summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/presentations-en/01-02-1.ltxb
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/presentations-en/01-02-1.ltxb')
-rw-r--r--Master/texmf-dist/doc/latex/presentations-en/01-02-1.ltxb57
1 files changed, 57 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/presentations-en/01-02-1.ltxb b/Master/texmf-dist/doc/latex/presentations-en/01-02-1.ltxb
new file mode 100644
index 00000000000..e7ecd29104c
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/presentations-en/01-02-1.ltxb
@@ -0,0 +1,57 @@
+%%
+%% An UIT Edition example
+%%
+%% Example 01-02-1 on page 10.
+%%
+%% Copyright (C) 2012 Vo\ss
+%%
+%% It may be distributed and/or modified under the conditions
+%% of the LaTeX Project Public License, either version 1.3
+%% of this license or (at your option) any later version.
+%%
+%% See http://www.latex-project.org/lppl.txt for details.
+%%
+
+% Show page(s) 1,2
+
+%% ====
+\PassOptionsToClass{}{beamer}
+\documentclass{exabeamer}
+\usepackage[utf8]{inputenc}
+
+%\StartShownPreambleCommands
+\documentclass{beamer}
+%\StopShownPreambleCommands
+
+\begin{document}
+\begin{frame}{Negative example}
+We assume that the \textbf{theory} of \textbf{irrational numbers} is known.
+\begin{enumerate}
+ \item The \textbf{interval} $\langle a,b\rangle$ contains all \textbf{numbers} $x$ that satisfy
+ the condition $a\le x \le b$.
+ \item A \textbf{sequence of numbers} or \textbf{sequence} is created by replacing each
+ member of the infinite \textbf{sequence of numbers} $1,2,3,\ldots$ by some rational or
+ irrational number, i.e.\ each $n$ by a number $x_n$.
+ \item $\lim x_n=g$ means that almost all members of the sequence are within each
+ \textbf{neighbourhood} of $g$.
+ \item \textbf{Convergence criterion}: The sequence $x_1,x_2,x_3,\ldots$ converges
+if and only if \textbf{each} sub-sequence $x^\prime_1,x^\prime_2,
+x^\prime_3,\ldots$ satisfies the relation $\lim(x_n-x^\prime_n)=0$.
+\end{enumerate}
+\end{frame}
+\begin{frame}{Positive example}
+We assume that the \emph{theory} of \emph{irrational numbers} is know.
+\begin{enumerate}
+ \item The \emph{interval} $\langle a,b\rangle$ contains all \emph{numbers} $x$ that satisfy
+ the condition $a\le x \le b$.
+ \item A \emph{sequence of numbers} or \emph{sequence} is created by replacing each
+ member of the infinite \emph{sequence of numbers} $1,2,3,\ldots$ by some rational or
+ irrational number, i.e.\ each $n$ by a number $x_n$.
+ \item $\lim x_n=g$ means that almost all members of the sequence are within each
+ \emph{neighbourhood} of $g$.
+ \item \emph{Convergence criterion}: The sequence $x_1,x_2,x_3,\ldots$ converges
+if and only if \emph{each} sub-sequence $x^\prime_1,x^\prime_2,
+x^\prime_3,\ldots$ satisfies the relation $\lim(x_n-x^\prime_n)=0$.
+\end{enumerate}
+\end{frame}
+\end{document}