enhanced,colframe=ForestGreen,colback=lightgray!5,center,width=0.95\linewidth,drop fuzzy shadow=lightgray]
+ \verb|$M=\AffMatrice(1,2 § 3,4)$, et $M^3=\MatricePuissancePY(1,2 § 3,4)(3)$.|
+
+ \medskip
+
+ La matrice $M=\AffMatrice(1,2 § 3,4)$ au cube vaut $M^3=\MatricePuissancePY(1,2 § 3,4)(3)$.
+
Le \textbf{déterminant} de $A=\begin{pNiceMatrix} -1&\frac12 \\ \frac12&4 \end{pNiceMatrix}$ est
$\det(A)=\DetMatrice[dec](-1,0.5 § 1/2,4)$.
\medskip
- L'\textbf{inverse} de la matrice $A=\begin{pNiceMatrix} 1&2&3&4\\5&6&7&0\\1&1&1&1\\-2&-3&-5&-6 \end{pNiceMatrix}$ est $A^{-1}=\MatriceInversePY*[n]<cell-space-limits=2pt>(1,2,3,4 § 5,6,7,0 § 1,1,1,1 § -2,-3,-5,-6)$.
+ L'\textbf{inverse} de la matrice $A=\begin{pNiceMatrix} 1&2&3&4\\5&6&7&0\\1&1&1&1\\-2&-3&-5&-6 \end{pNiceMatrix}$ est $A^{-1}=\MatriceInversePY[n]<cell-space-limits=2pt>(1,2,3,4 § 5,6,7,0 § 1,1,1,1 § -2,-3,-5,-6)$.
\medskip
- La \textbf{solution} de $\systeme[xyzt]{y+z+t=1,x+z+t=-1,x+y+t=1,x+y+z=0}$ est $\mathcal{S}=\left\lbrace\SolutionSystemePY*[d](0,1,1,1 § 1,0,1,1 § 1,1,0,1 § 1,1,1,0)(1,-1,1,0)\right\rbrace$.
+ La \textbf{solution} de $\systeme[xyzt]{y+z+t=1,x+z+t=-1,x+y+t=1,x+y+z=0}$ est $\mathcal{S}=\left\lbrace\SolutionSystemePY[d](0,1,1,1 § 1,0,1,1 § 1,1,0,1 § 1,1,1,0)(1,-1,1,0)\right\rbrace$.
\end{tcolorbox}
\end{center}
\vspace{0.5cm}
-%\hfill{}\textit{Merci aux membres du groupe \faFacebook{} du \og Coin \LaTeX{} \fg{} pour leur aide et leurs idées !}
+\hfill{}\textit{Merci à Denis Bitouzé et à Gilles Le Bourhis pour leurs retours et idées !}
-\hfill{}\textit{Merci à Denis Bitouzé pour leurs retours et idées !}
+\smallskip
\vfill
@@ -198,9 +221,10 @@
\subsection{Introduction}
\begin{noteblock}
-L'idée est de \textit{proposer} des outils pour travailler sur des systèmes linéaires (de taille réduite !) :
+La package \textit{propose} des outils pour travailler sur des matrices ou des systèmes linéaires (de taille réduite !) :
\begin{itemize}
+ \item en calculant des produits matriciels \textit{simples} (dimensions réduites) ;
\item en affichant la \textbf{solution} (si elle existe) ;
\item en affichant le \textbf{déterminant} et l'éventuelle \textbf{inverse} de la matrice des coefficients.
\end{itemize}
@@ -215,7 +239,7 @@ L'idée est de \textit{proposer} des outils pour travailler sur des systèmes li
\item via \textsf{python} et le package \textsf{pyluatex} (à charger manuellement du fait des options spécifiques) pour des formats \textbf{2x2}, \textbf{3x3} ou \textbf{4x4}.
\end{itemize}
-Il n'est pas prévu -- pour le moment -- de travailler sur des matrices/systèmes plus grands.
+Il n'est pas prévu -- pour le moment -- de travailler sur des matrices/systèmes plus grands, car l'idée est de pouvoir formater le résultat, ce qui se fait coefficient par coefficient.
