diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/mathspic/sourcecode.nw')
-rw-r--r-- | Master/texmf-dist/doc/latex/mathspic/sourcecode.nw | 5018 |
1 files changed, 5018 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/mathspic/sourcecode.nw b/Master/texmf-dist/doc/latex/mathspic/sourcecode.nw new file mode 100644 index 00000000000..d9c4753ca40 --- /dev/null +++ b/Master/texmf-dist/doc/latex/mathspic/sourcecode.nw @@ -0,0 +1,5018 @@ +<center><h1> <tt>mathspic</tt> in Perl </h1></center> +<center><h2> +<table> +<tr><td><address> +<b>Apostolos Syropoulos</b><br> +366, 28th October Str.<br> +GR-671 00 Xanthi<br> +Greece<br> +email: <tt>asyropoulos@yahoo.com</tt> +</address></td> +<td><address> +<b>R.W.D. Nickalls</b><br> + Department of Anaesthesia<br> +Nottingham City Hospital NHS Trust<br> +Hucknall Road<br> +Nottingham, NG5-1PB<br> +United Kingdom<br> +email: <tt>dicknickalls@compuserve.com</tt> +</address></td> +</table></h2> +version 1.10 Feb 18, 2007 +</center> + +@ <h3><b>Introduction</b></h3><p> +<tt>mathspic</tt> is a graphics program which implements a simple +programming notation, <i>mathspic</i>, suitable for the +creation of diagrams or mathematical figures. +<tt>mathspic</tt>'s input is a LaTeX file containing +<tt>mathspic</tt> plotting commands. +<tt>mathspic</tt>'s output is the equivalent LaTeX file +containing PiCTeX plotting commands. +Technically, therefore, <tt>mathspic</tt> +is a preprocessor or `filter' for use with the PiCTeX drawing engine. +<tt>mathspic</tt> was originally written in PowerBASIC 3.5, a +DOS-based programming language. Since, many +potential users are working in rather different programming environments, +the authors thought of porting <tt>mathspic</tt> into another programming +cross-platform language which would be widely available. +The authors decided to rewrite <tt>mathspic</tt> in Perl +since not only is Perl pretty stable, but it has +extensive mathematical support.<p> + +<h3><b>Program Structure</b></h3><p> +Initially, we define a little package that is used to implement the [[loop]] +command. Then, we must do is to check the possible command line arguments. +Next, we process the input file. +If the user has used the [[-b]] (see below), the program will `beep' +if any errors are found during processing. +We need some auxiliary subroutines in order to properly parse the input +file and of course to handle the various commands. We also need a +few global variables. + +<<*>>= +#!/usr/bin/perl +# +#(c) Copyright 2005-2007 +# Apostolos Syropoulos & R.W.D. Nickalls +# asyropoulos@yahoo.com dicknickalls@compuserve.com +# +# This program can be redistributed and/or modified under the terms +# of the LaTeX Project Public License Distributed from CTAN +# archives in directory macros/latex/base/lppl.txt; either +# version 1 of the License, or any later version. +# +<<package <tt>DummyFH</tt> >> +package main; +use Math::Trig; +<<Define global variables>> +<<subroutine definitions>> +<<Check for command line arguments>> +<<process file>> +print $alarm if $no_errors > 0; +__END__ + +@ The package [[DummyFH]] is used in the implementation of the [[loop]] command. +It creates a dummy filehandle that is associated with an array of strings. Since +we only read data from this dummy filehandle, we implement the [[READLINE]] subroutine. +When we read a line from this dummy filehandle, we actually requesting the next entry +of the array (if any). That is why we use the package variable [[$index]]. When there +are no more entries in the array, subroutine [[READLINE]] returns the value [[undef]] +so to falsify loop that controls the consumption of input from this dummy filehandle. + +<<package <tt>DummyFH</tt> >>= +package DummyFH; +my $index = 0; +sub TIEHANDLE { + my $class = shift; + my $self= shift; + bless $self, $class; +} +sub READLINE { + my $self = shift; + #shift @$self; + if ($index > $#$self) { + $index = 0; + return undef; + } + else { + return $self->[$index++]; + } +} + +@ <tt>mathspic</tt> accepts at most four command-line switches, namely +<tt>-b</tt> for enabling the beep, <tt>-s</tt> for automatic +screen viewing of the output-file, +<tt>-c</tt> for cleaning out all comment-lines, +and <tt>-o</tt> with a following file-name +for specifying the output file-name. +<tt>mathspic</tt> requires the name of an existing input-file +(the so-called <tt>mathspic</tt>-file) containing +<tt>mathspic</tt>commands. +If no command-line arguments are supplied, we print a +suitable usage message indicating the syntax. +For each command-line argument we set a global +variable. The default behavior is that the `bell' does not beep +and comment-lines are not removed from the output-file. + +<<Check for command line arguments>>= +our $alarm=""; +our $comments_on=1; +our $out_file="default"; +our $argc=@ARGV; +if ($argc == 0 || $argc > 5 ){ # no command line arguments or more than 4 + # arguments + die "\nmathspic version $version_number\n" . + "Usage: mathspic [-h] [-b] [-c] [-o <out file>] <in file>\n\n"; +} +else { + <<Process command line arguments>> + print "This is mathspic version $version_number\n"; +} +<<Check if .m file exists>> + +@ In order to get the various command-line arguments we use a simple +[[while]] loop that checks each element of the array [[@ARGV]]. We check +for all the switches, and we get the name of the input-file. + +<<Process command line arguments>>= + our $file = ""; + SWITCHES: + while($_ = $ARGV[0]) { + shift; + if (/^-h$/) { + die "\nThis is mathspic version $version_number\n" . + "Type \"man mathspic\" for detailed help\n". + "Usage:\tmathspic [-h] [-b] [-c] [-o <out file>] <in file>\n" . + "\twhere,\n" . + "\t[-b]\tenables bell sound if error exists\n" . + "\t[-c]\tdisables comments in ouput file\n" . + "\t[-h]\tgives this help listing\n" . + "\t[-o]\tcreates specified output file\n\n"; + } + elsif (/^-b$/) { + $alarm = chr(7); + } + elsif (/^-c$/) { + $comments_on = 0; + } + elsif (/^-o$/) { + die "No output file specified!\n" if !@ARGV; + $out_file = $ARGV[0]; + shift; + } + elsif (/^-\w+/) { + die "$_: Illegal command line switch!\n"; + } + else { + $file = $_; + } + } + die "No input file specified!\n" if $file eq ""; + +@ In order to check whether the input-file exists, we simply use the +[[-e]] operator. First we check to see if [[$file]] exits. +If the input-file does exist then the variable [[$file]] contains +the file name. In case the user has not specified an output +file, the default output file name is the name of the input file with +extension [[.mt]]. Finally, the program outputs all error messages to +the screen and to a log file. The name of the log file consists of +the contents of the variable [[$file]] and the extension [[.mlg]]. + +<<Check if .m file exists>>= + our ($source_file, $log_file); + if (! -e $file) { + die "$file: no such file!\n" if (! (-e "$file.m")); + $source_file = "$file.m"; + } + else { + $source_file = $file; + $file = $1 if $file =~ /(\w[\w-\.]+)\.\w+/; + } + $out_file= "$file.mt" if $out_file eq "default"; + $log_file= "$file.mlg"; + +@ Now that we have all the command line arguments, we can start processing +the input file. This is done by calling the subroutine [[process_input]]. +Before that we must open all necessary files. Next, +we print some `header' information to the output file and to the log file. + +<<process file>>= + open(IN,"$source_file")||die "Can't open source file: $source_file\n"; + open(OUT,">$out_file")||die "Can't open output file: $out_file\n"; + open(LOG,">$log_file")||die "Can't open log file: $log_file\n"; + print_headers; + process_input(IN,""); + +@ In this section we define a few global variables. More specifically: +the variable [[$version_number]] contains the current version number of the +program, the variable [[$commandLineArgs]] contains the command line arguments. +These two variables are used in the [[print_headers]] subroutine. +The variable [[$command]] will contain the whole current input line. +Hash [[%PointTable]] is used to store point names and related +information. Hash [[%VarTable]] is used to store mathspic variable names +and related information, while the associative array [[%ConstTable]] contains the +names of constants. Note that the values of both constants and variables are +kept in [[%VarTable]]. +The variable [[$no_errors]] is incremented whenever the +program encounters an error in the input file. The variables [[$xunits]], +[[$yunits]] and [[$units]] are related to the [[paper]] command. +In particular, the variable [[$units]] is used to parse the unit part of the +[[unit]] part of the [[paper]] command. The variable [[$defaultsymbol]] is used to +set the point shape. The constant [[PI]] holds the value of the mathematical + constant pi. +The constant [[R2D]] holds the transformation factor to transform radians to +degrees. The constant [[D2R]] holds the transformation factor +to transform degrees to radians, i.e., the value [[1/R2D]]. The global variables +[[$arrowLength]], [[$arrowAngleB]] and [[$arrowAngleC]] are actually parameters that +are used by the subroutines that draw arrows. Since [[$arrowLength]] is actually +a length, variable [[$arrowLenghtUnits]] holds the units of measure in which +this length is expressed. The hash table [[%DimOfPoint]] contains the side or the +radius of a point whose plot-symbol is a square or a circle, respectively. In case the +default point symbol is a circle or a square, variable [[$GlobalDimOfPoints]] is used +to store the length of the radius or the length of the side of default point symbol, +respectively. Variable [[$LineThickness]] holds the current line thickness (the +default value is 0.4 pt). + +<<Define global variables>>= +our $version_number = "1.10 Feb 18, 2007"; +our $commandLineArgs = join(" ", @ARGV); +our $command = ""; +our $curr_in_file = ""; +our %PointTable = (); +our %VarTable = (); +our %ConstTable = (); +our $no_errors = 0; +our $xunits = "1pt"; +our $yunits = "1pt"; +our $units = "pt|pc|in|bp|cm|mm|dd|cc|sp"; +our $defaultsymbol = "\$\\bullet\$"; +our $defaultLFradius = 0; +use constant PI => atan2(1,1)*4; +use constant R2D => 180 / PI; +use constant D2R => PI / 180; +our $arrowLength = 2; +our $arrowLengthUnits = "mm"; +our $arrowAngleB = 30; +our $arrowAngleC = 40; +our %DimOfPoint = (); +our $GlobalDimOfPoints = 0; +our @Macros = (); +our $LineThickness = 0.4; + +@ In this section we define the various subroutines that are needed in order +to process the input file. + +<p> Subroutine <tt>mpp</tt> is a mathspic preprocessor that allows the definition +and use of macros with or without arguments. For the moment it is an experimental +feature and it should be used with care. + +<p> Subroutine <tt>PrintErrorMessage</tt> is used to print error messages +to the screen, to the output file and to the log file. + +<p> Subroutine <tt>PrintWarningMessage</tt> is used to print warning messages +to the screen, to the output file and to the log file. + +<p> Subroutine <tt>PrintFatalError</tt> is used to print an error message +to the screen and to abort execution, where the error is considered fatal +and not recoverable. + +<p>Subroutine <tt>chk_lparen</tt> checks whether the next input +character is a left parenthesis. Subroutine <tt>chk_rparen</tt> +checks whether the next input character is a right parenthesis. Subroutine +<tt>chk_comment</tt> checks whether a given command is followed by a trailing +comment. In the same spirit, we define the subroutines <tt>chk_lcb</tt>, +<tt>chk_rcb</tt>, <tt>chk_lsb</tt>, and <tt>chk_rsb</tt> which check for +opening and closing curly and square brackets respectively. +The subroutine [[chk_comma]] checks whether the next token is a comma. + +<p> Subroutine [[print_headers]] is used to print a header to the output file, +so a user knows that the file has been generated by <tt>mathspic</tt>. + +<p> Subroutine [[get_point]] is used to parse a point name and to +check whether the point exists (i.e whether the point has been defined). + +<p> Subroutine [[perpendicular]] is used to compute the coordinates of the +foot of perpendicular line from some point P to a line AB. + +<p> Subroutine [[Length]] is used to compute the distance between two +points A and B. + +<p> Subroutine [[triangleArea]] computes the area of a triangle defined +by three points. + +<p> Subroutine [[PointOnLine]] is used to compute the coordinates of +a point on a line segment AB and a distance d units from A towards B. + +<p> Subroutine [[circumCircleCenter]] takes six arguments that are the +coordinates of three points and computes the center of the circle that +passes through the three points which define the triangle. + +<p> Subroutine [[ComputeDist]] is used to compute a numeric value that is +specified by either a variable name, a pair of points, or just a number. + +<p> Subroutine [[intersection4points]] is used to compute the coordinates +of the point of intersection of two lines specified by the four arguments +(i.e. two arguments for each point). + +<p> Subroutine [[IncircleCenter]] is used to compute the center and +the radius of a circle that touches internally the sides of a triangle, +the coordinates of the three points which define the triangle +being the arguments of the subroutine. + +<p> Subroutine [[Angle]] determines the opening in degrees of an angle +defined by three points which are the arguments of this subroutine. + +<p> Subroutine [[excircle]] computes the center and the radius of +a circle that externally touches a given side (4th and 5th arguments) of +triangle (determined by the 1st, the 2nd and the 3rd argument). + +<p> Subroutine [[DrawLineOrArrow]] is used to parse the arguments of the commands + [[drawline]], [[drawthickline]], [[drawarrow]], [[drawthickarrow]] and + [[drawCurve]]. + +<p> Subroutine [[drawarrows]] is used to draw one or more arrows between points. + +<p> Subroutine [[drawlines]] is used to draw one or more lines between points. + +<p> Subroutine [[drawCurve]] is used to draw a curve between an odd number of points. + +<p> Subroutine [[drawpoints]] is used to draw the point symbol of one or more points. + +<p> Subroutine [[drawAngleArc]] is used to draw an arc line within an angle. + +<p> Subroutine [[drawAngleArrow]] is used to draw an arc line with an arrow on the end, +within an angle. + +<p> Subroutine [[expr]] and subroutines [[term]], [[factor]] and +[[primitive]] are used to parse an expression that follows a variable +declaration. + +<p> Subroutine [[memberOf]] is used to determine whether a string is a +member of a list of strings. + +<p> Subroutine [[tand]] computes the tangent of an angle, where the +angle is expressed in degrees. + +<p> Subroutine [[get_string]] scans a string in order to extract a +valid mathspic string. + +<p> Subroutine [[is_tainted]] checks whether a string contains data that +may be proved harmful if used as arguments to a shell escape. + +<p> Subroutine [[noOfDigits]] has one argument which is a number and +returns the number of decimal digits it has. + +<p> Subroutine [[drawsquare]] has one argument which is the radius of point +and yields LaTeX code that draws a square. + +<p> Subroutine [[X2sp]] can be used to transform a length to sp units. + +<p> Subroutine [[sp2X]] can be used to transform a length expressed in sp units + to any other acceptable unit. + +<p> Subroutine [[setLineThickness]] is used to determine the length of the + linethickness in the current paper units. + +<p> Subroutine [[process_input]] parses the input file and any other file + being included in the main file, and generates output. + +<<subroutine definitions>>= + <<subroutine <tt>mpp</tt> >> + <<subroutine <tt>PrintErrorMessage</tt> >> + <<subroutine <tt>PrintWarningMessage</tt> >> + <<subroutine <tt>PrintFatalError</tt> >> + <<subroutine <tt>chk_lparen</tt> >> + <<subroutine <tt>chk_rparen</tt> >> + <<subroutine <tt>chk_lcb</tt> >> + <<subroutine <tt>chk_rcb</tt> >> + <<subroutine <tt>chk_lsb</tt> >> + <<subroutine <tt>chk_rsb</tt> >> + <<subroutine <tt>chk_comma</tt> >> + <<subroutine <tt>chk_comment</tt> >> + <<subroutine <tt>print_headers</tt> >> + <<subroutine <tt>get_point</tt> >> + <<subroutine <tt>perpendicular</tt> >> + <<subroutine <tt>Length</tt> >> + <<subroutine <tt>triangleArea</tt> >> + <<subroutine <tt>pointOnLine</tt> >> + <<subroutine <tt>circumCircleCenter</tt> >> + <<subroutine <tt>ComputeDist</tt> >> + <<subroutine <tt>intersection4points</tt> >> + <<subroutine <tt>IncircleCenter</tt> >> + <<subroutine <tt>Angle</tt> >> + <<subroutine <tt>excircle</tt> >> + <<subroutine <tt>DrawLineOrArrow</tt> >> + <<subroutine <tt>drawarrows</tt> >> + <<subroutine <tt>drawlines</tt> >> + <<subroutine <tt>drawCurve</tt> >> + <<subroutine <tt>drawpoints</tt> >> + <<subroutine <tt>drawAngleArc</tt> >> + <<subroutine <tt>drawAngleArrow</tt> >> + <<subroutine <tt>expr</tt> >> + <<subroutine <tt>memberOf</tt> >> + <<subroutine <tt>tand</tt> >> + <<subroutine <tt>get_string</tt> >> + <<subroutine <tt>is_tainted</tt> >> + <<subroutine <tt>noOfDigits</tt> >> + <<subroutine <tt>drawsquare</tt> >> + <<subroutine <tt>X2sp</tt> >> + <<subroutine <tt>sp2X</tt> >> + <<subroutine <tt>setLineThickness</tt> >> + <<subroutine <tt>process_input</tt> >> + +@ Subroutine <tt>mpp</tt> is an implementation of a mathspic preprocessor that allows +the definition of one-line macros with or without arguments. Macro definition has the +following syntax: +<center> + <tt>"%def" macro_name "(" [ parameters ] ")" macro_code +</center> +where parameters is a list of comma separated strings (e.g., x,y,z). Once a macro is +defined it can be used or it can be undefined. To undefine a macro one has to use +the following command: +<center> + <tt>"%undef" [ macro_name ] +</center +This means that an undef command without an accompanying macro name has no effect +at all. In order to use a macro we simply type its name and its arguments in +parentheses. Note that macro arguments should not contain spaces. If a macro has no +argument, there is no need to type any parentheses. We will now describe briefly how +the macro processor operates. +<p> If the current input line starts with <tt>%def</tt>, then we assume that we have +a macro definition. We parse each component of the macro definition and finally we +store the macro name, the macro code and the macro parameters (if any) in an anonymous +hash that eventually becomes part of an array. If we encounter any error, we simply +skip to the next line after printing a suitable error message. Now, if the first tokens +of an input line are <tt>%undef</tt>, we assume the user wants to delete a macro. +In case these tokens are not followed by a macro name or the macro name has not been +defined we simply go on. Otherwise, we delete the corresponding macro data from the +global array [[@Macros]] that contains all the macro information. Macro expansion is +more difficult and it will be described in detail in a separate document. At this point +we would like to thank Joachim Schneider <joachim at hal dot rhein-necker dot de> +for a suggestion on improving macro expansion. + +<<subroutine <tt>mpp</tt> >>= +sub mpp { + my $in_line; + chomp($in_line = shift); + my $LC = shift; + my $out_line = $in_line; + my $macro_name = ""; + my @macro_param = (); + my $macro_code = ""; + if ($in_line =~ s/^%def\s*//) { + if ($in_line =~ s/^(\w+)\s*//){ + $macro_name = $1; + } + else { + PrintErrorMessage("No macro name has been found",$LC); + return "" + } + if ($in_line =~ s/^\(\s*//) { + # do nothing + } + else { + PrintErrorMessage("No left parenthesis after macro name has been found",$LC); + return ""; + } + if ($in_line =~ s/^\)//) { + # Macro has no parameters! + } + else { + MACROS: while (1) { + if ($in_line =~ s/^(\w+)\s*//) { + push (@macro_param, $1); + } + else { + PrintErrorMessage("No macro parameter name has been found",$LC); + return ""; + } + if ($in_line =~ s/^,\s*//) { + next MACROS; + } + else { + last MACROS; + } + } + if ($in_line =~ s/^\)//) { + # do nothing! + } + else { + PrintErrorMessage("No closing parenthesis after macro parameters",$LC); + return ""; + } + } + $in_line =~ s/([^%]+)(%.