diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/presentations-en/fontDemo-E.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/presentations-en/fontDemo-E.tex | 42 |
1 files changed, 42 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/presentations-en/fontDemo-E.tex b/Master/texmf-dist/doc/latex/presentations-en/fontDemo-E.tex new file mode 100644 index 00000000000..526878be62b --- /dev/null +++ b/Master/texmf-dist/doc/latex/presentations-en/fontDemo-E.tex @@ -0,0 +1,42 @@ +%% +%% Der Mathematiksatz mit LaTeX, 1. Auflage 2009 +%% +%% fontDemo.tex +%% +%% Copyright (C) 2009 Herbert Voss +%% +%% It may be distributed and/or modified under the conditions +%% of the LaTeX Project Public License, either version 1.3 +%% of this license or (at your option) any later version. +%% +%% See http://www.latex-project.org/lppl.txt for details. +%% +\newlength\Breite\setlength\Breite{\linewidth} +\addtolength\Breite{-2\fboxsep} +\addtolength\Breite{-2\fboxrule} +\fbox{% +\begin{minipage}{\Breite} +\textbf{Theorem 1 (Residue Theorem).} +Let $f$ be analytic in the region $G$ except for the isolated singularities $a_1,a_2,\ldots,a_m$. If $\gamma$ is a closed rectifiable curve in $G$ which does not pass through any of the points $a_k$ and if $\gamma\approx 0$ in $G$ then +% +\[ +\mathop{\mathrm{Res}}\limits_{z=a}f(z) = \mathop{\mathrm{Res}}\limits_a f + = \frac{1}{2\pi\mathrm{i}} \int\limits_C f(z)\,\mathrm{d}z, +\] +% +where $C\subset D\backslash\{a\}$ is a closed line +$ n(C,a)=1$ (e.\,g. a counterclockwise circle loop). + +\medskip +$\mathrm{A} \Lambda \Delta \nabla \mathrm{B C D} \Sigma \mathrm{E F} \Gamma \mathrm{G H I J} K L M N O + \Theta \Omega \mathrm{P} \Phi \Pi \Xi \mathtt{Q R S T} U V W X Y \Upsilon \Psi \mathrm{Z}$ +$\mathsf{ABCDabcd1234}$ + +$a\alpha b \beta c \partial d \delta e \epsilon \varepsilon f \zeta \xi g \gamma h \hbar \iota i \imath j +k \kappa l \ell \lambda m n \eta \theta \vartheta o \sigma \varsigma \phi \varphi \wp p +\rho \varrho q r s t \tau \pi u \mu \nu v \upsilon w \omega \varpi $ + +\boldmath$xyz \infty \propto \emptyset y=f(x)$ \unboldmath +\hfill$\sum\int\prod\displaystyle~\prod\int\sum~ + \textstyle\sum_a^b\int_a^b\prod_a^b~ \displaystyle\sum_a^b\int\limits_a^b\prod_a^b$ +\end{minipage}} |