\end{importantblock}
\begin{warningblock}
@@ -232,9 +256,8 @@ La méthode par \textsf{python} utilise quoi qu'il en soit le module \texttt{sym
Le package charge les packages suivantes :
\begin{itemize}
- \item \texttt{xintexpr} et \texttt{xinttools} ;
+ \item \texttt{xintexpr}, \texttt{xinttools}, \texttt{xstring} et \texttt{listofitems} ;
\item \texttt{sinuitx}, \texttt{nicefrac} et \texttt{nicematrix} ;
- \item \texttt{xstring} et \texttt{listofitems}.
\end{itemize}
Il est compatible avec les compilations usuelles en \textsf{latex}, \textsf{pdflatex}, \textsf{lualatex} (obligatoire pour \textsf{pyluatex} !!) ou \textsf{xelatex}.
@@ -248,6 +271,20 @@ Les nombres sont formatés par la commande \texttt{\textbackslash num} de \texts
L'affichage des matrices est gérée par le package \textsf{nicematrix}, et des options spécifiques \textit{simples} pourront être placées dans les différentes commandes.
\end{importantblock}
+\subsection{Fichiers d'exemples}
+
+\begin{noteblock}
+En marge de la présente documentation, compilée en \textsf{lualatex} avec \textsf{shell-escape}, deux fichiers avec des exemples d'utilisation sont proposés :
+
+\begin{itemize}
+ \item \texttt{ResolSysteme-exemples} pour les commandes disponibles en version classique (\textsf{xint}) ;
+ \item \texttt{ResolSysteme-exemples-pyluatex} pour les commandes disponibles en version python (\textsf{pyluatex}).
+\end{itemize}
+\vspace*{-\baselineskip}\leavevmode
+\end{noteblock}
+
+\pagebreak
+
\subsection{Chargement du package, et option}
\begin{importantblock}
@@ -265,6 +302,16 @@ Le package peut donc se charger de deux manières différentes, suivant si l'uti
\usepackage[pyluatex]{ResolSysteme}
\end{PresentationCode}
+\part{Historique}
+
+\verb|v0.1.3|~:~~~~Ajout de commandes pour du calcul matriciel (de taille raisonnable) + inversion comportement des commandes étoilées.
+
+\verb|v0.1.2|~:~~~~Ajout d'une commande d'affichage (formaté) d'une matrice 2x2, 3x3 ou 4x4.
+
+\verb|v0.1.1|~:~~~~Correction d'un bug avec le caractère \og ; \fg.
+
+\verb|v0.1.0|~:~~~~Version initiale.
+
\pagebreak
\part{Commandes}
@@ -287,7 +334,7 @@ En \textit{interne}, le code utilise une commande pour formater un résultat sou
Concernant cette commande, qui est dans un bloc \texttt{ensuremath} :
\begin{itemize}
- \item la version \textit{étoilée} force l'écriture du signe \og $-$ \fg{} avant l'éventuelle fraction ;
+ \item \cmaj{0.1.3} la version \textit{étoilée} force l'écriture du signe \og $-$ \fg{} sur le numérateur ;
\item le premier argument, \textit{optionnel} et entre \textsf{[...]} permet de spécifier un formatage du résultat :
\begin{itemize}
\item \Cle{t} pour l'affichage de la fraction en mode \textsf{tfrac} ;
@@ -302,23 +349,18 @@ Concernant cette commande, qui est dans un bloc \texttt{ensuremath} :
\end{tipblock}
\begin{PresentationCode}{listing only}
-\ConvVersFrac{-10+1/3*(-5/16)} %sortie par défaut (fraction avec - sur numérateur)
-
-\ConvVersFrac*{-10+1/3*(-5/16)} %sortie avec - avant la fraction
-
-\ConvVersFrac*[d]{-10+1/3*(-5/16)} %sortie en displaystyle
-
+\ConvVersFrac{-10+1/3*(-5/16)} %sortie par défaut
+\ConvVersFrac*{-10+1/3*(-5/16)} %sortie fraction avec - sur numérateur
+\ConvVersFrac[d]{-10+1/3*(-5/16)} %sortie en displaystyle
\ConvVersFrac[n]{-10+1/3*(-5/16)} %sortie en nicefrac
-
\ConvVersFrac[dec=4]{-10+1/3*(-5/16)} %sortie en décimal arrondi à 0,0001
-
\ConvVersFrac{2+91/7} %entier correctement formaté
\end{PresentationCode}
\begin{PresentationCode}{text only}
\hfill\ConvVersFrac{-10+1/3*(-5/16)} \qquad