*)/$1/; + $macro_code = $in_line; + push ( @Macros , { 'macro_name' => $macro_name, + 'macro_code' => $macro_code, + 'macro_param' => \@macro_param }); + return $out_line; + } + elsif ($in_line =~ s/^%undef\s*//) { + if ($in_line =~ s/^(\w+)//) { + my $undef_macro = $1; + for(my $i = $#Macros; $i >= 0; $i--) { + if ($Macros[$i]->{'macro_name'} eq $undef_macro) { + splice(@Macros,$i,1); + } + } + } + return $out_line; + } + elsif ($in_line =~ s/^\s*%//) { + return $out_line; + } + else { + my $comment = $2 if $in_line =~ s/([^%]+)(%.+)/$1/; + EXPANSIONLOOP: while () { + my $org_in_line = $in_line; + for(my $i = $#Macros; $i >= 0; $i--) { + my $macro_name = $Macros[$i]->{'macro_name'}; + if ($in_line =~ /&$macro_name\b/) { ############################ + my $num_of_macro_args = @{$Macros[$i]->{'macro_param'}}; + if ( $num_of_macro_args > 0 ) { + # Macro with parameters + my $pattern = "&$macro_name\\("; + foreach my $p ( 1..$num_of_macro_args ) { + my $comma = ($p == $num_of_macro_args) ? "\\s*" : "\\s*,\\s*"; + $pattern .= "\\s*[^\\s\\)]+$comma"; + } + $pattern .= "\\)"; + while($in_line =~ /&$macro_name\b/) { + if ($in_line =~ /$pattern/) { + my $before = $`; + my $after = $'; + my $match = $&; + my $new_code = $Macros[$i]->{'macro_code'}; + $match =~ s/^&$macro_name\(\s*//; + $match =~ s/\)$//; + foreach my $arg ( 0..($num_of_macro_args - 1) ) { + my $old = $Macros[$i]->{'macro_param'}->[$arg]; + my $comma = ($arg == ($num_of_macro_args - 1)) ? "" : ","; + $match =~ s/^\s*([^\s,]+)\s*$comma//; + my $new = $1; + # 'g': Parameter may occur several times + # in $new_code. + # '\b': Substitute only whole words + # not x in xA + $new_code =~ s/\b$old\b/$new/g; + } + $in_line = "$before$new_code$after"; + } + else { + PrintErrorMessage("Usage of macro &$macro_name does not " . + "match its definition", $LC); + return ""; + } + } + } + else { + # Macro without parameters + my $replacement = $Macros[$i]->{'macro_code'}; + # '\b': Substitute only whole words + # not x in xA + $in_line =~ s/&$macro_name\b/$replacement/g; + } + } + } + last EXPANSIONLOOP if ( $org_in_line eq $in_line ); + } + return "$in_line$comment"; + } +} + +@ Subroutine <tt>PrintErrorMessage</tt> has two parameters: the +error message that will be printed on the screen, the log file and +the output file, and the line number of the line containing the +error was detected. +The general form of the error message is the following: +<pre> +line X: paper{units( + ,mm)xrange(0,20)yrange(0,30)axes(B)ticks(10,10)} + +***Error: Error_Message +</pre> +where [[X]] denotes the line number and [[Error_Message]] is the +actual error message. Note, that we print the tokens processed so far +and on the text line the unprocessed tokens, so that the user knows +exactly where the error is. In the variable [[$A]] we store the processed +tokens, while the variable [[$l]] holds the length of [[$A]] plus the +length of the [[$error_line]] (that is the number of the input line where +the error occurred) plus 7, i.e., 4 (the length of the word +[[line]]) plus 2 (the two blank spaces) plus 1 (the symbol [[:]]). +Finally, we increment the error counter (variable [[$no_errors]]). Note, that +in case the user has specified the [[-c]] command line switch, we will not +print any messages to the output file. + +<<subroutine <tt>PrintErrorMessage</tt> >>= + sub PrintErrorMessage { + my $errormessage = shift; + my $error_line = shift; + my ($l,$A); + $l = 1+length($command)-length; + $A = substr($command,0,$l); + $l += 7 +length($error_line); + + for my $fh (STDOUT, LOG) { + print $fh "$curr_in_file", "Line $error_line: $A\n"; + print $fh " " x $l ,$_,"***Error: $errormessage\n"; + } + if ($comments_on) { #print to output file file + print OUT "%% *** $curr_in_file", "Line $error_line: $A\n"; + print OUT "%% *** "," " x $l ,$_,"%% ... Error: $errormessage\n"; + } + $no_errors++; + } + +@ Subroutine <tt>PrintWarningMessage</tt> behaves exactly like the subroutine +<tt>PrintErrorMessage</tt>. The only difference is that the second +subroutine prints only a warning message. A warning is issued when +the system detects parameters that do nothing. + +<<subroutine <tt>PrintWarningMessage</tt> >>= + sub PrintWarningMessage { + my $warningMessage = shift; + my $warning_line = shift; + my ($l,$A); + $l = 1+length($command)-length; + $A = substr($command,0,$l); + $l += 7 +length($warning_line); + + for my $fh (STDOUT, LOG) { + print $fh "$curr_in_file", "Line $warning_line: $A\n"; + print $fh " " x $l ,$_,"***Warning: $warningMessage\n"; + } + if ($comments_on) { #print to output file file + print OUT "%% *** $curr_in_file", "Line $warning_line: $A\n"; + print OUT "%% *** "," " x $l ,$_,"%% ... Warning: $warningMessage\n"; + } + } + +@ The subroutine <tt>PrintFatalError</tt> behaves similarly to the subroutine +<tt>PrintErrorMessage</tt>. It prints an error message to the +screen and aborts execution. + +<<subroutine <tt>PrintFatalError</tt> >>= + sub PrintFatalError { + my $FatalMessage = shift; + my $fatal_line = shift; + my ($l,$A); + $l = 1+length($command)-length; + $A = substr($command,0,$l); + $l += 7 +length($fatal_line); + + die "$curr_in_file", "Line $fatal_line: $A\n" . + (" " x $l) . $_ . "***Fatal Error: $FatalMessage\n"; + } + +@ The subroutine <tt>chk_lparen</tt> accepts two arguments: the name +of the token that should be immediately before the left parenthesis (variable +[[$token]]), and the current line number (variable [[$lc]]). First we +skip any leading white space and then check whether the next +input character is a left parenthesis, then the subroutine skips any +trailing white space; otherwise it prints an error message. + +<<subroutine <tt>chk_lparen</tt> >>= +sub chk_lparen { + my $token = $_[0]; + my $lc = $_[1]; + s/\s*//; + if (/^[^\(]/) { + PrintErrorMessage("Missing ( after $token",$lc); + } + else { + s/^\(\s*//; + } +} + +@ The subroutine <tt>chk_rparen</tt> accepts two parameters: the name +of the token that should be immediately after a right parenthesis (variable +[[$token]]), and the current line number (variable [[$lc]]). Initially, we +skip any leading white space and then we check whether the next input +token is a right parenthesis. If it is not we issue a error message and +return, otherwise we skip the parenthesis and any trailing white space. + +<<subroutine <tt>chk_rparen</tt> >>= +sub chk_rparen { + my $token = $_[0]; + my $lc = $_[1]; + s/\s*//; + if (s/^\)//) { + s/\s*//; + } + else { + PrintErrorMessage("Missing ) after $token",$lc); + } +} + + +@ The subroutine <tt>chk_lcb</tt> behaves in a similar way to the subroutine +<tt>chk_lparen</tt>. + +<<subroutine <tt>chk_lcb</tt> >>= +sub chk_lcb { + my $token = $_[0]; + my $lc = $_[1]; + s/\s*//; + if ($_ !~ /^\{/) { + PrintErrorMessage("Missing { after $token",$lc); + } + else { + s/^{\s*//; + } +} + +@ Subroutine <tt>chk_rcb</tt> behaves in a similar way to the subroutine +<tt>chk_rparen</tt>. + +<<subroutine <tt>chk_rcb</tt> >>= +sub chk_rcb { + my $token = $_[0]; + my $lc = $_[1]; + if ($_ !~ /^\s*\}/) { + PrintErrorMessage("Missing } after $token",$lc); + } + else { + s/^\s*}\s*//; + } +} + +@ Subroutine <tt>chk_lsb</tt> behaves in a similar way to the subroutine +<tt>chk_lparen</tt>. + +<<subroutine <tt>chk_lsb</tt> >>= +sub chk_lsb { + my $token = $_[0]; + my $lc = $_[1]; + + s/\s*//; + if ($_ !~ /^\[/) { + PrintErrorMessage("Missing [ after $token",$lc); + } + else { + s/^\[\s*//; + } +} + +@ Subroutine <tt>chk_rsb</tt> behaves in a similar way to the subroutine +<tt>chk_rparen</tt>. + +<<subroutine <tt>chk_rsb</tt> >>= +sub chk_rsb { + my $token = $_[0]; + my $lc = $_[1]; + + s/\s*//; + if ($_ !~ /^\]/) { + PrintErrorMessage("Missing ] after $token",$lc); + } + else { + s/^\]\s*//; + } +} + +@ The subroutine [[chk_comma]] checks whether the next token is a comma. +If it is not then it prints an error message, otherwise it consumes the +comma and any white space that follows the comma. + +<<subroutine <tt>chk_comma</tt> >>= +sub chk_comma { + my $lc = $_[0]; + + s/\s*//; + if (/^[^,]/) { + PrintErrorMessage("Did not find expected comma",$lc); + } + else { + s/^,\s*//; + } +} + +@ The subroutine [[chk_comment]] has only one parameter which is the current +line number. It checks whether the next input character is a comment +character and in this case it does nothing!. Otherwise, if there is some trailing text +it simply prints a warning to the screen. + +<<subroutine <tt>chk_comment</tt> >>= +sub chk_comment { + my $lc = $_[0]; + + s/\s*//; + if (/^%/) { + # do nothing! + } + elsif (/^[^%]/) { + PrintWarningMessage("Trailing text is ignored",$lc); + } +} + +@ The subroutine [[print_headers]] prints a header to the output file, as +well as a header to the LOG file. +The header contains information regarding the version of the +program, a copyright notice, the command line, date and time information, +and the names of the various files processed/generated. + +<<subroutine <tt>print_headers</tt> >>= + sub print_headers + { + my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime; + $year+=1900; + $mon+=1; + $now_string = "$year/" . ($mon>9 ? "$mon/" : "0$mon/") . + ($mday>9 ? "$mday " : "0$mday ") . + ($hour>9 ? "$hour:" : "0$hour:") . + ($min>9 ? "$min:" : "0$min:") . + ($sec>9 ? "$sec" : "0$sec"); + print OUT "%* -----------------------------------------------\n"; + print OUT "%* mathspic (Perl version $version_number)\n"; + print OUT "%* A filter program for use with PiCTeX\n"; + print OUT "%* Copyright (c) 2005 A Syropoulos & RWD Nickalls \n"; + print OUT "%* Command line: $0 $commandLineArgs\n"; + print OUT "%* Input filename : $source_file\n"; + print OUT "%* Output filename: $out_file\n"; + print OUT "%* Date & time: $now_string\n"; + print OUT "%* -----------------------------------------------\n"; + # + print LOG "----\n"; + print LOG "$now_string\n"; + print LOG "mathspic (Perl version $version_number)\n"; + print LOG "Copyright (c) 2005 A Syropoulos & RWD Nickalls \n"; + print LOG "Input file = $source_file\n"; + print LOG "Output file = $out_file\n"; + print LOG "Log file = $log_file\n"; + print LOG "----\n"; + } + +@ The subroutine [[get_point]] parses an individual point name. +If the next token is also a point name then it returns the point name + (but only if the only if +the point name exists in the PointTable). In all other cases it returns +the string [[_undef_]] to indicate that something is wrong. + +<<subroutine <tt>get_point</tt> >>= + sub get_point { + + my ($lc) = $_[0]; + my ($PointName); + + if (s/^([^\W\d_]\d{0,3})\s*//i) { #point name + $PointName = $1; + if (!exists($PointTable{lc($PointName)})) { + PrintErrorMessage("Undefined point $PointName",$lc); + return "_undef_"; + } + else { + return lc($PointName); + } + } + else { + PrintErrorMessage("Point name expected",$lc); + return "_undef_"; + } + } + +@ The subroutine [[perpendicular]] has 6 parameters that correspond to the +coordinates of some point P and to the coordinates of two points A and +B that define a line. The subroutine returns +a pair of numbers that correspond to the coordinates of a point that lies +at the foot of the perpendicular to the line AB that passes through point P. +The slope of line AB is m<sub>1</sub> and so its equation is +y=m<sub>1</sub>x+c<sub>1</sub>. Similarly, the slope of the line PF is +m<sub>2</sub>=-1/m<sub>1</sub> and its equation is +y=m<sub>2</sub>x+c<sub>2</sub>. Since the line AB passes through A, then +c<sub>1</sub>=y<sub>A</sub>-m<sub>1</sub>x<sub>A</sub>. Similarly, as P is +on line PF, then c<sub>2</sub>=y<sub>P</sub>-m<sub>2</sub>x<sub>P</sub>. +Now point F is on both lines, therefore +y<sub>F</sub>=m<sub>2</sub>x<sub>F</sub>+c<sub>2</sub> and +y<sub>F</sub>=m<sub>1</sub>x<sub>F</sub>+c<sub>1</sub>. Solving these +equations for x<sub>F</sub> and y<sub>F</sub> gives: +<center> +x<sub>F</sub>=(c<sub>2</sub>-c<sub>1</sub>)/(m<sub>1</sub>-m<sub>2</sub>)<br> +y<sub>F</sub>=(m<sub>1</sub>c<sub>2</sub>-m<sub>2</sub>c<sub>1</sub>)/ +(m<sub>1</sub>-m<sub>2</sub>) +</center> + +<<subroutine <tt>perpendicular</tt> >>= + sub perpendicular { + my ($xP, $yP, $xA, $yA, $xB, $yB) = @_; + my ($xF, $yF, $deltax, $deltay, $m1, $m2, $c1, $c2, $factor); + + $deltax = $xA - $xB; + return ($xA, $yP) if abs($deltax) < 0.0000001; + $deltay = $yA - $yB; + return ($xP, $yA) if abs($deltay) < 0.0000001; + $m1 = $deltay / $deltax; + eval { $m2 = (-1) / $m1;}; + PrintFatalError("Division by zero",$lc) if $@; + $c1 = $yA - $m1 * $xA; + $c2 = $yP - $m2 * $xP; + eval { $factor = 1 / ($m1 - $m2)}; + PrintFatalError("Division by zero",$lc) if $@; + return (($c2 - $c1) * $factor, ($m1 * $c2 - $m2 * $c1) * $factor); + } + +@ The subroutine [[Length]] computes the distance between two points A and B. +Notice, that the name of the subroutine starts with a capital L, just +to avoid conflict with the predefined Perl function. The subroutine +requires four parameters which are the coordinates of the two points. + +<<subroutine <tt>Length</tt> >>= + sub Length { + my ($xA, $yA, $xB, $yB)=@_; + return sqrt(($xB - $xA)**2 + ($yB - $yA)**2); + } + +@ The subroutine [[triangleArea]] computes the area of a triangle by using +Heron's formula, i.e., given a triangle ABC, we first compute +s=(AB+BC+CA)/2 and then the area of the triangle is equal to the +square root of s times (s-AB) times (s-BC) times (s-BA), where AB, BC, and CA +are the lengths of the three sides of the triangle. The subroutine accepts 6 +parameters, which correspond to the coordinates of three points that define +the triangle. + +<<subroutine <tt>triangleArea</tt> >>= + sub triangleArea { + my ($xA, $yA, $xB, $yB, $xC, $yC)=@_; + my ($lenAB, $lenBC, $lenCA, $s); + + $lenAB = Length($xA,$yA,$xB,$yB); + $lenBC = Length($xB,$yB,$xC,$yC); + $lenCA = Length($xC,$yC,$xA,$yA); + $s = ($lenAB + $lenBC + $lenCA) / 2; + return sqrt($s * ($s - $lenAB)*($s - $lenBC)*($s - $lenCA)); + } + +@ The subroutine [[poinOnLine]] accepts five arguments: the coordinates of two +points and the decimal number which corresponds to the distance from the +first point towards the second one. The way we compute the coordinates of +the point is fairly simple. + +<<subroutine <tt>pointOnLine</tt> >>= + sub pointOnLine { + my ($xA, $yA, $xB, $yB, $dist)=@_; + my ($deltax, $deltay, $xPol, $yPol); + + $deltax = $xB - $xA; + $deltay = $yB - $yA; + $xPol = $xA + ($dist * $deltax / &Length($xA,$yA,$xB,$yB)); + $yPol = $yA + ($dist * $deltay / &Length($xA,$yA,$xB,$yB)); + return ($xPol, $yPol); + } + + +@ As we have mentioned above the subroutine [[circumCircleCenter]] takes six +arguments that correspond to the coordinates of three points that +define a triangle. The subroutine computes the coordinates of +the center of a circle that passes through these three points, and the radius of +the circle. We now describe how the subroutine computes the center +of the circle and its radius. Let the triangle points be [[t1]], [[t2]] +and [[t3]]. We use the two pairs of points to define two sides, +i.e., [[t1t2]] and [[t2t3]]. For each +side we locate the midpoints and get the their coordinates. We check +whether either of these two lines is either vertical or horizontal. If this +is true, we know that one of the coordinates of the center of the circumcircle +is the same as that of the midpoints of the horizontal or vertical line. +Next, we determine the slopes of the lines [[t1t2]] and [[t2t3]]. +We now determine the slope of lines at right-angles to these lines. We solve the +resulting equations and obtain the center of the circumcircle. Now we get the +radius, and then we are done. + +<<subroutine <tt>circumCircleCenter</tt> >>= + + sub circumCircleCenter { + my ($xA, $yA, $xB, $yB, $xC, $yC, $lc)=@_; + my ($deltay12, $deltax12, $xs12, $ys12); + my ($deltay23, $deltax23, $xs23, $ys23); + my ($xcc, $ycc); + my ($m23, $mr23, $c23, $m12, $mr12, $c12); + my ($sideA, $sideB, $sideC, $a, $radius); + + if (abs(triangleArea($xA, $yA, $xB, $yB, $xC, $yC)) < 0.0000001) + { + PrintErrorMessage("Area of triangle is zero!",$lc); + return (0,0,0); + } + $deltay12 = $yB - $yA; + $deltax12 = $xB - $xA; + $xs12 = $xA + $deltax12 / 2; + $ys12 = $yA + $deltay12 / 2; + # + $deltay23 = $yC - $yB; + $deltax23 = $xC - $xB; + $xs23 = $xB + $deltax23 / 2; + $ys23 = $yB + $deltay23 / 2; + # + CCXYLINE:{ + if (abs($deltay12) < 0.0000001) + { + $xcc = $xs12; + if (abs($deltax23) < 0.0000001) + { + $ycc = $ys23; + last CCXYLINE; + } + else + { + $m23 = $deltay23 / $deltax23; + $mr23 = -1 / $m23; + $c23 = $ys23 - $mr23 * $xs23; + $ycc = $mr23 * $xs12 + $c23; + last CCXYLINE; + } + } + if (abs($deltax12) < 0.0000001) + { + $ycc = $ys12; + if (abs($deltay23) < 0.0000001) + { + $xcc = $xs23; + last CCXYLINE; + } + else + { + $m23 = $deltay23 / $deltax23; + $mr23 = -1 / $m23; + $c23 = $ys23 - $mr23 * $xs23; + $xcc = ($ys12 - $c23) / $mr23; + last CCXYLINE; + } + } + if (abs($deltay23) < 0.0000001) + { + $xcc = $xs23; + if (abs($deltax12) < 0.0000001) + { + $ycc = $ys12; + last CCXYLINE; + } + else + { + $m12 = $deltay12 / $deltax12; + $mr12 = -1 / $m12; + $c12 = $ys12 - $mr12 * $xs12; + $ycc = $mr12 * $xcc + $c12; + last CCXYLINE; + } + } + if (abs($deltax23) < 0.0000001) + { + $ycc = $ys23; + if (abs($deltay12) < 0.0000001) + { + $xcc = $xs12; + last CCXYLINE; + } + else + { + $m12 = $deltay12 / $deltax12; + $mr12 = -1 / $m12; + $c12 = $ys12 - $mr12 * $xs12; + $xcc = ($ycc - $c12) / $mr12; + last CCXYLINE; + } + } + $m12 = $deltay12 / $deltax12; + $mr12 = -1 / $m12; + $c12 = $ys12 - $mr12 * $xs12; + #----- + $m23 = $deltay23 / $deltax23; + $mr23 = -1 / $m23; + $c23 = $ys23 - $mr23 * $xs23; + $xcc = ($c23 - $c12) / ($mr12 - $mr23); + $ycc = ($c23 * $mr12 - $c12 * $mr23) / ($mr12 - $mr23); + } + # + $sideA = &Length($xA,$yA,$xB,$yB); + $sideB = &Length($xB,$yB,$xC,$yC); + $sideC = &Length($xC,$yC,$xA,$yA); + $a = triangleArea($xA, $yA, $xB, $yB, $xC, $yC); + $radius = ($sideA * $sideB * $sideC) / (4 * $a); + # + return ($xcc, $ycc, $radius); + } + +@ The subroutine [[ComputeDist]] is used to compute a distance that is +specified by either a float number, a pair of points, or a variable +name. In case we have a pair of identifiers, we check whether the first +one is a point. If it isn't a point we assume we have a variable followed +by a keyword. Otherwise, i.e., if it is a point name, we check whether +the second identifier is also a point name. If it is, we simply return +the distance between them, otherwise we issue an error message. +If we have only a single identifier, we check whether it is a +variable that has already been defined, and if so we return its value. + Since, this +subroutine is heavily used, it actually returns a pair of numbers: +the first one being the computed distance and the second one being an +error indicator. If the value of this indicator is 0, then there is no +error. If its value is 1, then there is an error. Moreover, in case there +is an error the distance is assumed to be equal to zero. + +<<subroutine <tt>ComputeDist</tt> >>= + sub ComputeDist { + my ($lc) = $_[0]; + my ($v1, $v2); + + if (s/^((\+|-)?