diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/pgfplots/pgfplots.libs.polar.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/pgfplots/pgfplots.libs.polar.tex | 164 |
1 files changed, 0 insertions, 164 deletions
diff --git a/Master/texmf-dist/doc/latex/pgfplots/pgfplots.libs.polar.tex b/Master/texmf-dist/doc/latex/pgfplots/pgfplots.libs.polar.tex deleted file mode 100644 index a03994d5e80..00000000000 --- a/Master/texmf-dist/doc/latex/pgfplots/pgfplots.libs.polar.tex +++ /dev/null @@ -1,164 +0,0 @@ -\subsection{Polar Axes} -{ -\tikzset{external/figure name/.add={}{polar_}}% - -\begin{pgfplotslibrary}{polar} - A library to draw polar axes and plot types relying on polar coordinates, represented by angle (in degrees or, optionally, in radians) and radius. -\end{pgfplotslibrary} - -\subsubsection{Polar Axes} -\begin{environment}{{polaraxis}} - The |polar| library provides the |polaraxis| environment. - Inside of such an environment, all coordinates are expected to be given in polar representation of the form $(\meta{angle},\meta{radius})$, i.e.\ the $x$ coordinate is always the angle and the $y$ coordinate the radius: -\end{environment} -\begin{codeexample}[] -\begin{tikzpicture} - \begin{polaraxis} - \addplot coordinates {(0,1) (90,1) - (180,1) (270,1)}; - \end{polaraxis} -\end{tikzpicture} -\end{codeexample} - -\begin{codeexample}[] -\begin{tikzpicture} - \begin{polaraxis} - \addplot+[domain=0:3] (360*x,x); % (angle,radius) - \end{polaraxis} -\end{tikzpicture} -\end{codeexample} - -\begin{codeexample}[] -\begin{tikzpicture} - \begin{polaraxis} - \addplot+[mark=none,domain=0:720,samples=600] - {sin(2*x)*cos(2*x)}; - % equivalent to (x,{sin(..)cos(..)}), i.e. - % the expression is the RADIUS - \end{polaraxis} -\end{tikzpicture} -\end{codeexample} - -Polar axes support most of the \PGFPlots\ user interface, i.e.\ |legend entries|, any axis descriptions, |xtick|/|ytick| and so on: -\begin{codeexample}[] -\begin{tikzpicture} - \begin{polaraxis}[ - xtick={0,90,180,270}, - title=A polar axis] - - \addplot coordinates {(0,1) (45,1)}; - \addlegendentry{First} - - \addplot coordinates {(180,0.5) (0,0)}; - \addlegendentry{Second} - \end{polaraxis} -\end{tikzpicture} -\end{codeexample} -\noindent Furthermore, you can use all of the supported input coordinate methods (like \verbpdfref{\addplot coordinates}, \verbpdfref{\addplot table}, \verbpdfref{\addplot expression}). The only difference is that polar axes interpret the (first two) input coordinates as polar coordinates of the form $(\meta{angle in degrees},\meta{radius})$. - -It is also possible to provide \verbpdfref{\addplot3}; in this case, the third coordinate will be ignored (although it can be used as color data using |point meta=z|). An example can be found below in Section~\ref{sec:polar:cart}. - - -\subsubsection{Using Radians instead of Degrees} -The initial configuration uses degrees for the angle ($x$ component of every input coordinate). \PGFPlots\ also supports to provide the angle in radians using the |data cs=polarrad| switch: -\begin{codeexample}[] -\begin{tikzpicture} - \begin{polaraxis}[title={Degrees and/or Radians}] - \addplot - coordinates {(0,1) (90,1) (180,1) (270,1)}; - \addlegendentry{Deg} - - \addplot+[data cs=polarrad] - coordinates {(0,1.5) (pi/2,1.5) - (pi,1.5) (pi*3/2,1.5)}; - \addlegendentry{Rad} - \end{polaraxis} -\end{tikzpicture} -\end{codeexample} -The |data cs| key is described in all detail on page~\pageref{key:data:cs}; it tells \PGFPlots\ the coordinate system of input data. \PGFPlots\ will then take steps to automatically transform each coordinate into the required coordinate system (in our case, this is |data cs=polar|). - -\subsubsection{Mixing With Cartesian