\ConvVersFrac*{-10+1/3*(-5/16)} \qquad
-\ConvVersFrac*[d]{-10+1/3*(-5/16)} \qquad
+\ConvVersFrac[d]{-10+1/3*(-5/16)} \qquad
\ConvVersFrac[n]{-10+1/3*(-5/16)} \qquad
\ConvVersFrac[dec=4]{-10+1/3*(-5/16)} \qquad
\ConvVersFrac{2+91/7}\hfill~
@@ -345,7 +387,7 @@ Les \textit{transformations} en fraction devraient pouvoir fonctionner avec des
\subsection{La commande}
\begin{cautionblock}
-La première commande (matricielle) est dédiée à l'affichage d'une matrice \textbf{2x2} ou \textbf{3x3} ou \textbf{4x4} :
+La première commande (matricielle) est dédiée à l'affichage d'une matrice \textbf{2x2} ou \textbf{3x3} ou \textbf{4x4} (\texttt{python} est ici non nécessaire):
\begin{itemize}
\item en saisissant les coefficients via une syntaxe propre au package (l'affichage est géré en interne par \textsf{nicematrix}) ;
@@ -356,7 +398,7 @@ La première commande (matricielle) est dédiée à l'affichage d'une matrice \t
\begin{PresentationCode}{listing only}
%commande disponible avec les deux versions, pyluatex ou non
-\AffMatrice(*)[option de formatage](matrice)
+\AffMatrice(*)[option de formatage]<(matrice)
\end{PresentationCode}
\subsection{Utilisation}
@@ -365,7 +407,7 @@ La première commande (matricielle) est dédiée à l'affichage d'une matrice \t
Concernant cette commande, qui est à insérer dans un environnement \textit{math} :
\begin{itemize}
- \item la version \textit{étoilée} force l'écriture du signe \og $-$ \fg{} avant l'éventuelle fraction ;
+ \item \cmaj{0.1.3} la version \textit{étoilée} force l'écriture du signe \og $-$ \fg{} sur le numérateur ;
\item le premier argument, \textit{optionnel} et entre \textsf{[...]} permet de spécifier un formatage du résultat :
\begin{itemize}
\item \Cle{t} pour l'affichage de la fraction en mode \textsf{tfrac} ;
@@ -388,7 +430,97 @@ et $C=\AffMatrice(1,2,3,4 § 5,6,7,0 § 1,1,1,1 § 2,-3,-5,-6)$.
\begin{PresentationCode}{}
On considère la matrice
-$M=\AffMatrice*[d]<cell-space-limits=2pt>(1+1/4,0,3+4/5 § 0,1,-5/3 § 1/2,0.45,6/7)$.
+$M=\AffMatrice[d]<cell-space-limits=2pt>(1+1/4,0,3+4/5 § 0,1,-5/3 § 1/2,0.45,6/7)$.
+\end{PresentationCode}
+
+\pagebreak
+
+\section{Calculs matriciels \og simples \fg}
+
+\subsection{Introduction}
+
+\begin{cautionblock}
+L'idée est de proposer des commandes pour effectuer des calculs matriciels \textit{simples} sur des matrices :
+
+\begin{itemize}
+ \item des produits matriciels :
+ \begin{itemize}[label=$\bullet$]
+ \item $(1\times2)\times(2\times1)$ ;
+ \item $(1\times2)\times(2\times2)$ ;
+ \item $(2\times2)\times(2\times2)$ ;
+ \item $(2\times2)\times(2\times1)$ ;
+ \item $(1\times3)\times(3\times1)$ ;
+ \item $(1\times3)\times(3\times3)$ ;
+ \item $(3\times3)\times(3\times3)$ ;
+ \item $(3\times3)\times(3\times1)$ ;
+ \end{itemize}
+ \item le carré d'une matrice 2x2 ou 3x3 ;
+ \item la puissance d'une matrice 2x2 ou 3x3 ou 4x4 (via \textsf{python}).
+\end{itemize}
+\vspace*{-\baselineskip}\leavevmode
+\end{cautionblock}
+
+\begin{PresentationCode}{listing only}
+%commandes disponible avec les deux versions, pyluatex ou non
+\ProduitMatrices(*)[option de formatage]<options nicematrix>(matrice 1)(matrice 2)[Clé]
+\CarreMatrice(*)[option de formatage]<options nicematrix>(matrice)(-5,6 § 1,4)[Clé]
+
+%commande disponible avec l'option pyluatex
+\MatricePuissancePY(*)[option de formatage]<options nicematrix>(matrice)(puissance)[Clé]
+\end{PresentationCode}
+
+\begin{warningblock}
+Dans le cas où le produit matriciel n'existe pas, ou ne rentre pas dans le cadre des cas possibles, rien ne sera affiché !