\d+(\.\d+)?([eE](\+|-)?\d+)?)//) #is it a number? + { + return ($1, 1); + } + elsif (/^[^\W\d_]\d{0,3}[^\W\d_]\d{0,3}/) #it is a pair of IDs? + { + s/^([^\W\d_]\d{0,3})//i; + $v1 = $1; + if (!exists($PointTable{lc($v1)})) { + if (exists($VarTable{lc($v1)})) { + return ($VarTable{lc($v1)}, 1); + } + PrintErrorMessage("Point $v1 has not been defined", $lc); + s/^\s*[^\W\d_]\d{0,3}//i; + return (0,0); + } + $v1 = lc($v1); + s/^\s*([^\W\d_]\d{0,3})//i; + $v2 = $1; + if (!exists($PointTable{lc($v2)})) + { + PrintErrorMessage("Point $v2 has not been defined", $lc); + return (0,0); + } + $v2 = lc($v2); + my ($x1,$y1,$pSV1,$pS1) = unpack("d3A*",$PointTable{$v1}); + my ($x2,$y2,$pSV2,$pS2) = unpack("d3A*",$PointTable{$v2}); + return (Length($x1,$y1,$x2,$y2), 1); + } + elsif (s/^([^\W\d_]\d{0,3})//i) # it is a single id + { + $v1 = $1; + if (!exists($VarTable{lc($v1)})) #it isn't a variable + { + PrintErrorMessage("Variable $v1 has not been defined", $lc); + return (0,0); + } + return ($VarTable{lc($v1)}, 1); + } + else + { + PrintErrorMessage("Unexpected token", $lc); + return (0,0); + } + } + +@ The subroutine [[intersection4points]] has 8 parameters that correspond to the +coordinates of four points that uniquely determine two lines, and computes the +the point of intersection of these two lines. + +<<subroutine <tt>intersection4points</tt> >>= + sub intersection4points { + my ($x1, $y1, $x2, $y2, $x3, $y3, $x4, $y4) = @_; + my ($deltay12, $deltax12, $deltay34, $deltax34); + my ($xcc, $ycc, $m34, $c34, $m12, $c12); + + $deltay12 = $y2 - $y1; + $deltax12 = $x2 - $x1; + # + $deltay34 = $y4 - $y3; + $deltax34 = $x4 - $x3; + I4PXYLINE:{ + if (abs($deltay12) < 0.0000001) + { + $ycc = $y1; + if (abs($deltax34) < 0.0000001) + { + $xcc = $x3; + last I4PXYLINE; + } + else + { + $m34 = $deltay34 / $deltax34; + $c34 = $y3 - $m34 * $x3; + $xcc = ($ycc - $c34) / $m34; + last I4PXYLINE; + } + } + if (abs($deltax12) < 0.0000001) + { + $xcc = $x1; + if (abs($deltay34) < 0.0000001) + { + $ycc = $y3; + last I4PXYLINE; + } + else + { + $m34 = $deltay34 / $deltax34; + $c34 = $y3 - $m34 * $x3; + $ycc = $m34 * $xcc + $c34; + last I4PXYLINE; + } + } + if (abs($deltay34) < 0.0000001) + { + $ycc = $y3; + if (abs($deltax12) < 0.0000001) + { + $xcc = $x1; + last I4PXYLINE; + } + else + { + $m12 = $deltay12 / $deltax12; + $c12 = $y1 - $m12 * $x1; + $xcc = ($ycc - $c12) / $m12; + last I4PXYLINE; + } + } + if (abs($deltax34) < 0.0000001) + { + $xcc = $x3; + if (abs($deltay12) < 0.0000001) + { + $ycc = $y1; + last I4PXYLINE; + } + else + { + $m12 = $deltay12 / $deltax12; + $c12 = $y1 - $m12 * $x1; + $ycc = $m12 * $xcc + $c12; + last I4PXYLINE; + } + } + $m12 = $deltay12 / $deltax12; + $c12 = $y1 - $m12 * $x1; + $m34 = $deltay34 / $deltax34; + $c34 = $y3 - $m34 * $x3; + $xcc = ($c34 - $c12) / ($m12 - $m34); + $ycc = ($c34 * $m12 - $c12 * $m34) / ($m12 - $m34); + } + return ($xcc, $ycc); + } + +@ The subroutine [[IncircleCenter]] computes the center and the +radius of the circle that is inside a triangle and touches the sides of +the triangle. The subroutine has six arguments that correspond to the +coordinates of three points that uniquely determine the triangle. Here are +the details: +<ul> +<li> Let the triangle points be A, B, C and sides a, b, c, where side B +is opposite angle B, etc. </li> +<li> Use angles A and B only.</li> +<li> Let the bisector of angle A meet side a in point A1, and let the +distance of A1 from B be designated BA1</li> +<li> Using the sine rule, one gets: BA1/c = a/(b+c), that is +BA1 = c * a/(b+c).</li> +<li> Now do the same for side b, and determine equivalent point B1. +CB1/a = b/(b+c), that is CB1 = a * b/(b+c).</li> +<li> We can now find the intersection of the line from point A to point A1, +and the line from point B to point B1. We have four points, so we use the +mathspic internal [[intersection4points]] subroutine to return the +coordinates of the intersection X<sub>i</sub>, Y<sub>i</sub>.</li> +<li> Now get the radius: R=(area of triangle)/(a+b+c)/2</li> +<li>Finally, return the radius and the coordinates of the center. +</ul> + +<<subroutine <tt>IncircleCenter</tt> >>= + sub IncircleCenter { + my ($Ax, $Ay, $Bx, $By, $Cx, $Cy) = @_; + my ($sideA, $sideB, $sideC); + my ($ba1, $xA1, $yA1, $cb1, $ac1, $xB1, $yB1, $xC1, $yC1, $a, $s, $r); + + #determine the lengths of the sides + $sideA = Length($Bx, $By, $Cx, $Cy); + $sideB = Length($Cx, $Cy, $Ax, $Ay); + $sideC = Length($Ax, $Ay, $Bx, $By); + # + $ba1 = ($sideC * $sideA) / ($sideB + $sideC); + ($xA1, $yA1) = pointOnLine($Bx, $By, $Cx, $Cy, $ba1); + $cb1 = ($sideA * $sideB) / ($sideC + $sideA); + ($xB1, $yB1) = pointOnLine($Cx, $Cy, $Ax, $Ay, $cb1); + $ac1 = ($sideB * $sideC) / ($sideA + $sideB); + ($xC1, $yC1) = pointOnLine($Ax, $Ay, $Bx, $By, $ac1); + ($xcenter, $ycenter) = &intersection4points($Ax, $Ay, $xA1, $yA1, + $Bx, $By, $xB1, $yB1); + # get radius + $a = &triangleArea($Ax, $Ay, $Bx, $By, $Cx, $Cy); + $s = ($sideA + $sideB +$sideC) / 2; + $r = $a / $s; + return ($xcenter, $ycenter, $r); + } + +@ The subroutine [[Angle]] takes six arguments which correspond to the +coordinates of three points that define an angle. The subroutine computes +the opening of the angle in degrees. In case there is an error it returns +the number -500. ****EXPLAIN THE ALGORITHM**** + +<<subroutine <tt>Angle</tt> >>= + sub Angle { + my ($Ax, $Ay, $Bx, $By, $Cx, $Cy) = @_; + my ($RAx, $RAy, $RBx, $RBy, $RCx, $RCy, $deltax, $deltay); + my ($lineBA, $lineBC, $lineAC, $k, $kk, $angle); + my ($T, $cosT, $sinT) = (0.3, cos(0.3), sin(0.3)); + + $RAx = $Ax * $cosT + $Ay * $sinT; + $RAy = -$Ax * $sinT + $Ay * $cosT; + $RBx = $Bx * $cosT + $By * $sinT; + $RBy = -$Bx * $sinT + $By * $cosT; + $RCx = $Cx * $cosT + $Cy * $sinT; + $RCy = -$Cx * $sinT + $Cy * $cosT; + $deltax = $RBx - $RAx; + $deltay = $RBy - $RAy; + $lineBA = sqrt($deltax*$deltax + $deltay*$deltay); + if ($lineBA < 0.0000001) + { + return -500; + } + $deltax = $RBx - $RCx; + $deltay = $RBy - $RCy; + $lineBC = sqrt($deltax*$deltax + $deltay*$deltay); + if ($lineBC < 0.0000001) + { + return -500; + } + $deltax = $RAx - $RCx; + $deltay = $RAy - $RCy; + $lineAC = sqrt($deltax*$deltax + $deltay*$deltay); + if ($lineAC < 0.0000001) + { + return -500; + } + $k = ($lineBA*$lineBA + $lineBC*$lineBC - $lineAC*$lineAC ) / + (2 * $lineBA * $lineBC); + $k = -1 if $k < -0.99999; + $k = 1 if $k > 0.99999; + $kk = $k * $k; + if (($kk * $kk) == 1) + { + $angle = PI if $k == -1; + $angle = 0 if $k == 1; + } + else + { + $angle = (PI / 2) - atan2($k / sqrt(1 - $kk),1); + } + return $angle * 180 / PI; + } + +@ The subroutine [[excircle]] computes the center and the radius of a circle that +externally touches a given side (4th and 5th arguments) of triangle (determined +by the 1rst, the 2nd and 3rd argument). Here are the details: +<ul> +<li> Let the triangle points be A, B, C, and the given side be BC.</li> +<li> Now calculate the radius of Excircle = (triangle area)/(s - side length), +where s = (a+b+c)/2</li> +<li>Calculate the distance from the angle (A) (opposite the given side BC) + to the excircle center = radius/sin(A/2)</li> +<li> Now determine the the Excircle center by locating it on the angle bisector +(i.e., same line that the IncircleCenter is on), but at distance d further +away from angle A. So, we now have the Incircle center (I), + determine deltaX and deltaY from I to A, calculate the distance AI, + and then extend the line from I by distance d to Excenter Xc, Yc.</li> +</ul> + +<<subroutine <tt>excircle</tt> >>= + sub excircle { + my ($A, $B, $C, $D, $E) = @_; + my ($Ax,$Ay,$Bx,$By,$Dx,$Dy,$Ex,$Ey,$ASVA,$ASA); + ($Ax,$Ay,$ASVA,$ASA)=unpack("d3A*",$PointTable{$A}); + ($Bx,$By,$ASVA,$ASA)=unpack("d3A*",$PointTable{$B}); + ($Cx,$Cy,$ASVA,$ASA)=unpack("d3A*",$PointTable{$C}); + ($Dx,$Dy,$ASVA,$ASA)=unpack("d3A*",$PointTable{$D}); + ($Ex,$Ey,$ASVA,$ASA)=unpack("d3A*",$PointTable{$E}); + my ($sideA, $sideB, $sideC, $s, $R, $theAdeg, $d); + my ($Xmypoint, $Ymypoint, $deltax, $deltay, $mylength, $xc, $yc); + + $sideA = &Length($Bx, $By, $Cx, $Cy); + $sideB = &Length($Cx, $Cy, $Ax, $Ay); + $sideC = &Length($Ax, $Ay, $Bx, $By); + $s = ($sideA + $sideB + $sideC) / 2; + $R = triangleArea($Ax, $Ay, $Bx, $By, $Cx, $Cy) / + ($s - &Length($Dx, $Dy, $Ex, $Ey)); + if (($D eq $A && $E eq $B) || ($D eq $B && $E eq $A)) + { + $theAdeg = &Angle($Bx, $By, $Cx, $Cy, $Ax, $Ay); + $Xmypoint = $Cx; + $Ymypoint = $Cy; + } + elsif (($D eq $B && $E eq $C) || ($D eq $C && $E eq $B)) + { + $theAdeg = &Angle($Cx, $Cy, $Ax, $Ay, $Bx, $By); + $Xmypoint = $Ax; + $Ymypoint = $Ay; + } + elsif (($D eq $C && $E eq $A) || ($D eq $A && $E eq $C)) + { + $theAdeg = &Angle($Ax, $Ay, $Bx, $By, $Cx, $Cy); + $Xmypoint = $Bx; + $Ymypoint = $By; + } + else + { + return (0,0,0); + } + $d = $R / sin($theAdeg * PI / 180 / 2); + my ($xIn, $yIn, $rin) = &IncircleCenter($Ax, $Ay, $Bx, $By, $Cx, $Cy); + $deltax = $xIn - $Xmypoint; + $deltay = $yIn - $Ymypoint; + $mylength = sqrt($deltax*$deltax + $deltay*$deltay); + $xc = $Xmypoint + $d * $deltax / $mylength; + $yc = $Ymypoint + $d * $deltay / $mylength; + return ($xc, $yc, $R); + } + +@ The [[DrawLineOrArrow]] subroutine is used to parse the arguments of the commands +[[drawline]], [[drawthickline]], [[drawarrow]], [[drawthickarrow]] and +[[drawCurve]]. In general, these commands have as arguments a list of points separated by +commas that are used to draw a set of lines. The list of points is +enclosed in parentheses. Here we give only the syntax of the [[drawline]] +comma, as the syntax of the other commands is identical: +<pre> + drawline ::= "drawline" "(" Points { "," Points } ")" + Points ::= Point { separator Point} + separator ::= blank | empty +</pre> +In the following code we +scan a list of points (possibly separated by blanks) and we stop when +we encounter either a comma or some other character. In case we have found +a comma, we check whether we have a [[drawline]] command and if this is +the case we plot the list of points. We continue with the next list of points, +until there are no more points. The inner while-loop is used to control the +consumption of point tokens and the external to reset the array [[PP]] which +holds the point names. + +<<subroutine <tt>DrawLineOrArrow</tt> >>= + sub DrawLineOrArrow { + my $draw_Line = shift; + my $lc = shift; + my $lineLength = -1; + my $stacklen = 0; + my @PP = (); +# if ($draw_Line != 2) { +# s/\s*//; +# if (s/^\[\s*//) { # optional length specifier +# $lineLength = expr($lc); +# if ($lineLength <= 0) { +# PrintErrorMessage("length must greater than zero",$lc); +# $lineLength = -1; +# } +# chk_rsb("optional part",$lc); +# } +# } + chk_lparen("$cmd",$lc); + DRAWLINES:while(1) { + @PP = () ; + while(1) { + if (s/^([^\W\d_]\d{0,3})\s*//i) { #point name + $P = $1; + if (!exists($PointTable{lc($P)})) { + PrintErrorMessage("Undefined point $P",$lc); + } + else { + push (@PP,$P); + } + } + else { + $stacklen = @PP; + if ($draw_Line != 2) { + if ($stacklen <= 1) { + PrintErrorMessage("Wrong number of points",$lc); + } + else { + push(@PP,$lc); + if ($draw_Line == 0) { + drawarrows(@PP); + } + elsif ($draw_Line == 1) { + drawlines(@PP); + } + } + } + if (s/^,\s*// and $draw_Line != 2) { + next DRAWLINES; + } + else { + last DRAWLINES; + } + } + } + } + if ($draw_Line == 2) { + $stacklen = @PP; + if ($stacklen < 2) { + PrintErrorMessage("Wrong number of points",$lc); + } + elsif ($stacklen % 2 == 0) { + PrintErrorMessage("Number of points must be odd",$lc); + } + else { + drawCurve(@PP); + } + } + chk_rparen("arguments of $cmd",$lc); + chk_comment($lc); + } + +@ The subroutine [[drawarrows]] is used to draw one or more lines. The subroutine +accepts as argument an array which contains the names of the points which +define the lines, plus the current program line number. Each arrow is printed +using the following code: +<center> +<tt>\arrow < </tt>ArrowLength <tt> mm> [</tt> beta <tt>,</tt> gamma <tt>] from +x1 y1 to x2 y2 </tt> +</center> +where beta is equal to tan([[$arrowAngleB]] * [[d2r]] /2) and gamma is equal to +2*tan([[$arrowAngleC]] * [[d2r]] / 2). + +<<subroutine <tt>drawarrows</tt> >>= + sub drawarrows { + my ($NoArgs); + $NoArgs = @_; + my ($lc) = $_[$NoArgs-1]; #line number is the last argument + my ($NumberOfPoints, $p, $q, $r12, $d12); + my ($px,$py,$pSV,$pS, $qx,$qy,$qSV,$qS); + + $NumberOfPoints = $NoArgs - 1; + LOOP: for(my $i=0; $i < $NumberOfPoints - 1; $i++) + { + $p = $_[$i]; + $q = $_[$i+1]; + ($px,$py,$pSV,$pS) = unpack("d3A*",$PointTable{lc($p)}); + ($qx,$qy,$qSV,$qS) = unpack("d3A*",$PointTable{lc($q)}); + $pSV = $defaultLFradius if $pSV == 0; + $qSV = $defaultLFradius if $qSV == 0; + $r12 = $pSV + $qSV; + $d12 = Length($px,$py,$qx,$qy); + if ($d12 <= $r12) + { + if($d12 == 0) + { + PrintErrorMessage("points $p and $q are the same", $lc); + next LOOP; + } + PrintWarningMessage("arrow $p$q not drawn: points too close or ". + "radii too big", $lc); + next LOOP; + } + ($px, $py) = pointOnLine($px, $py, $qx, $qy, $pSV) if $pSV > 0; + ($qx, $qy) = pointOnLine($qx, $qy, $px, $py, $qSV) if $qSV > 0; + my ($beta, $gamma); + $beta = tan($arrowAngleB * D2R / 2); + $gamma = 2 * tan($arrowAngleC * D2R / 2); + printf OUT "\\arrow <%.5f%s> [%.5f,%.5f] from %.5f %.5f to %.5f %.5f\n", + $arrowLength, $arrowLengthUnits, $beta, $gamma, $px, $py, $qx, $qy; + } + } + +@ The subroutine [[drawlines]] is used to draw one or more lines. The subroutine +accepts as argument an array which contains the names of the points which +define the lines, plus the current program line number. If there are only +two points (i.e., only one line), then we output the following PiCTeX code: +<center> +<tt> \plot x1 y1 x2 y2 / %% pointname1 pointname2</tt> +</center> +If there are more than two points, then we need to write the PiCTeX code in +pairs with two points on each line (just to keep things simple) as follows: +<center> +<tt> \plot x1 y1 x2 y2 / %% pointname1 pointname2</tt> +<tt> \plot x2 y2 x3 y3 / %% pointname2 pointname3</tt> +<tt> \plot x3 y3 x4 y4 / %% pointname3 pointname4</tt> +</center> +An important part of the subroutine is devoted to checking whether either +or both of the pairs of points are associated with a line-free zone, and if +so, then we must take care not to draw the line inside the line-free zone. If +a point does have a line-free zone, then we use the [[pointOnLine]] +subroutine to determine the point on the line which is just on the line-free +boundary, and draw the line to the that point instead of to the exact +point-location. + +<<subroutine <tt>drawlines</tt> >>= + sub drawlines { + my ($NoArgs); + $NoArgs = @_; + my ($lc) = $_[$NoArgs-1]; #line number is the last argument + my ($NumberOfPoints, $p, $q, $r12, $d12); + my ($px,$py,$pSV,$pS, $qx,$qy,$qSV,$qS); + + $NumberOfPoints = $NoArgs - 1; + LOOP: for(my $i=0; $i < $NumberOfPoints - 1; $i++) + { + $p = $_[$i]; + $q = $_[$i+1]; + ($px,$py,$pSV,$pS) = unpack("d3A*",$PointTable{lc($p)}); + ($qx,$qy,$qSV,$qS) = unpack("d3A*",$PointTable{lc($q)}); + $pSV = $defaultLFradius if $pSV == 0; + $qSV = $defaultLFradius if $qSV == 0; + $r12 = $pSV + $qSV; + $d12 = Length($px,$py,$qx,$qy); + if ($d12 <= $r12) + { + if($d12 == 0) + { + PrintErrorMessage("points $p and $q are the same", $lc); + next LOOP; + } + PrintWarningMessage("line $p$q not drawn: points too close or ". + "radii too big", $lc); + next LOOP; + } + ($px, $py) = pointOnLine($px, $py, $qx, $qy, $pSV) if $pSV > 0; + ($qx, $qy) = pointOnLine($qx, $qy, $px, $py, $qSV) if $qSV > 0; + if ($px == $qx || $py == $qy) + { + printf OUT "\\putrule from %.5f %.5f to %.5f %.5f %%%% %s%s\n", + $px,$py,$qx,$qy,$p,$q; + } + else + { + printf OUT "\\plot %.5f %.5f\t%.5f %.5f / %%%% %s%s\n", + $px, $py,$qx,$qy,$p,$q; + } + } + } + +@ The subroutine [[drawCurve]] is used to draw a curve that passes through an odd +number of points. The subroutine has as argument an array which contains the names of the +points which define the lines plus the current program line number. The subroutine +emits code that has the following general form: +<pre> + \setquadratic + \plot + X1 Y1 + X2 Y2 + X3 Y3 + \setlinear +</pre> + + +<<subroutine <tt>drawCurve</tt> >>= + sub drawCurve { + my ($NoArgs); + $NoArgs = @_; + my ($lc) = $_[$NoArgs-1]; #line number is the last argument + my ($NumberOfPoints, $p); + + $NumberOfPoints = $NoArgs - 1; + print OUT "\\setquadratic\n\\plot\n"; + for(my $i=0; $i <= $NumberOfPoints; $i++) + { + $p = $_[$i]; + my ($px,$py,$pSV,$pS) = unpack("d3A*",$PointTable{lc($p)}); + printf OUT "\t%0.5f %0.5f", $px, $py; + print OUT (($i == $NumberOfPoints) ? " / %$p\n" : " %$p\n"); + } + print OUT "\\setlinear\n"; + } + +@ The subroutine [[drawpoints]] is used to draw one or more points. The subroutine +has as arguments a list of points. For each point we produce code that has +the following general form: +<center> +<tt> \put {SYMBOL} at Px PY</tt> +</center> +where [[SYMBOL]] is either the default plot symbol, i.e., [[$\bullet$]], +whatever the user has set with the [[PointSymbol]] command, or the plot +symbol specified in the definition of the point. + +<<subroutine <tt>drawpoints</tt> >>= + sub drawpoints { + my ($NumberOfPoints,$p); + $NumberOfPoints = @_; + my ($px,$py,$pSV,$pS); + + for($i=0; $i < $NumberOfPoints; $i++) + { + $p = $_[$i]; + ($px,$py,$pSV,$pS) = unpack("d3A*",$PointTable{lc($p)}); + if ($pS eq "" and $defaultsymbol =~ /circle|square/) { + $pS = $defaultsymbol; + } + POINTSWITCH: { + if ($pS eq "") # no plot symbol specified + { + printf OUT "\\put {%s} at %.5f %.5f %%%% %s\n", + $defaultsymbol, $px, $py, $p; + last POINTSWITCH; + } + if ($pS eq "circle") # plot symbol is a circle + { + my $radius = (defined($DimOfPoint{lc($p)})) ? $DimOfPoint{lc($p)} : + $GlobalDimOfPoints; + if ($radius > 0) # draw a circle using the current units + { + if ($radius == 1.5) # use \bigcirc + { + printf OUT "\\put {\$\\bigcirc\$} at %.5f %.5f %%%% %s\n", + $px, $py, $p; + } + else + { + printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f %%%% %s\n", + $px+$radius, $py, $px, $py, $p; + } + } + else #use \circ symbol + { + printf OUT "\\put {\$\\circ\$} at %.5f %.5f %%%% %s\n", + $px,$py,$p; + } + last POINTSWITCH; + } + if ($pS eq "square") + { + my $side = (defined($DimOfPoint{lc($p)})) ? $DimOfPoint{lc($p)} : + $GlobalDimOfPoints; + printf OUT "\\put {%s} at %.5f %.5f %%%% %s\n", + drawsquare($side), $px, $py, $p; + last POINTSWITCH; + } + printf OUT "\\put {%s} at %.5f %.5f %%%% %s\n", $pS,$px,$py,$p; + } + } + } + +@ The subroutine [[drawAngleArc]] gets six arguments which correspond to +three points defining an angle (variables [[$P1]], [[$P2]] and [[$P3]]), +the radius, the internal/external specification and the direction +specification (clockwise or anticlockwise). +Depending on the values of these arguments, the subroutine +returns the corresponding PiCTeX code, the general format of +which is <pre> + \circulararc Angle degrees from x y center at x2 y2 +</pre> +where [[Angle]] is the angle that the three points P1 P2 P3 define +(computed by subroutine [[Angle]]), +and [[x]] and [[y]] are the coordinates of a point +residing on line P2P1 at distance equal to a [[$radius]] from +point [[$P2]]; and [[x2]], [[y2]] are the coordinates of the +center of the circle about which the arc is drawn, +i.e., point [[$P2]]. + +<<subroutine <tt>drawAngleArc</tt> >>= +sub drawAngleArc { + my ($P1, $P2, $P3, $radius, $inout, $direction) = @_; + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$P1}); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$P2}); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$P3}); + + my $internalAngle = Angle($x1, $y1, $x2, $y2, $x3, $y3); + my $externalAngle = 360 - $internalAngle; + my ($x, $y) = pointOnLine($x2, $y2, $x1, $y1, $radius); + my $code = ""; + if ($inout eq "internal" and $direction eq "clockwise" ) { + $code = sprintf "\\circulararc %.5f degrees from %.5f %.5f center at %.5f %.5f\n", + -1 * $internalAngle, $x, $y, $x2, $y2; + } + elsif ($inout eq "internal" and $direction eq "anticlockwise" ) { + $code = sprintf "\\circulararc %.5f degrees from %.5f %.5f center at %.5f %.5f\n", + $internalAngle, $x, $y, $x2, $y2; + } + elsif ($inout eq "external" and $direction eq "clockwise" ) { + $code = sprintf "\\circulararc %.5f degrees from %.5f %.5f center at %.5f %.5f\n", + -1 * $externalAngle, $x, $y, $x2, $y2; + } + elsif ($inout eq "external" and $direction eq "anticlockwise" ) { + $code = sprintf "\\circulararc %.5f degrees from %.5f %.5f center at %.5f %.5f\n", + $externalAngle, $x, $y, $x2, $y2; + } + return $code; +} + +@ The subroutine [[drawAngleArrow]] gets six arguments which correspond to +three points defining an angle (variables [[$P1]], [[$P2]] and [[$P3]]), +the radius, the internal/external specification and the direction +specification. The subroutine mainly draws the arrowhead, and +calls the subroutine [[drawAngleArc]] to draw the +arc part of the arrow. + +<<subroutine <tt>drawAngleArrow</tt> >>= +sub drawAngleArrow { + my ($P1, $P2, $P3, $radius, $inout, $direction) = @_; + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$P1}); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$P2}); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$P3}); + + my $code = drawAngleArc($P1, $P2, $P3, $radius, $inout, $direction); + + my ($xqp, $yqp) = pointOnLine($x2, $y2, $x1, $y1, $radius); + my ($deltax, $deltay) = ($x1 - $x2, $y1 - $y2); + my $AL; + + if ($xunits =~ /mm/) { + $AL = 1; + } + elsif ($xunits =~ /cm/) { + $AL = 0.1; + } + elsif ($xunits =~ /pt/) { + $AL = 2.845; + } + elsif ($xunits =~ /bp/) { + $AL = 2.835; + } + elsif ($xunits =~ /pc/) { + $AL = 0.2371; + } + elsif ($xunits =~ /in/) { + $AL = 0.03937; + } + elsif ($xunits =~ /dd/) { + $AL = 2.659; + } + elsif ($xunits =~ /cc/) { + $AL = 0.2216; + } + elsif ($xunits =~ /sp/) { + $AL = 186467.98; + } + my $halfAL = $AL / 2; + my $d = sqrt($radius * $radius - $halfAL * $halfAL); + my $alpha = atan2($d / $halfAL, 1) * R2D; + my $beta = 2 * (90 - $alpha); + my $thetaqr; + if (abs($deltay) < 0.00001) { + if ($deltax > 0 ) {$thetaqr = 0 } + elsif ($deltax < 0) {$thetaqr = -180} + } + else { + if (abs($deltax) < 0.00001) { + $thetaqr = 90; + } + else { + $thetaqr = atan2($deltay / $deltax, 1) * R2D; + } + } + my ($xqr, $yqr) = pointOnLine($x2, $y2, $x3, $y3, $radius); + $deltax = $x3 - $x2; + $deltay = $y3 - $y2; + $alpha = atan2(sqrt($radius * $radius - $halfAL * $halfAL) / $halfAL, 1) / + D2R; + $beta = 2 * (90 - $alpha); + LINE2 : { + if (abs($deltax) < 0.00001) { + if ($deltay > 0) { $thetaqr = 90 } + elsif ($deltay < 0) { $thetaqr = - 90 } + last LINE2; + } + else { + $thetaqr = atan2($deltay / $deltax, 1) * R2D; + } + if (abs($deltay) < 0.00001) { + if ($deltax > 0) { $thetaqr = 0 } + elsif ($deltax < 0) { $thetaqr = -180 } + last LINE2; + } + else { + $thetaqr = atan2($deltay / $deltax, 1) * R2D; + } + if ($deltax < 0 and $deltay > 0) { $thetaqr += 180 } + elsif ($deltax < 0 and $deltay < 0) { $thetaqr += 180 } + elsif ($deltax > 0 and $deltay < 0) { $thetaqr += 360 } + } + my $xqrleft = $x2 + $radius * cos(($thetaqr + $beta) * D2R); + my $yqrleft = $y2 + $radius * sin(($thetaqr + $beta) * D2R); + my $xqrright = $x2 + $radius * cos(($thetaqr - $beta) * D2R); + my $yqrright = $y2 + $radius * sin(($thetaqr - $beta) * D2R); + if ($inout eq "internal" and $direction eq "clockwise") { + $code .= sprintf "\\arrow <1.5mm> [0.5, 1] from %.5f %.5f to %.5f %.5f\n", + $xqrleft, $yqrleft, $xqr, $yqr; + } + elsif ($inout eq "internal" and $direction eq "anticlockwise") { + $code .= sprintf "\\arrow <1.5mm> [0.5, 1] from %.5f %.5f to %.5f %.5f\n", + $xqrright, $yqrright, $xqr, $yqr; + } + elsif ($inout eq "external" and $direction eq "clockwise") { + $code .= sprintf "\\arrow <1.5mm> [0.5, 1] from %.5f %.5f to %.5f %.5f\n", + $xqrleft, $yqrleft, $xqr, $yqr; + } + elsif ($inout eq "external" and $direction eq "anticlockwise") { + $code .= sprintf "\\arrow <1.5mm> [0.5, 1] from %.5f %.5f to %.5f %.5f\n", + $xqrright, $yqrright, $xqr, $yqr; + } + return $code; +} + +@ The subroutine [[expr]] is used to parse an expression. We are using a +recursive descent parser to parse and evaluate an expression. The +general syntax of an expression is as follows: +<pre> +expr ::= term { addop term } +addop ::= "+" | "-" +term ::= factor { mulop factor } +mulop ::= "*" | "/" | "rem" +factor ::= primitive [ ** factor ] +primitive ::= [ "+" | "-"] primitive | number | variable | + pair-of-points | "(" expr ")" | + "sin (" expr ")" | "cos (" expr ")" | "area (" ThreePoints ")" | + "tan (" expr ")" | "exp (" expr ")" | "int" "(" expr ")" | + "log (" expr ")" | "atan (" expr ")" | "sgn" "(" expr ")" | + "sqrt (" expr ")" | "acos (" expr ")" | "asin (" expr ")" | + "atan (" expr ")" | "_pi_" | "_e_" | + "xcoord (" point ")" | "ycoord (" point ")" | "angle "(" ThreePoints ")"| + "angledeg" "(" ThreePoints ")" | "direction" "(" TwoPoints ")" | + "directiondeg" "(" TwoPoints ")" | "_linethickness_" +</pre> +Note that [[_pi_]] and [[_e_]] can be used to access the value of the constants +Pi and e. + +<<subroutine <tt>expr</tt> >>= +sub expr { + my $lc = $_[0]; + my($left,$op,$right); + + $left = term($lc); + while ($op = addop()) { + $right = term($lc); + if ($op eq '+') + { $left += $right } + else + { $left -= $right } + } + return $left; +} + +sub addop { + s/^([+-])// && $1; +} + +sub term { + my $lc = $_[0]; + my ($left, $op, $right); + $left = factor($lc); + while ($op = mulop()) { + $right = factor($lc); + if ($op eq '*') + { $left *= $right } + elsif ($op =~ /rem/i) { + eval {$left %= $right}; + PrintFatalError("Division by zero", $lc) if $@; + } + else { + eval {$left /= $right}; + PrintFatalError("Division by zero", $lc) if $@; + } + } + return $left; +} + +sub mulop { + (s#^([*/])## || s/^(rem)//i) && lc($1); +} + +sub factor { + my $lc = $_[0]; + my ($left); + + $left = primitive($lc); + if (s/^\*\*//) { + $left **= factor($lc); + } + return $left; +} + +sub primitive { + my $lc = $_[0]; + my $val; + s/\s*//; + if (s/^\(//) { #is it an expr in parentheses + $val = expr($lc); + s/^\)// || PrintErrorMessage("Missing right parenthesis", $lc); + } + elsif (s/^-//) { # is it a negated primitive + $val = - primitive(); + } + elsif (s/^\+//) { # is it a positive primitive + $val = primitive(); + } + elsif (s/^angledeg//i) { + chk_lparen("angledeg",$lc); + my $point_1 = get_point($lc); + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1}); + my $point_2 = get_point($lc); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2}); + my $point_3 = get_point($lc); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point_3}); + my $d12 = Length($x1, $y1, $x2, $y2); + my $d23 = Length($x2, $y2, $x3, $y3); + my $d31 = Length($x3, $y3, $x1, $y1); + if ( $d12 == 0 ) { + PrintErrorMessage("points `$point_1' and `$point_2' are the same", $lc); + $val = 0; + } + elsif ( $d23 == 0 ) { + PrintErrorMessage("points `$point_2' and `$point_3' are the same", $lc); + $val = 0; + } + elsif ( $d31 == 0 ) { + PrintErrorMessage("points `$point_1' and `$point_3' are the same", $lc); + $val = 0; + } + else { + $val = Angle($x1, $y1, $x2, $y2, $x3, $y3); + $val = 0 if $val == -500; + } + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^angle//i) { + chk_lparen("angle".$lc); + my $point_1 = get_point($lc); + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1}); + my $point_2 = get_point($lc); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2}); + my $point_3 = get_point($lc); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point_3}); + my $d12 = Length($x1, $y1, $x2, $y2); + my $d23 = Length($x2, $y2, $x3, $y3); + my $d31 = Length($x3, $y3, $x1, $y1); + if ( $d12 == 0 ) { + PrintErrorMessage("points `$point_1' and `$point_2' are the same", $lc); + $val = 0; + } + elsif ( $d23 == 0 ) { + PrintErrorMessage("points `$point_2' and `$point_3' are the same", $lc); + $val = 0; + } + elsif ( $d31 == 0 ) { + PrintErrorMessage("points `$point_1' and `$point_3' are the same", $lc); + $val = 0; + } + else { + $val = Angle($x1, $y1, $x2, $y2, $x3, $y3); + if ($val == -500) { + $val = 0; + } + else { + $val = D2R * $val; + } + } + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^area//i) { + chk_lparen("angledeg",$lc); + my $point_1 = get_point($lc); + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1}); + my $point_2 = get_point($lc); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2}); + my $point_3 = get_point($lc); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point_3}); + $val = triangleArea($x1, $y1, $x2, $y2, $x3, $y3); + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^asin//i) { + chk_lparen("asin"); + $val = expr(); + PrintFatalError("Can't take asin of $val", $lc) if $val < -1 || $val > 1; + $val = asin($val); + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^acos//i) { + chk_lparen("acos"); + $val = expr(); + PrintFatalError("Can't take acos of $val", $lc) if $val < -1 || $val > 1 ; + $val = acos($val); + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^atan//i) { + chk_lparen("atan"); + $val = expr(); + $val = atan($val); + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^cos//i) { + chk_lparen("cos"); + $val = expr(); + $val = cos($val); + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^directiondeg//i) { + chk_lparen("directiondeg",$lc); + my $point_1 = get_point($lc); + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1}); + my $point_2 = get_point($lc); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2}); + my $x3 = $x1+1; + if ( ($y2 - $y1) >= 0) { + $val = Angle($x3, $y1, $x1, $y1, $x2, $y2); + $val = 0 if $val == -500; + } + else { + $val = 360 - Angle($x3, $y1, $x1, $y1, $x2, $y2); + $val = 0 if $val == -500; + } + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^direction//i) { + chk_lparen("direction",$lc); + my $point_1 = get_point($lc); + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1}); + my $point_2 = get_point($lc); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2}); + my $x3 = $x1+1; + if ( ($y2 - $y1) >= 0) { + $val = Angle($x3, $y1, $x1, $y1, $x2, $y2); + $val = 0 if $val == -500; + $val = D2R * $val; + } + else { + $val = 360 - Angle($x3, $y1, $x1, $y1, $x2, $y2); + $val = 0 if $val == -500; + $val = D2R * $val; + } + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^exp//i) { + chk_lparen("exp"); + $val = expr(); + $val = exp($val); + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^int//i) { + chk_lparen("int"); + $val = expr(); + $val = int($val); + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^log//i) { + chk_lparen("log"); + $val = expr(); + PrintFatalError("Can't take log of $val", $lc) if $val <= 0; + $val = log($val); + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^sin//i) { + chk_lparen("sin"); + $val = expr(); + $val = sin($val); + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^sgn//i) { + chk_lparen("sgn"); + $val = expr(); + if ($val > 0) { + $val = 1; + } + elsif ($val == 0) { + $val = 0; + } + else { + $val = -1; + } + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^sqrt//i) { + chk_lparen("sqrt"); + $val = expr(); + $val = sqrt($val); + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^tan//i) { + chk_lparen("tan"); + $val = expr(); + $val = sin($val)/cos($val); + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^xcoord//i) { + chk_lparen("xcoord"); + my $point_name = get_point; + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_name}); + $val = $x1; + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^ycoord//i) { + chk_lparen("ycoord"); + my $point_name = get_point; + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_name}); + $val = $y1; + chk_rparen("Missing right parenthesis", $lc); + } + elsif (s/^_pi_//i) { + $val = PI; + } + elsif (s/^_e_//i) { + $val = 2.71828182845905; + } + elsif (s/^_linethickness_//i) { + $val = $LineThickness / $xunits; + } + else { + my $err_code; + ($val,$err_code) = ComputeDist($lc); + } + s/\s*//; + return $val; +} + +@ The subroutine [[memberOf]] is used to check whether a string is part of +a list of strings. We assume that the first argument is the string in +question. We compare each list element against the string in question and +if we find it we stop and return the value [[1]] (denoting truth). Otherwise, +we simply return the value [[0]] (denoting false). + +<<subroutine <tt>memberOf</tt> >>= +sub memberOf { + my $elem = shift(@_); + + my $found = 0; + foreach $item (@_){ + if ($item eq $elem){ + $found = 1; + last; + } + } + return $found; +} + +@ The subroutine [[tand]] computes the tangent of an angle. The angle is +supposed to be in degrees. We simply transform it into radians and then +compute the actual result. + +<<subroutine <tt>tand</tt> >>= +sub tand { + my $d = $_[0]; + $d = $d * PI / 180; + return sin($d)/cos($d); +} + +@ The subroutine [[get_string]] is used to extract a leading valid mathspic string +from the input line. A string must start with a quotation mark, i.e., [["]], +and must end with the same symbol. A string may contain quotation marks which +must be escaped with a backslash, i.e., [[\]]. Initially, we remove all +leading white space. If the next character of the string is not a quotation +mark we print an error message and stop. Otherwise, we split the string into +an array of characters and store the characters up to the next quotation +mark to the array [[@cmd]]. In case the next character is a backslash and +we aren't at the end of the input string and the next character is a +quotation mark, we have an escape sequence. This means that we store these +two characters in the [[@cmd]] array and skip to characters after the quotation +mark. Otherwise, we simply store the character in the [[@cmd]] array and +skip to the next character. This process is repeated until either we consume +all the characters of the string or until we find a sole quotation mark. +Since we are not sure what has forced the loop to exit, we check whether +there are still characters in the input string and we check whether this +is a quotation mark. If these tests fail we have a string without a +closing quotation mark. In all cases we return a triplet consisting of +a number denoting success (1) or failure (0) and what we have consumed +from the input string, and what is left from the input string. + +<<subroutine <tt>get_string</tt> >>= +sub get_string { + my $string = shift; + my $lc = shift; + + $string =~ s/^\s+//; + if ($string !~ s/^\"//) { + PrintErrorMessage("No starting \" found",$lc); + return (1,$string,$string); + } + my @ch = split //,$string; + my @cmd; + while (@ch and $ch[0] ne "\"") { + if ($ch[0] eq "\\" and (defined $ch[1]) and $ch[1] eq "\"") { + shift @ch; + push @cmd, $ch[0]; + shift @ch; + } + else { + push @cmd, $ch[0]; + shift @ch; + } + } + if (! defined $ch[0]) { + PrintErrorMessage("No closing \" found",$lc); + return (1,join("",@cmd), join("",@ch)) + } + else { + shift @ch; + return (0, join("",@cmd), join("",@ch)) + } +} + +@ The definition as well as an explanation of the functionality of the +following subroutine can be found in "Programming Perl", 3rd edition. + +<<subroutine <tt>is_tainted</tt> >>= +sub is_tainted { + my $arg = shift; + my $nada = substr($arg,0,0); + local $@; + eval { eval "# $nada"}; + return length($@) != 0; +} + +@ The subroutine [[noOfDigits]] has one argument which is a number and returns +the number of decimal digits it has. If the number matches the regular +expression [[^\d+(?!\.)]] (a series of digits <i>not</i> followed by a +period), then the number of decimal digits is zero. If the +number matches the +regular expression [[^\d+\.(\d+)?]], then number of decimal digits equals +[[length($1)]]. Naturally, it maybe zero! + +<<subroutine <tt>noOfDigits</tt> >>= +sub noOfDigits { + my $num = $_[0]; + + if ($num =~ /^[\+-]?\d+(?!\.)/) { + return 0; + } + elsif ($num =~ /^[\+-]\d+\.(\d+)?/) { + return length($1); + } +} + +@ Subroutine [[drawsquare]] is use by the [[drawpoints]] routine to plot a +point whose point symbol is a square. The subroutine has one argument, which is +equal to the radius of the point. From this argument it computes the side of +the square. + +<<subroutine <tt>drawsquare</tt> >>= +sub drawsquare { + my $s = $_[0]; + #$s *= sqrt(2); + $s = sprintf "%.5f", $s; + my $code = "\\setlength{\\unitlength}{$xunits}%\n"; + $code .= "\\begin{picture}($s,$s)\\put(0,0)" . + "{\\framebox($s,$s){}}\\end{picture}"; + return $code; +} + +@ Subroutine [[X2sp]] has two arguments: a number and a length unit. It returns +the length expresssed in sp units. + +<<subroutine <tt>X2sp</tt> >>= +sub X2sp { + my $LT = shift; + my $units = shift; + + if ($units eq "pc") { + return $LT * 786432; + } + elsif ($units eq "pt") { + return $LT * 65536; + } + elsif ($units eq "in") { + return $LT * 4736286.72; + } + elsif ($units eq "bp") { + return $LT * 65781.76; + } + elsif ($units eq "cm") { + return $LT * 1864679.811023622; + } + elsif ($units eq "mm") { + return $LT * 186467.981102362; + } + elsif ($units eq "dd") { + return $LT * 70124.086430424; + } + elsif ($units eq "cc") { + return $LT * 841489.037165082; + } + elsif ($units eq "sp") { + return $LT; + } +} + + +@ Subroutine [[sp2X]] has two arguments: a number that denotes a length in sp units + and a length unit. It returns the length expresssed in units that are specified by + the second argument. + +<<subroutine <tt>sp2X</tt> >>= +sub sp2X { + my $LT = shift; + my $units = shift; + + if ($units eq "pc") { + return $LT / 786432; + } + elsif ($units eq "pt") { + return $LT / 65536; + } + elsif ($units eq "in") { + return $LT / 4736286.72; + } + elsif ($units eq "bp") { + return $LT / 65781.76; + } + elsif ($units eq "cm") { + return $LT / 1864679.811023622; + } + elsif ($units eq "mm") { + return $LT / 186467.981102362; + } + elsif ($units eq "dd") { + return $LT / 70124.086430424; + } + elsif ($units eq "cc") { + return $LT / 841489.037165082; + } + elsif ($units eq "sp") { + return $LT; + } +} + +@ Subroutine [[setLineThickness]] takes two arguments: the value of the variable + [[$xunits]] and a string denoting the linethickness. It returns the linthickness + expressed in the units of the [[$xunits]]. + +<<subroutine <tt>setLineThickness</tt> >>= +sub setLineThickness { + my $Xunits = shift; + my $LT = shift; + $Xunits =~ s/^((\+|-)?\d+(\.\d+)?([eE](\+|-)?\d+)?)//; + my $xlength = "$1"; + $Xunits =~ s/^\s*($units)//; + my $x_in_units = $1; + $LT =~ s/^((\+|-)?\d+(\.\d+)?([eE](\+|-)?