summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/presentations-en/04-03-2.ltx2
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/presentations-en/04-03-2.ltx2')
-rw-r--r--Master/texmf-dist/doc/latex/presentations-en/04-03-2.ltx269
1 files changed, 0 insertions, 69 deletions
diff --git a/Master/texmf-dist/doc/latex/presentations-en/04-03-2.ltx2 b/Master/texmf-dist/doc/latex/presentations-en/04-03-2.ltx2
deleted file mode 100644
index d5ddbfa55c2..00000000000
--- a/Master/texmf-dist/doc/latex/presentations-en/04-03-2.ltx2
+++ /dev/null
@@ -1,69 +0,0 @@
-%%
-%% An UIT Edition example
-%%
-%% 1st edition
-%%
-%% Example 04-03-2 on page 76.
-%%
-%% Copyright (C) 2012 Herbert Voss
-%%
-%% It may be distributed and/or modified under the conditions
-%% of the LaTeX Project Public License, either version 1.3
-%% of this license or (at your option) any later version.
-%%
-%% See http://www.latex-project.org/lppl.txt for details.
-%%
-%%
-%% ====
-% Show page(s) 1,2
-%%
-%%
-\documentclass[a5paper,12pt]{exaarticle}
-\pagestyle{empty}
-\setlength\textwidth{192.32402pt}
-\usepackage[british]{babel}
-\usepackage[utf8]{inputenc}
-%\StartShownPreambleCommands
-\documentclass[a5paper,12pt]{article}
-\usepackage[envcountsect]{beamerarticle}
-\mode<article>{% only article mode
- \usepackage{fullpage} \usepackage[linktocpage]{hyperref} }
-\mode<presentation>{% only slides
- \setbeamertemplate{background canvas}[vertical shading][bottom=red!10,top=blue!10]
- \usetheme{Warsaw} \usefonttheme[onlysmall]{structurebold} }
-%\StopShownPreambleCommands
-\begin{document}
-\title{Introduction to analytic geometry}
-\author{Gerhard Kowalewski} \date{1910}
-\frame{\titlepage}
-\section<presentation>*{Overview}
-\begin{frame}{Overview} \tableofcontents[part=1,pausesections] \end{frame}
-\AtBeginSubsection[]{\begin{frame}<beamer>
- \frametitle{Overview} \tableofcontents[current,currentsubsection] \end{frame} }
-\part<presentation>{Main part}
-\section{Research and studies}
-\begin{frame}{The integral and its geometric applications.}
-We assume that the theory of irrational numbers is known.
-\end{frame}
-\subsection{Interval}
-\begin{frame}{Definition}
-The \emph{interval} $\langle a,b\rangle$ consists of all numbers $x$ that
-satisfy the condition $a\le x\le b$.
-\end{frame}
-\subsection{Sequence of numbers}
-\begin{frame}{Definition of a sequence}
-A \emph{sequence of numbers} or \emph{sequence} is created by replacing each member
-of the infinite sequence of numbers $1,2,3,\ldots$ by some rational or irrational
-number, i.e.\ each $n$ by a number $x_n$.
-\end{frame}
-\subsection{Limits}
-\begin{frame}{Definition of a limit}
-$\lim x_n=g$ means that almost all members of the sequence are within each neighbourhood of $g$.
-\end{frame}
-\subsection{Convergence criterion}
-\begin{frame}{Definition of convergence}
-\textbf{Convergence criterion}: The sequence $x_1,x_2,x_3,\ldots$ converges if and
-only if \textbf{each} sub-sequence $x^\prime_1,x^\prime_2, x^\prime_3,\ldots$
-satisfies the relation $\lim(x_n-x^\prime_n)=0$.
-\end{frame}
-\end{document}