+\end{warningblock}
+
+\subsection{Utilisation}
+
+\begin{tipblock}
+Concernant ces commandes, qui sont à insérer dans un environnement \textit{math} :
+
+\begin{itemize}
+ \item \cmaj{0.1.3} la version \textit{étoilée} force l'écriture du signe \og $-$ \fg{} sur le numérateur ;
+ \item le premier argument, \textit{optionnel} et entre \textsf{[...]} permet de spécifier un formatage du résultat :
+ \begin{itemize}
+ \item \Cle{t} pour l'affichage de la fraction en mode \textsf{tfrac} ;
+ \item \Cle{d} pour l'affichage de la fraction en mode \textsf{dfrac} ;
+ \item \Cle{n} pour l'affichage de la fraction en mode \textsf{nicefrac} ;
+ \item \Cle{dec} pour l'affichage du résultat en mode \texttt{décimal} (sans arrondi !) ;
+ \item \Cle{dec=k} pour l'affichage du résultat en mode \texttt{décimal} arrondi à $10^{-k}$ ;
+ \end{itemize}
+ \item le deuxième argument, \textit{optionnel} et entre \textsf{<...>} correspond aux \Cle{options} à passer à l'environnement \texttt{pNiceMatrix} ;
+ \item les arguments suivants, \textit{obligatoires} et entre \textsf{(...)}, sont quant à eux, les matrices données par leurs coefficients \textsf{a11,a12,... § a21,a22,...} (syntaxe héritée de \texttt{sympy}) ou la matrice et la puissance ;
+ \item le dernier argument, \textit{optionnel} et entre \textsf{[...]} propose l'unique \frquote{clé} \Cle{Aff} pour afficher le calcul avant le résultat.
+\end{itemize}
+\vspace*{-\baselineskip}\leavevmode
+\end{tipblock}
+
+\begin{PresentationCode}{}
+$\ProduitMatrices(-5,6 § 1,4)(2 § 7)[Aff]$ et $\ProduitMatrices(-5,6 § 1,4)(2 § 7)$
+\end{PresentationCode}
+
+\begin{PresentationCode}{}
+$\ProduitMatrices[dec](0.5,0.3,0.2)(0.75,0.1,0.15 § 0.4,0.4,0.2 § 0.6,0.1,0.3)[Aff]$
+\end{PresentationCode}
+
+\begin{PresentationCode}{}
+$\CarreMatrice(-5,6 § 1,4)[Aff]$
+\end{PresentationCode}
+
+\begin{PresentationCode}{}
+$\CarreMatrice(-5,6,8 § 1,4,-9 § 1,-1,1)[Aff]$
+\end{PresentationCode}
+
+\begin{PresentationCode}{}
+$\MatricePuissancePY(1,1 § 5,-2)(7)[Aff]$
+\end{PresentationCode}
+
+\begin{PresentationCode}{}
+$\MatricePuissancePY(1,1,-1 § 5,-2,1 § 0,5,2)(3)[Aff]$
+\end{PresentationCode}
+
+\begin{PresentationCode}{}
+$\MatricePuissancePY(1,1,1,1 § 5,-2,1,5 § 0,5,2,-1 § 0,1,1,1)(5)[Aff]$
\end{PresentationCode}
\pagebreak
@@ -421,7 +553,7 @@ La deuxième commande (matricielle) disponible est pour calculer le déterminant
Concernant cette commande, qui est à insérer dans un environnement \textit{math} :
\begin{itemize}
- \item la version \textit{étoilée} force l'écriture du signe \og $-$ \fg{} avant l'éventuelle fraction ;
+ \item \cmaj{0.1.3} la version \textit{étoilée} force l'écriture du signe \og $-$ \fg{} sur le numérateur ;
\item le premier argument, \textit{optionnel} et entre \textsf{[...]} permet de spécifier un formatage du résultat :
\begin{itemize}
\item \Cle{t} pour l'affichage de la fraction en mode \textsf{tfrac} ;
@@ -449,8 +581,8 @@ $\det(A)=\DetMatrice[dec](-1,0.5 § 1/2,4)$.
\begin{PresentationCode}{}
%version classique
-Le dét. de $A=\AffMatrice*[t](-1,1/3,4 § 1/3,4,-1 § -1,0,0)$ est
-$\det(A) \approx \DetMatrice[dec=3](-1,1/3,4 § 1/3,4,-1 § -1,0,0)$.