\d+)?)//; + my $LTlength = "$1"; + $LT =~ s/^\s*($units)//; + my $LT_in_units = $1; + $LTlength = X2sp($LTlength,$LT_in_units); + $LTlength = sp2X($LTlength,$x_in_units); + return $LTlength; +} + +@ The subroutine [[process_input]] accepts one argument which is a file handle +that corresponds to the file that the subroutine is supposed to process. +The processing cycle is fairly simple: we input one line at the time, remove +any leading space characters and the trailing new line character, and then +start the actual processing. The variable [[$INFILE]] contains the name of +the input file and the variable [[$lc]] is the local line counter. The +commands [[beginSkip]] and [[endSkip]] can be used to ignore blocks +of code and so we need to process them here. The variable [[$no_output]] +is used as a switch to toggle from process mode to no-precess mode. +If the first token is [[beginSkip]], we set the variable [[$no_output]] to 1, +print a comment to the output file and continue with the next input line. +If the first token is [[endSkip]], we check whether we are in a no-process +mode. If this is the case, we revert to process mode; otherwise we print +an error message. Finally, depending on whether we are in process or no-process +mode we process the input text or simply printed commented out to the output +file. Note, that we don't allow nested comment blocks, as this makes really +no sense! + +<<subroutine <tt>process_input</tt> >>= + sub process_input { + my ($INFILE,$currInFile) = @_; + my $lc = 0; + my $no_output = 0; + $curr_in_file = $currInFile; + LINE: while(<$INFILE>) { + $lc++; + chomp($command = $_); + s/^\s+//; + if (/^beginSkip\s*/i) { + $no_output = 1; + print OUT "%%$_" if $comments_on; + next LINE; + } + elsif (/^endSkip\s*/i) { + if ($no_output == 0) { + PrintErrorMessage("endSkip without beginSkip",$lc); + } + else { + $no_output = 0; + } + print OUT "%%$_" if $comments_on and !$no_output; + next LINE; + } + elsif ($no_output == 1) { + next LINE; + } + else { + if (/^[^\\]/) { + my $out_line = mpp($command,$lc) unless /^\\/; #call macro pre-processor + $_ = "$out_line\n"; + } + <<process input line>> + } + } + } + +@ Each command line starts with a particular <i>token</i> and depending on +which one we have we perform different actions. If the first character +is [[%]] we have a comment line, and depending on the value of the variable +[[$comments_on]] we either output the comment on the output file (default +action) or just ignore it and continue with the next input line. In case the +first token is the name of a valid command we process the command and +output the corresponding code. Otherwise, we print an error message to +the screen and to the log file and continue with the next input line. +Note that the input language is case-insensitive and so one is free to write a +command name using any combination of upper and lower case +letters, e.g., the tokens [[lAtEx]], +[[LaTeX]], and [[latex]] are considered exactly the same. +The valid <i>MathsPIC</i> commands are the following (don't pay attention +to the case!): +<ul> +<li> +Commands [[drawAngleArc]] and [[drawAngleArrow]] are used to draw an arc and an +arrow, respectively. Since, their user interface is identical, we process +them as if they were identical commands. +</li> +<li> +Command [[drawcircle]] is used to draw a circle with a specified radius. +</li> +<li> +Command [[drawCircumCircle]] is used to draw the circumcircle of triangle +specified by three points. +</li> +<li> +Command [[drawexcircle]] is used to draw the excircle of triangle +relative to a given side of the triangle. +</li> +<li> +Command [[drawincircle]] is used to draw the incircle of triangle. +</li> +<li> +Command [[drawincurve]] is used to draw a curve that passes through a number of points. +</li> +<li> Command [[drawline]] is used to draw either +a line (not necessarily a straight one) or a number of lines from a list +or lists of points. The lines are specified as pairs of points that can +be separated by blank spaces. +<li> Command [[drawthickline]] is used to draw either +a thick line (not necessarily a straight one) or a number of lines from a list +or lists of points. The lines are specified as pairs of points that can +be separated by blank spaces. +</li> +<li> +Command [[drawPerpendicular]] draws a perpendicular line from point A to +line BC. +</li> +<li> Command [[drawpoint]] is used to draw one, two or more points. +The point names can be separated by blanks. +</li> +<li> +Command [[drawRightAngle]] draws an angle, specified by three points, +of a size specified by a side length. +</li> +<li> +Command [[drawsquare]] draws a square, centered at the coordinates of the +first arguments, which is assumed to be a point, with side equal to the +second argument. +</li> +<li> +Command [[inputfile*]] is used to verbatim include a file into the output +file. +</li> +<li> +Command [[inputfile]] is used to include a <i>MathsPIC</i> program file +into the main file. +</li> +<li> +Command [[linethickness]] should be used to set the thickness of lines. +</li> +<li> +The [[paper]] command sets the paper scale, size, axes, etc. The most +general format of the command follows: +<center> +<tt>paper{units(mm), xrange(0,120), yrange(0,100),axes(LRTB)}</tt> +</center> +Note, that one may opt not to write the commas between the different +parts of command. +</li> +<li> +Command [[point*]] allocates <i>new</i> co-ordinates and optionally +a T<sub>E</sub>X point-name, to an existing point-name. +Command [[point]] allocates co-ordinates and, optionally a T<sub>E</sub>X +point character, to a <i>new</i> point-name. Since, both commands have +identical syntax, we handle them together. +</li> +<li> Command [[PointSymbol]] is used to set or reset the default +point symbol, i.e., when one plots a point this is the symbol that will +appear on the final DVI/PostScript file. +</li> +<li> +In the original DOS version of <tt>mathspic</tt> the command +[[setPointNumber]] was used to set the length of the arrays that keep the +various point related information. Since, in Perl arrays are dynamic objects +and one can push as many objects as he/she wants, the command is implemented +as an no-op. For reasons of compatibility, we only check the syntax of the +command. +</li> +<li> +Commands [[showAngle]] and [[showArea]] can be used to get +the angle or the area determined by three points. In addition, the command +[[showLenght]] can be used to get the length between two points. These three +commands produce a comment to the output file. +</li> +<li> The [[system]] command provides a shell escape. +</li> +<li> +The [[text]] command is used to put a symbol/text at a +particular point location. +</li> +<li> +Command [[var]] is used to store a numeric value into a comma separated +list of variables. +</li> +<li> +Command [[const]] is used to store a numeric value into a comma separated +list of variables, whose value cannot be altered. +</li> +<li> +If a line starts with a backslash, [[\]], then we copy verbatim this +line to the output file. In case the second character is a space character, +then we simply output a copy of the line without the leading backslash. +</li> +</ul> +Empty lines are always ignored. + +<<process input line>>= + + if (/^\s*%/) + { + print OUT "$_" if $comments_on; + } + elsif (s/^\s*(beginloop(?=\W))//i) { + s/\s+//; + my $times = expr($lc); + print OUT "%% BEGINLOOP $times\n" if $comments_on; + my @C = (); + REPEATCOMMS: while (<$INFILE>) { + if (/^\s*endloop/i) { + last REPEATCOMMS; + } + else { + push @C, $_; + } + } + if (! /^\s*endloop/i) { + PrintFatalError("unexpected end of file",$lc); + } + else { + s/^\s*endloop//i; + for(my $i=1; $i<=$times; $i++) { + tie *DUMMY, 'DummyFH', \@C; + process_input(DUMMY, $currInFile); + untie *DUMMY; + } + print OUT "%% ENDLOOP\n" if $comments_on; + } + } + elsif (s/^\s*(ArrowShape(?=\W))//i) + { + my $cmd = $1; + print OUT "%% $cmd$_" if $comments_on; + <<process <tt>ArrowShape</tt> command>> + } + elsif (s/^\s*(const(?=\W))//i) + { + print OUT "%% $1$_" if $comments_on; + <<process <tt>const</tt> command>> + } + elsif (s/^\s*(dasharray(?=\W))//i) + { + my ($cmd) = $1; + print OUT "%% $cmd$_" if $comments_on; + <<process <tt>dasharray</tt> command>> + } + elsif (s/^\s*(drawAngleArc(?=\W))//i or s/^\s*(drawAngleArrow(?=\W))//i ) + { + my $cmd = $1; + print OUT "%% $cmd$_" if $comments_on; + <<process <tt>drawAngleArcOrArrow</tt> command>> + } + elsif (s/^\s*(drawArrow(?=\W))//i) + { + my ($cmd) = $1; + print OUT "%% $cmd$_" if $comments_on; + DrawLineOrArrow(0,$lc); + } + elsif (s/^\s*(drawcircle(?=\W))//i) + { + my ($cmd) = $1; + print OUT "%% $cmd$_" if $comments_on; + <<process <tt>drawcircle</tt> command>> + } + elsif (s/^\s*(drawcurve(?=\W))//i) + { + my ($cmd) = $1; + print OUT "%% $cmd$_" if $comments_on; + DrawLineOrArrow(2,$lc); + } + elsif (s/^\s*(drawcircumcircle(?=\W))//i) + { + my ($cmd) = $1; + print OUT "%% $cmd$_" if $comments_on; + <<process <tt>drawcircumcircle</tt> command>> + } + elsif (s/^\s*(drawexcircle(?=\W))//i) + { + my ($cmd) = $1; + print OUT "%% $cmd$_" if $comments_on; + <<process <tt>drawexcircle</tt> command>> + } + elsif (s/^\s*(drawincircle(?=\W))//i) + { + my ($cmd) = $1; + print OUT "%% $cmd$_" if $comments_on; + <<process <tt>drawincircle</tt> command>> + } + elsif (s/^\s*(drawline(?=\W))//i) + { + my ($cmd) = $1; + print OUT "%% $cmd$_" if $comments_on; + DrawLineOrArrow(1,$lc); + } + elsif (s/^\s*(drawthickarrow(?=\W))//i) + { + my ($cmd) = $1; + print OUT "%% $cmd$_" if $comments_on; + print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\large .})%\n"; + print OUT "{\\setbox1=\\hbox{\\usefont{OT1}{cmr}{m}{n}\\large .}%\n"; + print OUT " \\global\\linethickness=0.31\\wd1}%\n"; + DrawLineOrArrow(0,$lc); + print OUT "\\setlength{\\linethickness}{0.4pt}%\n"; + print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\tiny .})%\n"; + } + elsif (s/^\s*(drawthickline(?=\W))//i) + { + my ($cmd) = $1; + print OUT "%% $cmd$_" if $comments_on; + print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\large .})%\n"; + print OUT "{\\setbox1=\\hbox{\\usefont{OT1}{cmr}{m}{n}\\large .}%\n"; + print OUT " \\global\\linethickness=0.31\\wd1}%\n"; + DrawLineOrArrow(1,$lc); + print OUT "\\setlength{\\linethickness}{0.4pt}%\n"; + print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\tiny .})%\n"; + } + elsif (s/^\s*(drawperpendicular(?=\W))//i) + { + my ($cmd) = $1; + print OUT "%% $cmd$_" if $comments_on; + <<process <tt>drawPerpendicular</tt> command>> + } + elsif (s/^\s*(drawpoint(?=\W))//i) + { + my ($cmd) = $1; + print OUT "%% $cmd$_" if $comments_on; + <<process <tt>drawpoint</tt> command>> + } + elsif (s/^\s*(drawRightAngle(?=\W))//i) + { + my ($cmd) = $1; + print OUT "%% $cmd$_" if $comments_on; + <<process <tt>drawRightAngle</tt> command>> + } + elsif (s/^\s*(drawsquare(?=\W))//i) + { + my ($cmd) = $1; + print OUT "%% $cmd$_" if $comments_on; + <<process <tt>drawsquare</tt> command>> + } + elsif (s/^\s*inputfile\*//i) + { + <<process <tt>inputfile*</tt> command>> + } + elsif (s/^\s*(inputfile(?=\W))//i) + { + my ($cmd) = $1; + print OUT "%% $cmd$_" if $comments_on; + <<process <tt>inputfile</tt> command>> + } + elsif (s/^\s*(linethickness(?=\W))//i) + { + my $cmd = $1; + print OUT "%% $cmd$_" if $comments_on; + <<process <tt>linethickness</tt> command>> + } + elsif (s/^\s*(paper(?=\W))//i) + { + my ($cmd) = $1; + print OUT "%% $cmd$_" if $comments_on; + <<process <tt>paper</tt> command>> + } + elsif (s/^\s*(PointSymbol(?=\W))//i) + { + my $cmd = $1; + print OUT "%% $cmd$_" if $comments_on; + <<process <tt>PointSymbol</tt> command>> + } + elsif (s/^\s*point(?=\W)//i) + { + my ($Point_Line); + chomp($Point_Line=$_); + <<process <tt>point/point*</tt> commands>> + } + elsif (/^\s*setPointNumber(?=\W)/i) + { + PrintWarningMessage("Command setPointNumber is ignored",$lc); + next LINE; + } + elsif (s/^\s*(showAngle(?=\W))//i) + { + <<process <tt>showAngle</tt> command>> + } + elsif (s/^\s*(showArea(?=\W))//i) + { + <<process <tt>showArea</tt> command>> + } + elsif (s/^\s*(showLength(?=\W))//i) + { + <<process <tt>showLength</tt> command>> + } + elsif (/^\s*showPoints(?=\W)/i) + { + print OUT "%%-------------------------------------------------\n"; + print OUT "%% L I S T O F P O I N T S \n"; + print OUT "%%-------------------------------------------------\n"; + foreach my $p (keys(%PointTable)) { + my ($x, $y, $pSV, $pS) = unpack("d3A*",$PointTable{$p}); + printf OUT "%%%%\t%s\t= ( %.5f, %.5f ), LF-radius = %.5f, symbol = %s\n", + $p, $x, $y, $pSV, $pS; + } + print OUT "%%-------------------------------------------------\n"; + print OUT "%% E N D O F L I S T O F P O I N T S \n"; + print OUT "%%-------------------------------------------------\n"; + next LINE; + } + elsif (/^\s*showVariables(?=\W)/i) + { + print OUT "%%-------------------------------------------------\n"; + print OUT "%% L I S T O F V A R I A B L E S \n"; + print OUT "%%-------------------------------------------------\n"; + foreach my $var (keys(%VarTable)) { + print OUT "%%\t", $var, "\t=\t", $VarTable{$var}, "\n"; + } + print OUT "%%-------------------------------------------------\n"; + print OUT "%% E N D O F L I S T O F V A R I A B L E S \n"; + print OUT "%%-------------------------------------------------\n"; + next LINE; + } + elsif (s/^\s*(system(?=\W))//i) + { + print OUT "%% $1$_" if $comments_on; + <<process <tt>system</tt> command>> + } + elsif (s/^\s*(text(?=\W))//i) + { + print OUT "%% $1$_" if $comments_on; + <<process <tt>text</tt> command>> + } + elsif (s/^\s*(var(?=\W))//i) + { + print OUT "%% $1$_" if $comments_on; + <<process <tt>var</tt> command>> + } + elsif (/^\s*\\(.+)/) + { + my $line = $1; + if ($line =~ /^\s+(.+)/) + { + print OUT " $line\n"; + } + else + { + print OUT "\\$line\n"; + } + next LINE; + } + elsif (0==length) #empty line + { + next LINE; + } + else { + PrintErrorMessage("command not recognized",$lc); + next LINE; + } + +@ Command [[dasharray]] takes an arbitrary number of arguments that are used to +specify a dash pattern. Its general syntax follows: +<center> + <tt> "dasharray" "(" d<sub>1</sub> "," g<sub>1</sub> "," d<sub>2</sub> "," + g<sub>2</sub> "," ... ")"</tt> +</center> +where <tt>d<sub>i</sub></tt> denotes the length of a dash and <tt>g<sub>i</sub></tt> +denotes the length of gap between two consecutive dashes. Each <tt>d<sub>i</sub></tt> +and <tt>g<sub>i</sub></tt> is a length (i.e., a number accompanied by a length of unit). +Since we do not a priori know the number of arguments, we push them onto a stack and +then we produce a command of the form +<center> + <tt> \setdashpattern < d<sub>1</sub>, g<sub>1</sub>, d<sub>2</sub>, + g<sub>2</sub>, ...></tt> +</center> + +<<process <tt>dasharray</tt> command>>= + chk_lparen($cmd,$lc); + my @DashArray = (); + my $dash = ""; + my $dashpattern = ""; + PATTERN: while (1) { + $dash = sprintf("%.5f", expr($lc)); + if (s/^\s*($units)//i) { + push (@DashArray, "$dash$1"); + } + else { + PrintErrorMessage("Did not found unit after expression", $lc); + } + s/\s*//; + if (/^[^,]/) { + last PATTERN; + } + else { + s/^,\s*//; + } + } + print OUT "\\setdashpattern <"; + while (@DashArray) { + $dashpattern .= shift @DashArray; + $dashpattern .= ","; + } + $dashpattern =~ s/,$//; + print OUT $dashpattern, ">\n"; + chk_rparen("arguments of $cmd",$lc); + chk_comment($lc); + +@ The command [[drawAngleArc]] draws an arc in the specified angle, a +distance <i>radius</i> from the angle. The angle is either <i>internal</i> +(<= 180 degrees) or <i>external</i> (>180 degrees). The direction of the +arc is either <i>clockwise</i> or <i>anticlockwise</i>. The command +[[drawAngleArrow]] draws an arrow just like the command [[drawAngleArc]] +draws an arc. The syntax of these commands is as follows: +<pre> + cmds ::= ( "drawAngleArc" | "drawAngleArrow" ) args + args ::= "{" angle comma radius comma internal comma clockwise "}" + angle ::= "angle" "(" three-points ")" + radius ::= "radius" "(" distance ")" + distance ::= expression + internal ::= "internal" | "external" + clockwise ::= "clockwise" | "anticlockwise" + comma ::= "," | empty +</pre> +We first collect all relevant information by parsing the [[args]] and then +call the either the subroutine [[drawAngleArc]] or the subroutine +[[drawAngleArrow]] to produce the actual code +which is then printed into the output file. In order to be able to distinguish +which command we are dealing with we simply use the variable [[$cmd]]. +We now start parsing the input line. We first check whether there is a +left curly bracket. Next, we parse the [[angle]], the [[distance]], the +[[internal]] and the [[clockwise]] parts of the command. Finally, we check +for right curly bracket and a trailing comment. Depending on +the value of +the variable [[$cmd]] we call either the subroutine [[drawAngleArc]] or the +subroutine [[drawAngleArrow]]. These subroutines return the code that will be +finally output to the output file. + +<<process <tt>drawAngleArcOrArrow</tt> command>>= + + chk_lcb($cmd,$lc); + <<process <tt>angle</tt> part of command>> + s/^,\s*// or s/\s*//; #parse optional comma + <<process <tt>radius</tt> part of command>> + s/^,\s*// or s/\s*//; #parse optional comma + my $inout = ""; + if (s/^(internal(?=\W))//i or s/^(external(?=\W))//i) { + $inout = $1; + } + else { + PrintErrorMessage("Did not find expected 'internal' specifier", $lc); + next LINE; + } + s/^,\s*// or s/\s*//; #parse optional comma + my $direction = ""; + if (s/^(clockwise(?=\W))//i or s/^(anticlockwise(?=\W))//i) { + $direction = $1; + } + else { + PrintErrorMessage("Did not find expected 'direction' specifier", $lc); + next LINE; + } + chk_rcb("arguments of $cmd",$lc); + chk_comment($lc); + my $code; + if (lc($cmd) eq "drawanglearc") { + $code = drawAngleArc($P1, $P2, $P3, $radius, $inout, $direction); + } + else { + $code = drawAngleArrow($P1, $P2, $P3, $radius, $inout, $direction); + } + print OUT $code if $code ne ""; + +@ We first check whether the first token is the word [[angle]]. In case it +isn't, this yields an unrecoverable error. In case the expected word is +there, we check for a left parenthesis. Next, we parse the three points that +must follow. For this purpose we use the user-defined subroutine +[[get_point]]. Now we check that the angle has a reasonable value, i.e., if +it is less than -400 or equal to zero, the value yields an unrecoverable error. +We finish by checking whether there is a right parenthesis. + +<<process <tt>angle</tt> part of command>>= + my ($P1, $P2, $P3); + if (s/^angle(?=\W)//i) { + chk_lparen("token angle of command $cmd",$lc); + $P1 = get_point($lc); + next LINE if $P1 eq "_undef_"; + $P2 = get_point($lc); + next LINE if $P2 eq "_undef_"; + $P3 = get_point($lc); + next LINE if $P3 eq "_undef_"; + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$P1}); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$P2}); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$P3}); + my $Angle = Angle($x1, $y1, $x2, $y2, $x3, $y3); + if ($Angle <= 0) { + if ($Angle == 0) { + PrintErrorMessage("Angle is equal to zero",$lc); + next LINE; + } + elsif ($Angle < -400) { + PrintErrorMessage("Something is wrong with the points",$lc); + next LINE; + } + } + chk_rparen("angle part of command $cmd",$lc); + } + else { + PrintErrorMessage("Did not find expected angle part",$lc); + next LINE; + } + +@ In this section we parse the [[radius]] part of the [[drawAngleArc]] or the +[[drawAngleArrow]] command. We first check whether the next token is the word +[[radius]]. If it is not, then we continue with the next line. + +<<process <tt>radius</tt> part of command>>= + + my $radius; + if (s/^radius(?