Coordinates} -\label{sec:polar:cart} -Similarly to the procedure described above, you can also provide Cartesian coordinates inside of a polar axis: simply tell \PGFPlots\ that it should automatically transform them to polar representation by means of |data cs=cart|: -\begin{codeexample}[] -\begin{tikzpicture} - \begin{polaraxis}[title=Cartesian Input] - \addplot+[data cs=cart] - coordinates {(1,0) (0,1) (-1,0) (0,-1)}; - \end{polaraxis} -\end{tikzpicture} -\end{codeexample} -\noindent More details about the |data cs| key can be found on page~\pageref{key:data:cs}. - -This does also allow more involved visualization techniques which may operate on Cartesian coordinates. The following example uses \verbpdfref{\addplot3} to sample a function $f\colon \R^2 \to \R$, computes |contour| lines (with the help of |gnuplot|) and displays the result in a |polaraxis|: -\pgfplotsexpensiveexample -\begin{codeexample}[] -\begin{tikzpicture} - \begin{polaraxis} - \addplot3[contour gnuplot,domain=-3:3, - data cs=cart] - {exp(-x^2-y^2)}; - \end{polaraxis} -\end{tikzpicture} -\end{codeexample} -\noindent What happens is that $z=\exp(-x^2-y^2)$ is sampled for $x,y \in [-3,3]$, then contour lines are computed on $(x,y,z)$, then the resulting triples $(x,y,z)$ are transformed to polar coordinates $(\alpha,r,z)$ (leaving $z$ intact). Finally, the $z$ coordinate is used as |point meta| to determine the color. - -Note that \verbpdfref{\addplot3} allows to process three--dimensional input types, but the result will always be two--dimensional (the $z$ coordinate is ignored for point placement in |polaraxis|). However, the $z$ coordinate can be used to determine point colors (using |point meta=z|). - -\subsubsection{Special Polar Plot Types} -\begin{plottype}{polar comb} - The |polar comb| plot handler is provided by \Tikz; it draws paths from the origin to the designated position and places |mark|s at the positions (similar to the |comb| plot handler). Since the paths always start at the origin, it is particularly suited for |polaraxis|: -\begin{codeexample}[] -\begin{tikzpicture} - \begin{polaraxis} - \addplot+[polar comb] - coordinates {(300,1) (20,0.3) (40,0.5) - (120,1) (200,0.4)}; - \end{polaraxis} -\end{tikzpicture} -\end{codeexample} -\end{plottype} - -\subsubsection{Partial Polar Axes} -The |polar| library also supports partial axes. If you provide |xmin|/|xmax|, you can restrict the angles used for the axis: -\begin{codeexample}[] -\begin{tikzpicture} - \begin{polaraxis}[xmin=45,xmax=360] - \addplot coordinates {(0,1) (90,1) (180,1) (270,1)}; - \end{polaraxis} -\end{tikzpicture} -\end{codeexample} - -Currently, the first angle must be lower than the second one. But you can employ the periodicity to get pies as follows: -\message{Overfull hbox is OK}% -\begin{codeexample}[] -\begin{tikzpicture} - \begin{polaraxis}[xmin=90,xmax=270] - \addplot coordinates {(0,1) (90,1) (180,1) (270,1)}; - \end{polaraxis} -\end{tikzpicture}~% -\begin{tikzpicture} - \begin{polaraxis}[xmin=270,xmax=420] - \addplot coordinates {(0,1) (90,1) (180,1) (270,1)}; - \end{polaraxis} -\end{tikzpicture} -\end{codeexample} -\noindent Similarly, an explicitly provided value for |ymin| allows to reduce the displayed range away from $0$: -\begin{codeexample}[] -\begin{tikzpicture} - \begin{polaraxis}[ymin=0.3] - \addplot coordinates {(0,1) (90,1) - (180,1) (270,1)}; - \end{polaraxis} -\end{tikzpicture} -\end{codeexample} - -\noindent Modifying |xmin| and |xmax| manually can also be used to move the $y$ axis line (the line with |ytick| and |yticklabels|): -\begin{codeexample}[] -\begin{tikzpicture} - \begin{polaraxis}[xmin=45,xmax=405] - \addplot coordinates {(0,1) (90,1) (180,1) (270,1)}; - \end{polaraxis} -\end{tikzpicture} -\end{codeexample} -} |