+Le dét. de $A=\AffMatrice[t](-1,1/3,4 § -1/3,4,-1 § -1,0,0)$ est
+$\det(A) \approx \DetMatrice[dec=3](-1,1/3,4 § -1/3,4,-1 § -1,0,0)$.
\end{PresentationCode}
\begin{PresentationCode}{}
@@ -461,7 +593,7 @@ $\det(A)=\DetMatricePY(1,2 § 3,4)$.
\begin{PresentationCode}{}
Le dét. de $A=\AffMatrice[dec](-1,0.5 § 1/2,4)$ est
-$\det(A)=\DetMatricePY*[d](-1,0.5 § 1/2,4)$.\end{PresentationCode}
+$\det(A)=\DetMatricePY[d](-1,0.5 § 1/2,4)$.\end{PresentationCode}
\begin{PresentationCode}{}
%version python
@@ -469,6 +601,8 @@ Le dét. de $A=\AffMatrice(-1,1/3,4 § 1/3,4,-1 § -1,0,0)$ est
$\det(A) \approx \DetMatricePY[dec=3](-1,1/3,4 § 1/3,4,-1 § -1,0,0)$.
\end{PresentationCode}
+\pagebreak
+
\section{Inverse d'une matrice}
\subsection{Introduction}
@@ -485,10 +619,10 @@ La troisième commande (matricielle) disponible est pour calculer l'éventuelle
\begin{PresentationCode}{listing only}
%version classique
-\MatriceInverse(*)[option de formatage]<options nicematrix>(matrice)
+\MatriceInverse(*)[option de formatage]<options nicematrix>(matrice)[Clé]
%version python
-\MatriceInversePY(*)[option de formatage]<options nicematrix>(matrice)
+\MatriceInversePY(*)[option de formatage]<options nicematrix>(matrice)[Clé]
\end{PresentationCode}
\subsection{Utilisation}
@@ -497,7 +631,7 @@ La troisième commande (matricielle) disponible est pour calculer l'éventuelle
Concernant cette commande, qui est à insérer dans un environnement \textit{math} :
\begin{itemize}
- \item la version \textit{étoilée} force l'écriture du signe \og $-$ \fg{} avant l'éventuelle fraction ;
+ \item \cmaj{0.1.3} la version \textit{étoilée} force l'écriture du signe \og $-$ \fg{} sur le numérateur ;
\item le premier argument, \textit{optionnel} et entre \textsf{[...]} permet de spécifier un formatage du résultat :
\begin{itemize}
\item \Cle{t} pour l'affichage de la fraction en mode \textsf{tfrac} ;
@@ -507,7 +641,8 @@ Concernant cette commande, qui est à insérer dans un environnement \textit{mat
\item \Cle{dec=k} pour l'affichage du résultat en mode \texttt{décimal} arrondi à $10^{-k}$ ;
\end{itemize}
\item le deuxième argument, \textit{optionnel} et entre \textsf{<...>} correspond aux \Cle{options} à passer à l'environnement \texttt{pNiceMatrix} ;
- \item le troisième argument, \textit{obligatoire} et entre \textsf{(...)}, est quant à lui, la matrice donnée par ses coefficients \textsf{a11,a12,... § a21,a22,...} (syntaxe héritée de \texttt{sympy}).
+ \item le troisième argument, \textit{obligatoire} et entre \textsf{(...)}, est quant à lui, la matrice donnée par ses coefficients \textsf{a11,a12,... § a21,a22,...} (syntaxe héritée de \texttt{sympy}) ;
+ \item le dernier argument, \textit{optionnel} et entre \textsf{[...]} propose l'unique \frquote{clé} \Cle{Aff} pour afficher le calcul avant le résultat.
\end{itemize}
À noter que si la matrice n'est pas inversible, le texte \texttt{Matrice non inversible} est affiché.
\end{tipblock}
@@ -521,22 +656,24 @@ $A^{-1}=\MatriceInverse<cell-space-limits=2pt>(1,2 § 3,4)$.
\begin{PresentationCode}{}
%version classique
L'inverse de $A=\AffMatrice(1,2,3 § 4,5,6 § 7,8,8)$ est
-$A^{-1}=\MatriceInverse[n]<cell-space-limits=2pt>(1,2,3 § 4,5,6 § 7,8,8)$.