=\W)//i) { + chk_lparen("token radius of command $cmd",$lc); + $radius = expr($lc); + chk_rparen("radius part of command $cmd",$lc); + } + else { + PrintErrorMessage("Did not found expected angle part",$lc); + next LINE; + } + +@ Command [[drawcircle]] accepts two arguments--a point name that is +used to specify the center of the circle and the radius of the circle. +The radius is simply an expression, whose value must be greater than zero. +Otherwise, we print an error message and continue with the next input line. +The general syntax of the command is as follows: +<pre> + "drawcircle" "(" point-name "," rad ")" +</pre> +The code we emit for a point with coordinates [[x]] and [[y]] and for radius +equal to [[R]] is: +<pre> + \circulararc 360 degrees from X y center at x y +</pre> +where [[X = x+R]].<p> +Initially, we check whether there is an opening left parenthesis. Next, +we get the point name by using the subroutine [[get_point]] which +issues an error message if the point hasn't been defined. In this +case we stop processing the command, as there is absolutely no reason to +do otherwise. Next, we parse the comma and then the radius by using +the subroutine [[ComputeDist]]. If there is no problem, we emit the code +and finally we check for a closing right parenthesis and for +possible garbage that may follow the command. + +<<process <tt>drawcircle</tt> command>>= + chk_lparen("drawcircle",$lc); + my $Point = get_point($lc); + next LINE if $Point eq "_undef_"; + chk_comma($lc); + my $R = expr($lc); + if ($R <= 0) { + PrintErrorMessage("Radius must be greater than zero",$lc); + next LINE; + } + my ($x,$y,$pSV,$pS)=unpack("d3A*",$PointTable{lc($Point)}); + printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f\n", + $x+$R, $y, $x, $y; + chk_rparen("arguments of $cmd",$lc); + chk_comment($lc); + +@ Command [[drawcircumcircle]] is used to draw the circumcircle of triangle +specified by three points which are the arguments of the command. We start +by parsing the opening left parenthesis. Next, we get the three points +that define the triangle. We are now able to compute the center and +the radius of the circumcircle by calling the subroutine [[circumCircleCenter]]. +If the triangle area is equal to zero, then this subroutine will return +the array [[(0,0,0)]] to indicate this fact. +We now have all necessary information to draw the circumcircle. We use the +following code to do the job: +<pre> + \circulararc 360 degrees from X y center x y +</pre> +where [[x]] and [[y]] are the coordinates of the center, [[R]] its +radius and [[X=x+R]]. What is left is to check whether there is a +closing right parenthesis and any trailing garbage. + + +<<process <tt>drawcircumcircle</tt> command>>= + chk_lparen("drawcircumcircle",$lc); + my $point1 = get_point($lc); + next LINE if $point1 eq "_undef_"; + my $point2 = get_point($lc); + next LINE if $point2 eq "_undef_"; + my $point3 = get_point($lc); + next LINE if $point3 eq "_undef_"; + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point1}); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point2}); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point3}); + my ($xc, $yc,$r) = circumCircleCenter($x1,$y1,$x2,$y2,$x3,$y3,$lc); + next LINE if $xc == 0 and $yc == 0 and $r == 0; + print OUT "%% circumcircle center = ($xc,$yc), radius = $r\n" if $comments_on; + printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f\n", + $xc+$r, $yc, $xc, $yc; + chk_rparen("arguments of $cmd",$lc); + chk_comment($lc); + +@ The syntax of the [[drawexcircle]] command is as follows: +<pre> + drawexcircle ::= "drawexcircle" "(" ThreePoints "," TwoPoints ")" + [ modifier ] + modifier ::= "[" expr "]" + +</pre> +The [[modifier]] is an expression that is used to modify the radius of the +excicle. We start by checking whether there is a left parenthesis. Then we +get names of the three points. In case any of the points is not defined +we issue an error message and continue with the next input line. Next, we +check whether there is a comma that separates the three points defining the +triangle from the two points defining a side of the triangle (variables +[[$point1]], [[$point2]], and [[$point3]]). Moreover, we must ensure that +the area of the area defined by these points is not equal to +zero. If it is we issue an error message and we continue with the next +input line. Now, we are ready to get the two +point names that define the side of the triangle (variables [[$point3]] and +[[$point5]]). At this point we must make sure that these points are different +points and that they are members of the list of points that define the triangle. +We make this check by calling the subroutine [[memberOf]]. Next, we check +whether there is a closing right parenthesis. We now compute the center +and the radius of the excircle by calling the subroutine [[excircle]]. The +coordinates of the center are stored in the variables [[$xc]] and [[$yc]], +while the radius is stored in the variable [[$r]]. If the next +non-blank input character is a left square bracket, then we know the user has +specified the optional part. We use the subroutine [[expr]] to get the value of +the optional part. The value of the optional part is stored in the variable [[$R]]. +At this point we check whether the sum of the radius +plus the optional part is equal to zero and if it is we continue with the +next input line. Next, we check for a closing right square bracket. We are +now ready to emit the source code. The first thing we must check is that +the radius is not too big for PiCTeX, i.e., not greater than 500/2.845. +Then we print some informative text to the output file and of course the +actual code. We use the following code to do the job: +<pre> + \circulararc 360 degrees from (xc+R) yc center xc yc +</pre> +The last thing we check is whether there is some trailing garbage. + +<<process <tt>drawexcircle</tt> command>>= + chk_lparen("drawexcircle",$lc); + my $point1 = get_point($lc); + next LINE if $point1 eq "_undef_"; + my $point2 = get_point($lc); + next LINE if $point2 eq "_undef_"; + my $point3 = get_point($lc); + next LINE if $point3 eq "_undef_"; + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point1}); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point2}); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point3}); + if (triangleArea($x1, $y1, $x2, $y2, $x3, $y3) < 0.0001) { + PrintErrorMessage("Area of triangle is zero!",$lc); + next LINE; + } + chk_comma($lc); + my $point4 = get_point($lc); + if (!memberOf($point4, $point1, $point2, $point3)) { + PrintErrorMessage("Current point isn't a side point",$lc); + next LINE; + } + next LINE if $point4 eq "_undef_"; + my $point5 = get_point($lc); + next LINE if $point5 eq "_undef_"; + if (!memberOf($point5, $point1, $point2, $point3)) { + PrintErrorMessage("Current point isn't a side point",$lc); + next LINE; + } + if ($point4 eq $point5) { + PrintErrorMessage("Side points are identical",$lc); + next LINE; + } + chk_rparen("arguments of $cmd",$lc); + my ($xc, $yc, $r) = excircle($point1, $point2, $point3, + $point4, $point5); + my $R=$r; + if (s/^\s*\[\s*//) { + $R += expr($lc); + if ($R < 0.0001) { + PrintErrorMessage("Radius has become equal to zero!",$lc); + next LINE; + } + chk_rsb($lc); + } + if ($R > (500 / 2.845)) { + PrintErrorMessage("Radius is greater than 175mm!",$lc); + next LINE; + } + print OUT "%% excircle center = ($xc,$yc) radius = $R\n" if $comments_on; + printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f\n", + $xc+$R, $yc, $xc, $yc; + chk_comment($lc); + +@ The syntax of the [[drawincircle]] command is as follows: +<pre> + drawincircle ::= "drawincircle" "(" ThreePoints ")" [ modifier] + modifier ::= "[" expr "]" +</pre> +where [[ThreePoints]] correspond to the points defining the triangle and +[[modifier]] is an optional modification factor. +The first thing we do is to check whether +there is an opening left parenthesis. Then we get the names of the three +points that define the triangle (variables [[$point1]], [[$point2]], +and [[$point3]]). Next, we make sure that the area of the +triangle defined by these three points is not equal to zero. If it is, then +we issue an error message and continue with the next input line. Now, we +compute the center and the radius of the incircle (variables [[$xc]], [[$yc]], +and [[$r]]). If the next non-blank input character is a left square bracket, +then we now the user has specified the optional part. We use subroutine +[[expr]] to get the value of the optional part. The value of +the optional part +is stored in the variable [[$R]]. At this point we check whether the sum of the +radius plus the optional part is equal to zero and if it is we continue with +the next input line. Next, we check for a closing right square bracket. +We are now ready to emit the source code. The first thing we must check is +that the radius is not too big for PiCTeX, i.e., not greater than 500/2.845. +Then we print some informative text to the output file and of course the +actual code. We use the following code to do the job: +<pre> + \circulararc 360 degrees from (xc+R) yc center xc yc +</pre> +The last thing we check is whether there is some trailing garbage. + +<<process <tt>drawincircle</tt> command>>= + chk_lparen("drawincircle",$lc); + my $point1 = get_point($lc); + next LINE if $point1 eq "_undef_"; + my $point2 = get_point($lc); + next LINE if $point2 eq "_undef_"; + my $point3 = get_point($lc); + next LINE if $point3 eq "_undef_"; + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point1}); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point2}); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point3}); + if (triangleArea($x1, $y1, $x2, $y2, $x3, $y3) < 0.0001) { + PrintErrorMessage("Area of triangle is zero!",$lc); + next LINE; + } + my ($xc, $yc, $r) = IncircleCenter($x1,$y1,$x2,$y2,$x3,$y3); + my $R=$r; + if (s/^\s*\[\s*//) { + $R += expr($lc); + if ($R < 0.0001) { + PrintErrorMessage("Radius has become equal to zero!",$lc); + next LINE; + } + chk_rsb($lc); + } + if ($R > (500 / 2.845)) { + PrintErrorMessage("Radius is greater than 175mm!",$lc); + next LINE; + } + print OUT "%% incircle center = ($xc,$yc) radius = $R\n" if $comments_on; + printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f\n", + $xc+$R, $yc, $xc, $yc; + chk_rparen("arguments of $cmd",$lc); + chk_comment($lc); + +@ The command [[drawPerpendicular]] command draws a line from point A to line +BC, such that it is perpendicular to line BC. The general syntax of the +command is as follows: +<pre> + drawPenpedicular ::= "drawPenpedicular" "(" Point "," TwoPoints ")" +</pre> +The first thing we do is to parse the left parenthesis. Then we parse +the name of the first point, namely [[$A$]]. If this point is undefined +we print an error message and continue with the next line. Next, we parse +the expected leading comma and the names of the other two points. Certainly, +in case either of these two points has not been defined, we simply print an +error message and continue with the next input line. Finally, we check for +a closing right parenthesis and a possible trailing comment. Now we are +ready to compute the coordinates of the foot of the +perpendicular line. We do so my calling subroutine +[[perpendicular]]. Certainly, before we do this we have to get the +coordinates of the points that we have parsed. Finally, we output the +PiCTeX code: +<pre> + \plot x1 y1 xF xY / +</pre> +where [[x1]] and [[y1]] are coordinates of the point A and [[xF]] and [[yF]] +the coordinates of the foot. + +<<process <tt>drawPerpendicular</tt> command>>= + + chk_lparen($cmd,$lc); + my $A = get_point($lc); + next LINE if $A eq "_undef_"; + chk_comma($lc); + my $B = get_point($lc); + next LINE if $A eq "_undef_"; + s/\s*//; #ignore white space + my $C = get_point($lc); + next LINE if $A eq "_undef_"; + chk_rparen("arguments of $cmd",$lc); + chk_comment($lc); + # + #start actual computation + # + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$A}); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$B}); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$C}); + my ($xF, $yF) = perpendicular($x1, $y1, $x2, $y2, $x3, $y3); + printf OUT "\\plot %.5f %.5f %.5f %.5f /\n", + $x1, $y1, $xF, $yF; + +@ The [[drawpoint]] command has a number of points as arguments and produces +PiCTeX code that draws a plot symbol at the coordinates of each point. The +syntax of the command is as follows: +<pre> + drawpoint ::= "drawpoint" "(" Point { separator Point } ")" +</pre> +The [[while]] loop is used to consume all points that are +between an opening left parenthesis and a closing right parenthesis. All +points are pushed on the local array [[PP]]. When we have parsed the lists +of points, we call the subroutine [[drawpoints]] to emit the actual PiCTeX code. +Finally, we check whether there is a closing parenthesis +parenthesis, and whether +there is some trailing text that makes no sense. In case there are no points +between the parentheses, then we issue an appropriate error message and +we continue with the next input line. + +<<process <tt>drawpoint</tt> command>>= + my ($stacklen); + chk_lparen("$cmd",$lc); + if (/^\)/) { + PrintErrorMessage("There are no point to draw",$lc); + next LINE; + } + my(@PP); + DRAWPOINTS:while(1) { + if (s/^([^\W\d_]\d{0,3})//i) { #point name + $P = $1; + if (!exists($PointTable{lc($P)})) { + PrintErrorMessage("Undefined point $P",$lc); + next DRAWPOINTS; + } + else { + push (@PP,$P); + s/\s*//; + } + } + else { + last DRAWPOINTS; + } + } + drawpoints(@PP); + chk_rparen("arguments of $cmd",$lc); + chk_comment($lc); + +@ The syntax of the [[drawRightAngle]] command is as follows: +<pre> + drawRightAngle "(" ThreePoints "," dist ")" + dist ::= expr | TwoPoints +</pre> +Before we proceed with the actual computation we parse the left parenthesis, +the three points, the comma, the [[dist]], and the right parenthesis. In case +we have neither three points nor a [[dist]] we print an error message and +continue with the next input line, i.e., these errors are irrecoverable. +The names of the three points are stored in variables [[$point1]], +[[$point2]], and [[$point3]]. The value of the distance is stored +in the variable [[$dist]]. +Let's now explain the semantics of this command.<p> + +Our aim is to draw lines S<sub>1</sub>-S, S<sub>2</sub>-S (S<sub>1</sub> +and S<sub>2</sub> are at distance d from B). All the relevant points are +depicted in the following figure: +<center> +<img src="fig1.jpg"> +</center> +Some notes are in order: +<ol> +<li> BS bisects angle ABC, and meets AC in Q, so start by determining point +Q, then determine S, and then S<sub>1</sub> and S<sub>2</sub>, and then +draw S<sub>1</sub>-S and S<sub>2</sub>-S.</li> +<li> Distance AQ is given by AC/(1+tan(BCA))</li> +<li> The coordinates of Q are computed using the subroutine [[pointOnLine]].</li> +<li> Now we compute the coordinates of S on line BQ.</li> +<li> We compute the coordinates of S<sub>1</sub> and S<sub>2</sub> by using +The subroutine [[pointOnLine]].</li> +</ol> +In order to implement the above steps we first compute the length of the line +AB. Note that A is [[$point1]], etc. Next we compute the angle BAC. Now +we compute the distance AQ (variable [[$line1]]). The coordinates of point +Q are stored in variables [[$xQ]] and [[$yQ]]. The coordinates of point +S are stored in variables [[$xS]] and [[$yS]]. Now we have to determine the +coordinates of points S<sub>1</sub> and S<sub>2</sub>. These coordinates +are stored in variables [[$xS1]], [[$yS1]] and [[$xS2]], [[$yS2]], +respectively. Finally, we emit the PiCTeX target code. + +<<process <tt>drawRightAngle</tt> command>>= + + chk_lparen("drawRightAngle",lc); + my $point1 = get_point($lc); + next LINE if $point1 eq "_undef_"; + my $point2 = get_point($lc); + next LINE if $point2 eq "_undef_"; + my $point3 = get_point($lc); + next LINE if $point3 eq "_undef_"; + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point1}); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point2}); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point3}); + chk_comma($lc); + my $dist = expr($lc); + chk_rparen("arguments of $cmd",$lc); + chk_comment($lc); + # + #actual computation + # + my $lengthAC = Length($x1, $y1, $x3, $y3); + my $angleBAC = Angle($x2, $y2, $x1, $y1, $x3, $y3); + my $line1 = $lengthAC / (1 + tand($angleBAC)); + # + # determine coordinates of point Q + # + my ($xQ, $yQ) = pointOnLine($x1, $y1, $x3, $y3, $line1); + # + # determine coordinates of point S + # + my $deltax = $xQ - $x2; + my $deltay = $yQ - $y2; + my $lengthBQ = sqrt($deltax * $deltax + $deltay * $deltay); + my $xS = $x2 + ($dist * sqrt(2) * $deltax / $lengthBQ); + my $yS = $y2 + ($dist * sqrt(2) * $deltay / $lengthBQ); + # + # determine coordinates of points S1 and S2 + # + my ($xS1, $yS1) = pointOnLine($x2, $y2, $x3, $y3, $dist); + ($xS2, $yS2) = ($xS, $yS); + # + # emit PiCTeX code + # + printf OUT "\\plot %.5f %.5f %.5f %.5f /\n", + $xS1, $yS1, $xS2, $yS2; + ($xS1, $yS1) = pointOnLine($x2, $y2, $x1, $y1, $dist); + printf OUT "\\plot %.5f %.5f %.5f %.5f /\n", + $xS1, $yS1, $xS2, $yS2; + +@ The command [[drawsquare]] has two arguments: a point, which specifies the +coordinates of the point where the square will be placed, and a number, which +specifies the length of the side of the square. The syntax of the command is as follows: +<center> + <tt> "drawSquare" "(" Point "," expression ")" </tt> +</center> +Note that RWDN has suggested to alter the value of the [[$side]] variable (see the +line with [[RWDN]] comment). + +<<process <tt>drawsquare</tt> command>>= + chk_lparen("drawSquare",$lc); + my $p = get_point($lc); + chk_comma($lc); + my $side = expr($lc); + $side = $side - (1.1 * $LineThickness/$xunits); #Suggested by RWDN + my ($x,$y,$pSV,$pS) = unpack("d3A*",$PointTable{$p}); + printf OUT "\\put {%s} at %.5f %.5f %%drawsquare\n", drawsquare($side), $x, $y; + chk_rparen("arguments of $cmd",$lc); + chk_comment($lc); + +@ The argument of the [[inputfile*]] command is a file name that is always +enclosed in parentheses: +<pre> + starred-input-file ::= "inputfile*" "(" file-name ")" + file-name ::= (alpha | period) { alpha | period } + alpha ::= letter | digit | "_" | "-" +</pre> +Note, that the input file is assumed to contain TeX code. +We first check to see if there is a left parenthesis. Then we consume +the file name. We check if the file exists and then we copy verbatim the +input file to the output file. Next, we check for the closing parenthesis. +Now, if there is a trailing comment we copy it to the output file depending +on the value of the variable [[$comments_on]], else if there is some other +text we simply ignore it and issue a warning message. + +<<process <tt>inputfile*</tt> command>>= + chk_lparen("inputfile*",$lc); + my $row_in = ""; + if (s/^((\w|-|\.)+)//) { + $row_in = $1; + } + else { + PrintErrorMessage("No input file name found",$lc); + next LINE; + } + if (!