+$A^{-1}=\MatriceInverse[n]<cell-space-limits=2pt>(1,2,3 § 4,5,6 § 7,8,8)[Aff]$.
\end{PresentationCode}
\begin{PresentationCode}{}
%version python
L'inverse de $A=\AffMatrice(1,2 § 3,4)$ est
-$A^{-1}=\MatriceInversePY*[d]<cell-space-limits=2pt>(1,2 § 3,4)$.
+$A^{-1}=\MatriceInversePY[d]<cell-space-limits=2pt>(1,2 § 3,4)[Aff]$.
\end{PresentationCode}
\begin{PresentationCode}{}
%version python
L'inv. de $A=\AffMatrice(1,2,3,4 § 5,6,7,0 § 1,1,1,1 § -2,-3,-5,-6)$ est
$A^{-1}=
-\MatriceInversePY*[n]<cell-space-limits=2pt>(1,2,3,4 § 5,6,7,0 § 1,1,1,1 § -2,-3,-5,-6)$.
+\MatriceInversePY[n]<cell-space-limits=2pt>(1,2,3,4 § 5,6,7,0 § 1,1,1,1 § -2,-3,-5,-6)$.
\end{PresentationCode}
+\pagebreak
+
\section{Résolution d'un système linéaire}
\subsection{Introduction}
@@ -553,10 +690,10 @@ La deuxième commande (matricielle) disponible est pour déterminer l'éventuell
\begin{PresentationCode}{listing only}
%version classique
-\SolutionSysteme(*)[opt de formatage]<opts nicematrix>(matriceA)(matriceB)[opt Matrice]
+\SolutionSysteme(*)[opt de formatage]<opts nicematrix>(matriceA)(matriceB)[Clé]
%version python
-\SolutionSystemePY(*)[opt de formatage]<opts nicematrix>(matriceA)(matriceB)[opt Matrice]
+\SolutionSystemePY(*)[opt de formatage]<opts nicematrix>(matriceA)(matriceB)[Clé]
\end{PresentationCode}
\subsection{Utilisation}
@@ -565,7 +702,7 @@ La deuxième commande (matricielle) disponible est pour déterminer l'éventuell
Concernant cette commande, qui est à insérer dans un environnement \textit{math} :
\begin{itemize}
- \item la version \textit{étoilée} force l'écriture du signe \og $-$ \fg{} avant l'éventuelle fraction ;
+ \item \cmaj{0.1.3} la version \textit{étoilée} force l'écriture du signe \og $-$ \fg{} sur le numérateur ;
\item le premier argument, \textit{optionnel} et entre \textsf{[...]} permet de spécifier un formatage du résultat :
\begin{itemize}
\item \Cle{t} pour l'affichage de la fraction en mode \textsf{tfrac} ;
@@ -577,7 +714,7 @@ Concernant cette commande, qui est à insérer dans un environnement \textit{mat
\item le deuxième argument, \textit{optionnel} et entre \textsf{<...>} correspond aux \Cle{options} à passer à l'environnement \texttt{pNiceMatrix} ;
\item le troisième argument, \textit{obligatoire} et entre \textsf{(...)}, est quant à lui, la matrice $A$ donnée par ses coefficients \textsf{a11,a12,... § a21,a22,...} (syntaxe héritée de \texttt{sympy}) ;
\item le quatrième argument, \textit{obligatoire} et entre \textsf{(...)}, est quant à lui, la matrice $B$ donnée par ses coefficients \textsf{b11,b21,...} (syntaxe héritée de \texttt{sympy}) ;
- \item le dernier argument, \textit{optionnel} et entre \textsf{[...]}, permet -- grâce à \Cle{Matrice} -- de présenter le vecteur solution.
+ \item le dernier argument, \textit{optionnel} et entre \textsf{[...]}, permet -- grâce à la \textit{clé} \Cle{Matrice} -- de présenter le vecteur solution.
\end{itemize}
À noter que si la matrice n'est pas inversible, le texte \texttt{Matrice non inversible} est affiché.