(-e $row_in)) { + PrintErrorMessage("File $row_in does not exist",$lc); + next LINE; + } + open(ROW, "$row_in")|| die "Can't open file $row_in\n"; + while (defined($in_line=<ROW>)) { print OUT $in_line; } + print OUT "%% ... end of input file <$row_in>\n"; + close ROW; + chk_rparen("input file name",$lc); + chk_comment($lc); + + +@ The [[inputfile]] command has at most two arguments, second being +optional: a file name enclosed in curly brackets and the number of +times this file should be included in square brackets: +<pre> + inputfile ::= "inputfile" "(" file-name ")" [ Times ] + Times ::= "[" expr "]" +</pre> +Note that the input file is assumed to contain mathspic commands. In addition, if +the expression is equal to a decimal number, it is truncated. +As in the case of the [[inputfile*]] command we parse the left parenthesis, +the file name, the right parenthesis and the optional argument if it exists. +In order to process the commands contained in the input file, we call +The subroutine [[process_input]]. + +<<process <tt>inputfile</tt> command>>= + + chk_lparen("inputfile",$lc); + my $comm_in = ""; + if (s/^((\w|-|\.)+)//) { + $comm_in = $1; + } + else { + PrintErrorMessage("No input file name found",$lc); + next LINE; + } + if (!(-e $comm_in)) { + PrintErrorMessage("File $comm_in does not exist",$lc); + next LINE; + } + chk_rparen("input file name",$lc); + my $input_times = 1; #default value + if (s/^\[//) { + $input_times = expr($lc); + chk_rsb("optional argument",$lc); + } + print OUT "%% ... start of file <$comm_in> loop [$input_times]\n"; + for (my $i=0; $i<int($input_times); $i++) { + open(COMM,"$comm_in") or die "Can't open file $comm_in\n"; + print OUT "%%% Iteration number: ",$i+1,"\n"; + my $old_file_name = $curr_in_file; + process_input(COMM,"File $comm_in, "); + $curr_in_file = $old_file_name; + close COMM; + } + print OUT "%% ... end of file <$comm_in> loop [$input_times]\n"; + chk_comment($lc); + +@ The [[linethickness]] command should be used to set the thickness of lines. +The command has one argument, which is a length or the word [[default]]. +The default line thickness is 0.4 pt. + +<<process <tt>linethickness</tt> command>>= + chk_lparen("linethickness", $lc); + if (s/^default//i) { + print OUT "\\linethickness=0.4pt\\Linethickness{0.4pt}%%\n"; + print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\tiny .})%\n"; + $LineThickness = setLineThickness($xunits,"0.4pt"); + } + else { + my $length = expr($lc); + if (s/^\s*($units)//i) { + my $units = $1; + printf OUT "\\linethickness=%.5f%s\\Linethickness{%.5f%s}%%\n", + $length, $units, $length, $units; + $LineThickness = setLineThickness($xunits,"$length$units"); + my $mag; + if ($units eq "pc") { + $mag = $length * 12; + } + elsif ($units eq "in") { + $mag = $length * 72.27; + } + elsif ($units eq "bp") { + $mag = $length * 1.00375; + } + elsif ($units eq "cm") { + $mag = $length * 28.45275; + } + elsif ($units eq "mm") { + $mag = $length * 2.845275; + } + elsif ($units eq "dd") { + $mag = $length * 1.07001; + } + elsif ($units eq "cc") { + $mag = $length * 0.08917; + } + elsif ($units eq "sp") { + $mag = $length * 0.000015259; + } + elsif ($units eq "pt") { + $mag = $length; + } + $mag = 10 * $mag / 1.00278219; + printf OUT "\\font\\CM=cmr10 at %.5fpt%%\n", $mag; + print OUT "\\setplotsymbol ({\\CM .})%\n"; + } + else { + PrintErrorMessage("Did not found expect units part",$lc); + } + } + chk_rparen("linethickness", $lc); + chk_comment($lc); + + +@ We first output the input line as a comment into the output file. Now, +after the [[paper]] token we look for an opening brace. Then we process +the [[units]] part of the command, if the token [[units]] is present. Note +that the [[units]] part is optional. Next we process the [[xrange]] and the +[[yrange]] part of the command, which are also optional parts of the command. +We are now ready to process the [[axis]] part. Note, that the user is allowed +to alternatively specify this part with the word [[axes]]. +The variable [[$axis]] +is supposed to hold the various data relate to the [[axis]] part. The last +thing we check is the [[ticks]] part. In case the user has not specified +this part we assume that both ticks are equal to zero. If everything is +according to the language syntax, we expect a closing right curly bracket. +Now, that we have all relevant information we can output the rest of the code, +as some parts of it have already been output during parsing. The last thing we +do is to check whether there is any trailing comment. + +<<process <tt>paper</tt> command>>= + chk_lcb("paper", $lc); + if (s/^units(?=\W)//i) + { + <<process <tt>unit</tt> part>> + $nounits = 0; + } + else + { + $nounits = 1; + } + s/^,\s*// or s/\s*//; + if (s/^xrange//i) + { + <<process <tt>xrange</tt> part>> + $noxrange = 0; + } + else + { + $noxrange = 1; + } + s/^,\s*// or s/\s*//; + if (s/^yrange//i) + { + <<process <tt>yrange</tt> part>> + $noyrange = 0; + } + else + { + $noyrange = 1; + } + <<generate plot area related commands>> + s/^,\s*// or s/\s*//; + $axis = ""; + if (s/^ax[ei]s(?=\W)//i) + { + <<process <tt>axis</tt> part>> + } + $axis = uc($axis); + s/^,\s*// or s/\s*//; + if (s/^ticks(?=\W)//i) + { + <<process <tt>ticks</tt> part>> + } + else + { + $xticks = $yticks = 0; + } + chk_rcb("paper", $lc); + <<generate the rest of the code for the <tt>paper</tt> command>> + chk_comment($lc); + +@ We first check whether there is a left parenthesis. Next, we check +whether there is decimal number or a variable name. In case there isn't one we assume it +is the number 1. Now, we get the units. If there is no valid unit, we issue +an error and the x-unit is set to its default value. In case, there is +a trailing comma, we assume the user wants also to specify the y-unit and +we process this part just like we did with the x-unit part. Finally, we +output the corresponding PiCTeX command. In case there is no y-unit +we assume it is equal to the x-unit. + +<<process <tt>unit</tt> part>>= + + chk_lparen("units",$lc); + if(s/^\)//) + { + PrintWarningMessage("Missing value in \"units\"--default is 1pt", + $lc); + $xunits = "1pt"; + } + else { + $xunits = expr($lc); + s/\s*//; + if (s/^($units)//i) { + $xunits .= "$1"; + $LineThickness = setLineThickness($xunits,"0.4pt"); + } + elsif(s/^(\w)+//i) { + PrintErrorMessage("$1 is not a valid mathspic unit",$lc); + $xunits = "1pt"; + } + else { + PrintErrorMessage("No x-units found",$lc); + $xunits = "1pt"; + } + s/\s*//; #ignore white space + if (s/^,//) { # there is a comma so expect an y-units + s/\s*//; #ignore white space + $yunits = expr($lc); + s/\s*//; #ignore white space + if (s/^($units)//i) { + $yunits .= "$1"; + } + elsif(s/^(\w)+//i) { + PrintErrorMessage("$1 is not a valid mathspic unit",$lc); + $yunits = "1pt"; + } + else { + PrintErrorMessage("No y-units found",$lc); + $yunits = $xunits; + } + } + else { + $yunits = $xunits; + } + chk_rparen("units",$lc); + } + +@ The [[xrange]] token must be followed by a left parenthesis, so we +check whether the next token is a left parenthesis. We store in the variables +[[$xlow]] and [[$xhigh]] the values of the range. The range is specified +as pair of decimal numbers/variable/pair of points, separated by a +comma. We use the subroutine [[ComputeDist]] to get the value of the lower +end and the upper end of the range. The last thing we check is whether +the lower end is less than the upper end. If this isn't the case we +issue an error message and we skip into the next input line. + +<<process <tt>xrange</tt> part>>= + + chk_lparen("xrange",$lc); + my $ec; + ($xlow,$ec) = ComputeDist($lc); + next LINE if $ec == 0; + chk_comma($lc); + ($xhigh,$ec) = ComputeDist($lc); + next LINE if $ec == 0; + if ($xlow >= $xhigh) + { + PrintErrorMessage("xlow >= xhigh in xrange",$lc); + next LINE; + } + chk_rparen("$xhigh",$lc); + +@ The [[yrange]] token must be followed by a left parenthesis, so we +check whether the next token is a left parenthesis. We store in the variables +[[$ylow]] and [[$yhigh]] the values of the range. The range is specified +as pair of decimal numbers/variable/pair of points, separated by a +comma. We use the subroutine [[ComputeDist]] to get the value of the lower +end and the upper end of the range. The last thing we check is whether +the lower end is less than the upper end. If this isn't the case we +issue an error message and we skip into the next input line. + +<<process <tt>yrange</tt> part>>= + + chk_lparen("yrange",$lc); + my $ec; + ($ylow,$ec) = ComputeDist($lc); + next LINE if $ec == 0; + chk_comma($lc); + ($yhigh,$ec) = ComputeDist($lc); + next LINE if $ec == 0; + if ($ylow >= $yhigh) + { + PrintErrorMessage("ylow >= yhigh in yrange",$lc); + next LINE; + } + chk_rparen("$yhigh",$lc); + +@ The [[showAngle]] command has three arguments that correspond to three distinct +points and emits a comment of the form: +<center> +<tt>%% angle(ABC) = 45</tt> +</center> +Note that the computed angle is expressed in degrees. + +<<process <tt>showAngle</tt> command>>= + chk_lparen("showangle",$lc); + my $point_1 = get_point($lc); + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1}); + my $point_2 = get_point($lc); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2}); + my $point_3 = get_point($lc); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point_3}); + my $angle = Angle($x1, $y1, $x2, $y2, $x3, $y3); + $angle = 0 if $angle == -500; + printf OUT "%%%% angle(%s%s%s) = %.5f deg ( %.5f rad)\n", $point_1, + $point_2, $point_3, $angle, $angle*D2R; + chk_rparen("Missing right parenthesis", $lc); + +@ The [[showArea]] command has three arguments that correspond to three distinct +points and emits a comment of the form: +<center> +<tt>%% area(ABC) = 45</tt> +</center> +Note that the computed angle is expressed in degrees. + +<<process <tt>showArea</tt> command>>= + chk_lparen("showarea",$lc); + my $point_1 = get_point($lc); + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1}); + my $point_2 = get_point($lc); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2}); + my $point_3 = get_point($lc); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point_3}); + print OUT "%% area($point_1$point_2$point_3) = ", + triangleArea($x1, $y1, $x2, $y2, $x3, $y3), "\n"; + chk_rparen("Missing right parenthesis", $lc); + +@ The [[showLength]] command has two arguments that correspond to two distinct +points and emits a comment of the form: +<center> +<tt>%% length(AB) = 45</tt> +</center> +Note that the computed angle is expressed in degrees. + +<<process <tt>showLength</tt> command>>= + chk_lparen("showlength",$lc); + my $point_1 = get_point($lc); + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1}); + my $point_2 = get_point($lc); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2}); + print OUT "%% length($point_1$point_2) = ", + Length($x1, $y1, $x2, $y2), "\n"; + chk_rparen("Missing right parenthesis", $lc); + + +@ If the user hasn't specified units then we use the previous values to +set the coordinate system. If the user hasn't specified either the +[[xunits]] part or the [[yunits]], then we don't emit code. In case he/she +has specified both parts we generate the command that sets the plot area. + +<<generate plot area related commands>>= + + if (!$nounits) + { + printf OUT "\\setcoordinatesystem units <%s,%s>\n", + $xunits,$yunits; + } + if(!$noxrange && !$noyrange) + { + printf OUT "\\setplotarea x from %.5f to %.5f, y from %.5f to %.5f\n", + $xlow, $xhigh, $ylow, $yhigh; + + } + +@ We first check to see whether there is an opening left parenthesis. Next +we get the various options the user may have entered. The valid options +are the letters L, R, T, B, X, and Y. These letters may be followed by +an optional star [[*]] with space characters between the letter and the star. +We use a loop, that stops when a right parenthesis is found, to +go through all +possible arguments and append each argument in the string [[$axis]]. Note +one can have blank space between different arguments. The last thing we do is +to check for the closing right parenthesis. + +<<process <tt>axis</tt> part>>= + + chk_lparen("axis",$lc); + while(/^[^\)]/) + { + if (s/^([lrtbxy]{1}\*?)//i) + { + $axis .= $1; + } + elsif (s/^([^lrtbxy])//i) + { + PrintErrorMessage("Non-valid character \"$1\" in axis()",$lc); + } + s/\s*//; + } + chk_rparen("axis(arguments",$lc); + +@ As usual we start by skipping white space. Next we check whether there is +an opening left parenthesis. Now, we expect two numbers/variables/pair of +point representing the [[ticks]] increment value. These [[ticks]] increment +values must be separated by a comma (and possibly some white space around +them). We use the subroutine [[ComputeDist]] to get the value of the [[ticks]] +increment value and we assign to the variables [[$xticks]] and [[$yticks]] +the value of x-ticks and y-ticks increment value. In case there is a +problem we issue an error message and continue with the next line. The last +thing we check is whether there is a closing right parenthesis. + +<<process <tt>ticks</tt> part>>= + chk_lparen("ticks",$lc); + my $ec; + ($xticks,$ec) = ComputeDist($lc); + next LINE if $ec == 0; + chk_comma($lc); + ($yticks,$ec) = ComputeDist($lc); + next LINE if $ec == 0; + chk_rparen("ticks(arguments",$lc); + +@ We actually emit code if the user has specified either the [[X]] or +[[Y]] option in the [[axis]] part. If the user has specified the +[[Y*]] or the [[X*]] option in the axis part, we just emit the commands +[[\axis left shiftedto x=0]] or [[\axis bottom shiftedto y=0]] respectively +and exit. If the use has specified ticks, then, depending on the options +he had supplied with the [[axis]] part, we emit code that +implements the user's wishes. +**** HERE WE MUST EXPLAIN THE MEANING OF THE CODE EMITTED!!! ***** + +<<generate the rest of the code for the <tt>paper</tt> command>>= +YBRANCH: { + if (index($axis, "Y")>-1) + { + if (index($axis, "Y*")>-1) + { + print OUT "\\axis left shiftedto x=0 / \n"; + last YBRANCH; + } + if ($yticks > 0) + { + if (index($axis, "T")>-1 && index($axis, "B")==-1) + { + print OUT "\\axis left shiftedto x=0 ticks numbered from "; + print OUT "$ylow to -$yticks by $yticks\n from $yticks to "; + print OUT $yhigh-$yticks," by $yticks /\n"; + } + elsif (index($axis, "T")==-1 && index($axis, "B")>-1) + { + print OUT "\\axis left shiftedto x=0 ticks numbered from "; + print OUT $ylow+$yticks," to -$yticks by $yticks\n from "; + print OUT "$yticks to $yhigh by $yticks /\n"; + } + elsif (index($axis, "T")>-1 && index($axis, "B")>-1) + { + print OUT "\\axis left shiftedto x=0 ticks numbered from "; + print OUT $ylow+$yticks," to -$yticks by $yticks\n from "; + print OUT "$yticks to ",$yhigh-$yticks," by $yticks /\n"; + } + else + { + print OUT "\\axis left shiftedto x=0 ticks numbered from "; + print OUT "$ylow to -$yticks by $yticks\n from "; + print OUT "$yticks to $yhigh by $yticks /\n"; + } + } + else + { + print OUT "\\axis left shiftedto x=0 /\n"; + } + } + } + XBRANCH: { if (index($axis, "X")>-1) + { + if (index($axis, "X*")>-1) + { + print OUT "\\axis bottom shiftedto y=0 /\n"; + last XBRANCH; + } + if ($xticks > 0) + { + if (index($axis, "L")>-1 && index($axis, "R")==1) + { + print OUT "\\axis bottom shiftedto y=0 ticks numbered from "; + print OUT $xlow + $xticks," to -$xticks by $xticks\n from"; + print OUT " $xticks to $xhigh by $xticks /\n"; + } + elsif (index($axis, "L")==-1 && index($axis, "R")>-1) + { + print OUT "\\axis bottom shiftedto y=0 ticks numbered from "; + print OUT "$xlow to -$xticks by $xticks\n from "; + print OUT "$xticks to ",$xhigh-$xticks," by $xticks /\n"; + } + elsif (index($axis, "L")>-1 && index($axis, "R")>-1) + { + print OUT "\\axis bottom shiftedto y=0 ticks numbered from "; + print OUT $xlow + $xticks," to -$xticks by $xticks\n from "; + print OUT "$xticks to ",$xhigh - $xticks," by $xticks /\n"; + } + else + { + print OUT "\\axis bottom shiftedto y=0 ticks numbered from "; + print OUT "$xlow to -$xticks by $xticks\n from "; + print OUT "$xticks to $xhigh by $xticks /\n"; + } + } + else + { + print OUT "\\axis bottom shiftedto y=0 /\n"; + } + } } + LBRANCH: {if (index($axis, "L")>-1) + { + if (index($axis, "L")>-1) + { + if (index($axis, "L*")>-1) + { + print OUT "\\axis left /\n"; + last LBRANCH; + } + if ($yticks > 0) + { + print OUT "\\axis left ticks numbered from "; + print OUT "$ylow to $yhigh by $yticks /\n"; + } + else + { + print OUT "\\axis left /\n"; + } + } + } } + RBRANCH: { if (index($axis, "R")>-1) + { + if (index($axis, "R*")>-1) + { + print OUT "\\axis right /\n"; + last RBRANCH; + } + if ($yticks > 0) + { + print OUT "\\axis right ticks numbered from $ylow to $yhigh by "; + print OUT "$yticks /\n"; + } + else + { + print OUT "\\axis right /\n"; + } + } } + TBRANCH: { if (index($axis, "T")>-1) + { + if (index($axis, "T*")>-1) + { + print OUT "\\axis top /\n"; + last TBRANCH; + } + if ($xticks > 0) + { + print OUT "\\axis top ticks numbered from $xlow to $xhigh by "; + print OUT "$xticks /\n"; + } + else + { + print OUT "\\axis top /\n"; + } + } } + BBRANCH: { if (index($axis, "B")>-1) + { + if (index($axis, "B*")>-1) + { + print OUT "\\axis bottom /\n"; + last BBRANCH; + } + if ($xticks > 0) + { + print OUT "\\axis bottom ticks numbered from $xlow to $xhigh by "; + print OUT "$xticks /\n"; + } + else + { + print OUT "\\axis bottom /\n"; + } + } } + + +@ The syntax of the [[point]] commands follows: +<pre> +point[*](PointName){Coordinates}[PointSymbol] +</pre> +where [[PointName]] is valid point name, [[Coordinates]] is either a +pair of numbers denoting the coordinates of the point or an expression +by means of which the system computes the coordinates of the point, and +the [[PointSymbol]] is a valid T<sub><font size=+1>E</font></sub>X +command denoting a point symbol. A valid point name consists of a +letter and at most two trailing digits. That is, the names [[a11]], +[[b2]] and [[c]] are valid names while [[qw]] and [[s123]] are not. +The first thing we do is to set the point shape to the default symbol +(this has been initialized in the main program). Next, we check whether +we have a [[point]]command or a [[point*]] simply by inspecting the very +next token. Note that there must be no blank spaces between the token +[[point]] and the star symbol. Next, we get the point name: remember that +the point name is surrounded by parentheses. In case we don't find a valid +point name we issue an error message and continue with the next line of +input. Suppose the point name was a valid one. If we have a [[point*]] +command we must ensure that the this particular point name has been defined. +If we have a [[point]] command we must ensure that this particular point +name has not been defined. Point names are stored in the hash [[%PointTable]]. +We are now ready to process the coordinates part and the optional +plot symbol part. + +<<process <tt>point/point*</tt> commands>>= + my ($pointStar, $PointName, $origPN); + $pointStar = 0; # default value: he have a point command + $pointStar = 1 if s/^\*//; + chk_lparen("point" . (($pointStar)?"*":""),$lc); + if (s/^([^\W\d_](?![^\W\d_])\d{0,3})//i) { + # + # Note: the regular expression (foo)(?!bar) means that we are + # looking a foo not followed by a bar. Moreover, the regular + # expression [^\W\d_] means that we are looking for letter. + # + $origPN = $1; + $PointName = lc($1); + } + else { + PrintErrorMessage("Invalid point name",$lc); + next LINE; + } + #if ($pointStar and !exists($PointTable{$PointName})) { + # PrintWarningMessage("Point $origPN has not been defined",$lc); + #} + if (!