\end{tipblock}
@@ -585,7 +722,7 @@ Concernant cette commande, qui est à insérer dans un environnement \textit{mat
\begin{PresentationCode}{}
%version classique
La solution de $\systeme{3x+y-2z=-1,2x-y+z=4,x-y-2z=5}$ est $\mathcal{S}=%
-\left\lbrace \SolutionSysteme*[d](3,1,-2 § 2,-1,1 § 1,-1,-2)(-1,4,5) \right\rbrace$.\\
+\left\lbrace \SolutionSysteme[d](3,1,-2 § 2,-1,1 § 1,-1,-2)(-1,4,5) \right\rbrace$.\\
\end{PresentationCode}
\begin{PresentationCode}{}
@@ -602,7 +739,6 @@ est $\mathcal{S}=%
\SolutionSystemePY%
[dec]<cell-space-limits=2pt>%
(1,2,3,4 § 5,6,7,0 § 1,1,1,1 § -2,-3,-5,-6)(-10,0,4,7)%
- [Matrice]
\right\rbrace$.
\end{PresentationCode}
@@ -623,12 +759,16 @@ Elles sont accessibles en \textit{natif} une fois l'option \textsf{lua} activée
\end{cautionblock}
\begin{PresentationCodePython}{listing only}
+#variables symboliques (pour du 4x4 maxi)
import sympy as sy
x = sy.Symbol('x')
y = sy.Symbol('y')
z = sy.Symbol('z')
t = sy.Symbol('t')
+\end{PresentationCodePython}
+\begin{PresentationCodePython}{listing only}
+#résolution de systèmes
def resol_systeme_QQ(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,u) :
solution=sy.solve([a*x+b*y+c*z+d*t-e,f*x+g*y+h*z+i*t-j,k*x+l*y+m*z+n*t-o,p*x+q*y+r*z+s*t-u],[x,y,z,t])
return solution
@@ -640,7 +780,10 @@ def resol_systeme_TT(a,b,c,d,e,f,g,h,i,j,k,l) :
def resol_systeme_DD(a,b,c,d,e,f) :
solution=sy.solve([a*x+b*y-c,d*x+e*y-f],[x,y])
return solution
+\end{PresentationCodePython}
+\begin{PresentationCodePython}{listing only}
+#déterminant d'une matrice
def det_matrice_QQ(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p) :
MatTmp = sy.Matrix(([a,b,c,d],[e,f,g,h],[i,j,k,l],[m,n,o,p]))
DetMatTmp = MatTmp.det()
@@ -655,7 +798,10 @@ def det_matrice_DD(a,b,c,d) :
MatTmp = sy.Matrix(([a,b],[c,d]))
DetMatTmp = MatTmp.det()
return DetMatTmp
+\end{PresentationCodePython}
+\begin{PresentationCodePython}{listing only}
+#inverse d'une martrice
def inverse_matrice_QQ(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p) :
MatTmp = sy.Matrix(([a,b,c,d],[e,f,g,h],[i,j,k,l],[m,n,o,p]))
DetMatTmp = MatTmp.inv()
@@ -672,14 +818,22 @@ def inverse_matrice_TT(a,b,c,d,e,f,g,h,i) :
return InvMatTmp
\end{PresentationCodePython}
-\pagebreak
-
-\part{Historique}
-
-\verb|v0.1.2|~:~~~~Ajout d'une commande d'affichage (formaté) d'une matrice 2x2, 3x3 ou 4x4
+\begin{PresentationCodePython}{listing only}
+#puissance d'une matrice
+def puissance_matrice_QQ(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,puiss) :
+ MatTmp = sy.Matrix(([a,b,c,d],[e,f,g,h],[i,j,k,l],[m,n,o,p]))
+ PuissMatTmp = MatTmp**puiss
+ return PuissMatTmp
-\verb|v0.1.1|~:~~~~Correction d'un bug avec le caractère \og ; \fg{}
+def puissance_matrice_TT(a,b,c,d,e,f,g,h,i,puiss) :
+ MatTmp = sy.Matrix(([a,b,c],[d,e,f],[g,h,i]))
+ PuissMatTmp = MatTmp**puiss
+ return PuissMatTmp
-\verb|v0.1.0|~:~~~~Version initiale
+def puissance_matrice_DD(a,b,c,d,puiss) :
+ MatTmp = sy.Matrix(([a,b],[c,d]))
+ PuissMatTmp = MatTmp**puiss
+ return PuissMatTmp
+\end{PresentationCodePython}
\end{document} \ No newline at end of file