$pointStar and exists($PointTable{$PointName})) { + PrintWarningMessage("Point $origPN has been used already",$lc); + } + chk_rparen("point" . (($pointStar)?"*":""). "($origPN",$lc); + chk_lcb("point" . (($pointStar)?"*":""). "($origPN)",$lc); + my ($Px, $Py); + <<process coordinates>> + chk_rcb("coordinates part",$lc); + my $sv = $defaultsymbol; + my $sh = $defaultLFradius; + my $side_or_radius = undef; + if (s/^\[\s*//) { # the user has opted to specify the optional part + <<process optional point shape part>> + chk_rsb("optional part",$lc); + } + # to avoid truncation problems introduced by the pack function, we + # round each number up to five decimal digits + $Px = sprintf("%.5f", $Px); + $Py = sprintf("%.5f", $Py); + print OUT "%% point$Point_Line \t$origPN = ($Px, $Py)\n" if $comments_on; + chk_comment($lc); + $PointTable{$PointName} = pack("d3A*",$Px,$Py,$sh,$sv); + if (defined($side_or_radius)) { + $DimOfPoint{$PointName} = $side_or_radius; + } + +@ In this section we parse the [[Coordinates]] part of the [[point]] command. +The complete syntax of the [[Coordinates]] part follows: +<pre> +Coordinates ::= Variable | + Distance "," Distance | + "midpoint" "(" Point-Name Point-Name ")" | + "pointOnLine" "(" Two-Points "," Distance ")" | + "intersection" "(" Two-Points "," Two-Points ")" | + "perpendicular" "(" Point-Name "," Two-Points ")" | + "circumCircleCenter" "(" Three-Points ") | + "incircleCenter" "(" Three-Points ")" | + "excircleCenter" "(" Three-Points "," Two-Points ")" | + Point-Name [ "," Modifier ] + +Modifier ::= "shift" "(" Distance "," Distance ")" | + "polar" "(" Distance, Distance [ "deg" | "rad" ] ")" | + "rotate" "(" Point-Name, Distance [ "deg" | "rad" ] ")" | + "vector" "(" Two-Points ")" + +Distance ::= expression + +Two-Points ::= Point-Name Point-Name + +Three-Points ::= Point-Name Two-Points +</pre> +We now briefly explain the functionality of each option: +<ul> +<li>midpoint(AB): the midpoint between points A and B</li> +<li>pointOnLine(AB,d): point at distance d from A towards B</li> +<li>intersection(AB,CD): intersection of lines defined by AB and CD</li> +<li>perpendicular(A,BC): point of the foot of the perpendicular from A to line BC</li> +<li>circumCircleCenter(ABC): center of circumcircle of triangle ABC</li> +<li>incircleCenter(ABC):center of incircle of triangle ABC</li> +<li>excircleCenter(ABC,BC): center of excircle of triangle ABC, touching +side BC</li> +<li>A, shift(x,y): Point displaced from A by x and y along the X and Y +axes</li> +<li>A, polar(r,d): Point displaced from A by distance r in direction d</li> +<li>A, rotate(B,d): Rotate A about B by d</li> +</ul> +We now explain how the following piece of code operates. In case the first +token is a number, we assume that the coordinates are specified by a +number and another number, a variable or a pair of points. So, we check +whether there is a comma and use the subroutine [[ComputeDist]] to get the +second coordinate. In case the next token is one of the words +[[perpendicular]], [[intersection]], [[midpoint]], [[pointonline]], +[[circumcircleCenter]], [[IncircleCenter]], or [[ExcircleCenter]] +we consume the corresponding token and process the corresponding case. +In case the first two tokens are two identifiers, then we assume that we +have a pair of numbers. We compute their distance, check whether there is +a leading comma and compute the y-coordinate by calling subroutine +[[ComputeDist]]. In case the next token is a single identifier, we store +its name in the variable [[$PointA]]. If this identifier is a defined point name, +we check whether the next token is a comma. In case it is, we check whether +he token after the comma is either the token [[shift]], [[polar]], or +[[rotate]] and process each case accordingly. If it is +none of these tokens we issue an error message and continue with the next +input line. Now, if the token after the identifier isn't a comma, we assume +that the coordinates of the point will be identical to those of the point +whose name has been stored in the variable [[$PointA]]. If the identifier is a +variable name, we assume that the x-coordinate is the value of this variable. +We check whether the next token is a comma, and compute the y-coordinate by +calling the subroutine [[ComputeDist]]. The x-coordinate is stored in the variable +[[$Px]] and the y-coordinate in the variable [[$Py]]. + +<<process coordinates>>= + if (s/^perpendicular(?=\W)//i) { + <<process <tt>perpendicular</tt> case>> + } + elsif (s/^intersection(?=\W)//i) { + <<process <tt>intersection</tt> case>> + } + elsif (s/^midpoint(?=\W)//i) { + <<process <tt>midpoint</tt> case>> + } + elsif (s/^pointonline(?=\W)//i) { + <<process <tt>pointonline</tt> case>> + } + elsif (s/^circumcircleCenter(?=\W)//i) { + <<process <tt>circumcircleCenter</tt> case>> + } + elsif (s/^IncircleCenter(?=\W)//i) { + <<process <tt>IncircleCenter</tt> case>> + } + elsif (s/^ExcircleCenter(?=\W)//i) { + <<process <tt>ExcircleCenter</tt> case>> + } + elsif (/^[^\W\d_]\d{0,3}\s*[^,\w]/) { + m/^([^\W\d_]\d{0,3})\s*/i; + if (exists($PointTable{lc($1)})) { + my $Tcoord = get_point($lc); + my ($x,$y,$pSV,$pS)=unpack("d3A*",$PointTable{$Tcoord}); + $Px = $x; + $Py = $y; + } + else { + $Px = expr(); + chk_comma($lc); + $Py = expr(); + } + } + elsif (/[^\W\d_]\d{0,3}\s*,\s*shift|polar|rotate|vector/i) { #a point? + s/^([^\W\d_]\d{0,3})//i; + my $PointA = $1; + if (exists($PointTable{lc($PointA)})) { + s/\s*//; + if (s/^,//) { + s/\s*//; + if (s/^shift(?=\W)//i) { + <<process <tt>shift</tt> case>> + } + elsif (s/^polar(?=\W)//i) { + <<process <tt>polar</tt> case>> + } + elsif (s/^rotate(?=\W)//i) { + <<process <tt>rotate</tt> case>> + } + elsif (s/^vector(?=\W)//i) { + <<process <tt>vector</tt> case>> + } + else { + PrintErrorMessage("unexpected token",$lc); + next LINE; + } + } + else { + my ($xA,$yA,$pSVA,$pSA)=unpack("d3A*",$PointTable{lc($PointA)}); + $Px = $xA; + $Py = $yA; + } + } + else { + PrintErrorMessage("Undefined point $PointA",$lc); + next LINE; + } + } + else { + $Px = expr(); + chk_comma($lc); + $Py = expr(); + } + +@ In the following piece of code we process the [[perpendicular]] +case of the [[point]] specification. We first check whether there is an +opening left parenthesis. Next, we get the first point name. In case +there is no point name, we simply abandon the processing of this +line and continue with the next one. Then we see whether there is +a trailing comma. Omitting this token yields a non-fatal error. +Then we get two more points. As before, if we can't find any of these +points this yields a fatal-error. Note, that each time we check that the +point names correspond to existing point names. Then, we call subroutine +[[perpendicular]] to calculate the coordinates of the point. + +<<process <tt>perpendicular</tt> case>>= + chk_lparen("perpendicular",$lc); + my $FirstPoint = &get_point($lc); + next LINE if $FirstPoint eq "_undef_"; + chk_comma($lc); + my $SecondPoint = &get_point($lc); + next LINE if $SecondPoint eq "_undef_"; + my $ThirdPoint = &get_point($lc); + next LINE if $ThirdPoint eq "_undef_"; + chk_rparen("No closing parenthesis found",$lc); + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint}); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint}); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$ThirdPoint}); + ($Px, $Py) = perpendicular($x1,$y1,$x2,$y2,$x3,$y3); + +@ In the following piece of code we process the [[intersection]] case of the +[[point]] specification. We get the four point names and if there is +no error we compute the intersection point by calling subroutine +[[intersection]]. + +<<process <tt>intersection</tt> case>>= + chk_lparen("intersection",$lc); + my $FirstPoint = get_point($lc); + next LINE if $FirstPoint eq "_undef_"; + my $SecondPoint = get_point($lc); + next LINE if $SecondPoint eq "_undef_"; + chk_comma($lc); + my $ThirdPoint = get_point($lc); + next LINE if $ThirdPoint eq "_undef_"; + my $ForthPoint = get_point($lc); + next LINE if $ForthPoint eq "_undef_"; + chk_rparen("No closing parenthesis found",$lc); + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint}); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint}); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$ThirdPoint}); + my ($x4,$y4,$pSV4,$pS4)=unpack("d3A*",$PointTable{$ForthPoint}); + ($Px, $Py) = intersection4points($x1,$y1,$x2,$y2,$x3,$y3,$x4,$y4); + + +@ Given two points A and B, the midpoint option computes the coordinates +of a third point that lies on the middle of the line segment defined by +these two points. We get the the two points, and then we compute the +coordinates of the midpoint by means of the simple formula: +<center> +m<sub>x</sub>=x<sub>1</sub>+(y<sub>2</sub> - y<sub>1</sub>)/2 <br> +m<sub>y</sub>=y<sub>1</sub>+(x<sub>2</sub> - x<sub>1</sub>)/2 +</center> + +<<process <tt>midpoint</tt> case>>= + chk_lparen("midpoint",$lc); + my $FirstPoint = &get_point($lc); + next LINE if $FirstPoint eq "_undef_"; + my $SecondPoint = &get_point($lc); + next LINE if $SecondPoint eq "_undef_"; + chk_rparen("No closing parenthesis found",$lc); + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint}); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint}); + $Px = $x1 + ($x2 - $x1)/2; + $Py = $y1 + ($y2 - $y1)/2; + +@ Given two points A and B and length d, the [[PointOnLine]] option +computes the coordinates of a point that lies d units in the direction from +A towards B. We first get the coordinates of the two points that define +the line and then we get the distance, which can be a number, a variable, +or a pair of points. + +<<process <tt>pointonline</tt> case>>= + chk_lparen("pointonline",$lc); + my $FirstPoint = &get_point($lc); + next LINE if $FirstPoint eq "_undef_"; + my $SecondPoint = &get_point($lc); + next LINE if $SecondPoint eq "_undef_"; + chk_comma($lc); + # now get the distance + my $distance = expr($lc); + chk_rparen("No closing parenthesis found",$lc); + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint}); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint}); + ($Px, $Py) = pointOnLine($x1,$y1,$x2,$y2,$distance); + +@ The [[circumcircleCenter]] is used when one wants to compute the coordinates +of the center of circle that passes through the three points +of a triangle defined +by the three arguments of the option. All we do is get the coordinates +of the three points and then we call the subroutine [[circumCircleCenter]] +to compute the center. + +<<process <tt>circumcircleCenter</tt> case>>= + chk_lparen("circumCircleCenter",$lc); + my $FirstPoint = &get_point($lc); + next LINE if $FirstPoint eq "_undef_"; + my $SecondPoint = &get_point($lc); + next LINE if $SecondPoint eq "_undef_"; + my $ThirdPoint = &get_point($lc); + next LINE if $ThirdPoint eq "_undef_"; + chk_rparen("No closing parenthesis found",$lc); + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint}); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint}); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$ThirdPoint}); + ($Px, $Py,$r) = &circumCircleCenter($x1,$y1,$x2,$y2,$x3,$y3,$lc); + next LINE if $Px == 0 and $Py == 0 and $r == 0; + +@ The [[IncircleCenter]] option is to determine the coordinates of a point +that is the center of circle that internally touches the sides +of a triangle defined by three given points. +The coordinates are computed by the subroutine [[IncircleCenter]]. + +<<process <tt>IncircleCenter</tt> case>>= + chk_lparen("IncircleCenter",$lc); + my $FirstPoint = &get_point($lc); + next LINE if $FirstPoint eq "_undef_"; + my $SecondPoint = &get_point($lc); + next LINE if $SecondPoint eq "_undef_"; + my $ThirdPoint = &get_point($lc); + next LINE if $ThirdPoint eq "_undef_"; + chk_rparen("No closing parenthesis found",$lc); + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint}); + my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint}); + my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$ThirdPoint}); + ($Px, $Py, $r) = IncircleCenter($x1,$y1,$x2,$y2,$x3,$y3); + +@ The [[ExcircleCenter]] option is used to define the coordinates of point +that is the center of an excircle of a triangle. We first check +whether there is an opening left parenthesis. Next, we get the names of the +three points that define the triangle. Then, we +check whether there is a comma. Now we get the names of the two points that +define one side of the triangle. We check whether the two points we +get are of the set of the triangle points. If not we issue +an error message and continue with the next input line. Then we make sure +that these two points are not identical. We compute the actual +coordinates by calling the subroutine [[excircle]]. Finally, we +make sure there is a closing right parenthesis. + +<<process <tt>ExcircleCenter</tt> case>>= + chk_lparen("ExcircleCenter",$lc); + my $PointA = get_point($lc); + next LINE if $PointA eq "_undef_"; + my $PointB = get_point($lc); + next LINE if $PointB eq "_undef_"; + my $PointC = get_point($lc); + next LINE if $PointC eq "_undef_"; + chk_comma($lc); + my $PointD = &get_point($lc); + next LINE if $PointD eq "_undef_"; + if (!memberOf($PointD, $PointA, $PointB, $PointC)) { + PrintErrorMessage("Current point isn't a side point",$lc); + next LINE; + } + my $PointE = get_point($lc); + next LINE if $PointE eq "_undef_"; + if (!memberOf($PointE, $PointA, $PointB, $PointC)) { + PrintErrorMessage("Current point isn't a side point",$lc); + next LINE; + } + if ($PointD eq $PointE) { + PrintErrorMessage("Side points are identical",$lc); + next LINE; + } + ($Px, $Py, $r) = excircle($PointA, $PointB, $PointC, + $PointD, $PointE); + chk_rparen("after coordinates part",$lc); + +@ The [[shift]] option allows us to define a point's coordinates relative +to the coordinates of an existing point by using two shift parameters. Each +parameter can be either a float, a variable name, or a pair of points. + +<<process <tt>shift</tt> case>>= + + chk_lparen("shift",$lc); + my $dist1 = expr($lc); + chk_comma($lc); + my $dist2 = expr($lc); + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{lc($PointA)}); + $Px = $x1 + $dist1; + $Py = $y1 + $dist2; + chk_rparen("shift part",$lc); + +@ The [[polar]] option allows us to define a point's coordinates relative +to the coordinates of an existing point using the polar coordinates of some +other point. We first check whether there is a left parenthesis, +Then we parse the various parts of the [[polar]] option. +In case the user has specified the angle in degrees, we have +to transform it into radians, as all trigonometric function expect their +arguments to be radians. Next, we compute the coordinates of the point. +We conclude by checking whether there is a closing parenthesis. + +<<process <tt>polar</tt> case>>= + chk_lparen("polar",$lc); + my ($R1, $Theta1); + $R1 = expr($lc); + chk_comma($lc); + $Theta1 = expr($lc); + my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{lc($PointA)}); + s/\s*//; + if (s/^rad(?=\W)//i) { + # do nothing! + } + elsif (s/^deg(?=\W)//i) { + $Theta1 = $Theta1 * PI / 180; + } + else { + #$Theta1 = $Theta1 * PI / 180; + } + $Px = $x1 + $R1 * cos($Theta1); + $Py = $y1 + $R1 * sin($Theta1); + chk_rparen("after polar part",$lc); + +@ The [[rotate]] option allows us to define a point's coordinates by +rotating an existing point, Q, about a third point, P, by a +specified angle. +The method to achieve this is to first get the coordinates of points +P and Q and then +<ol> +<li> translate origin to P</li> +<li> rotate about P</li> +<li> translate from P back to origin, etc</li> +</ol> +As in the case of the [[polar]] option, we check for an opening parenthesis. +Next, we parse the point name and the angle. At this point we are able to +compute the coordinates of the rotated point. We conclude by checking +whether there is a closing parenthesis. + +<<process <tt>rotate</tt> case>>= + chk_lparen("rotate",$lc); + my $Q = lc($PointA); + my $P = get_point($lc); + next LINE if $P eq "_undef_"; + chk_comma($lc); + my $Theta1 = expr($lc); + my ($xP,$yP,$pSV1,$pS1)=unpack("d3A*",$PointTable{$P}); + my ($xQ,$yQ,$pSV2,$pS2)=unpack("d3A*",$PointTable{$Q}); + s/\s*//; + if (s/^rad(?=\W)//i) + { + # do nothing! + } + elsif (s/^deg(?=\W)//i) + { + $Theta1 = $Theta1 * PI / 180; + } + else + { + $Theta1 = $Theta1 * PI / 180; + } + # shift origin to P + $xQ -= $xP; + $yQ -= $yP; + # do the rotation + $Px = $xQ * cos($Theta1) - $yQ * sin($Theta1); + $Py = $xQ * sin($Theta1) + $yQ * cos($Theta1); + # return origin back to original origin + $Px += $xP; + $Py += $yP; + chk_rparen("after rotate part",$lc); + +@ [[vector(PQ)]] is actually is a shorthand of [[shift(xQ-xP,yQ-yP)]]. Thus, it +is implemented by borrowing code from the [[shift]] modifier. + +<<process <tt>vector</tt> case>>= + chk_lparen("vector",$lc); + my ($x0,$y0,$pSV0,$pS0) = unpack("d3A*",$PointTable{lc($PointA)}); + my $P = get_point($lc); + my $Q = get_point($lc); + my ($x1,$y1,$pSV1,$pS1) = unpack("d3A*",$PointTable{$P}); + my ($x2,$y2,$pSV2,$pS2) = unpack("d3A*",$PointTable{$Q}); + $Px = $x0 + $x2 - $x1; + $Py = $y0 + $y2 - $y1; + chk_rparen("vector part",$lc); + + +@ When lines are drawn to a point, the line will (unless otherwise +specified) extend to the point location. However, this can be prevented by +allocating an optional circular line-free zone to a point by specifying the +radius (in square brackets) of the optional point shape part. Currently, in this part +we are allowed to describe the point shape and the radius value. If only the +radius is specified, e.g., <tt>[radius=5]</tt>, then the line-free zone will be +applied to the default point character, i.e., <tt>$\bullet$</tt> or whatever it +has been set to. Here is the syntax we employ: +<pre> +Optional_point_shape_part ::= "[" [ symbol_part ] [","] [ radius_part ]" +symbol_part ::= "symbol" "=" symbol +symbol ::= "circle" "(" expression ")" | + "square" "(" expression ")" | + LaTeX_Code +radius_part ::= "radius" "=" expression +</pre> +Note that it is possible to have right square bracket in the <tt>LaTeX_Code</tt> but it +has to be escaped (i.e., <tt>\]</tt>). + +<<process optional point shape part>>= + if (/^(symbol|radius|side)\s*/i) { + my @previous_options = (); + my $number_of_options = 1; + my $symbol_set = 0; + while (s/^(symbol|radius)\s*//i and $number_of_options <= 2) { + my $option = lc($1); + if (s/^=\s*//) { + if (memberOf($option,@previous_options)) { + PrintErrorMessage("Option \"$option\" has been already defined", $lc); + my $dummy = expr($lc); + } + elsif ($option eq "radius") { + $sh = expr($lc); + $sv = $defaultsymbol if ! $symbol_set; + } + elsif ($option eq "symbol") { + if (s/^circle\s*//i) { + $sv = "circle"; + chk_lparen("after token circle",$lc); + $side_or_radius = expr($lc); + chk_rparen("expression",$lc); + } + elsif (s/^square\s*//i) { + $sv = "square"; + chk_lparen("after token square",$lc); + $side_or_radius = expr($lc); + chk_rparen("expression",$lc); + } + elsif (s/^(((\\\]){1}|(\\,){1}|(\\\s){1}|[^\],\s])+)//) { + $sv = $1; + $sv =~ s/\\\]/\]/g; + $sv =~ s/\\,/,/g; + $sv =~ s/\\ / /g; + s/\s*//; + } + $symbol_set = 1; + } + } + else { + PrintErrorMessage("unexpected token", $lc); + next LINE; + } + $number_of_options++; + push (@previous_options, $option); + s/^,\s*//; + } + } + else { + PrintErrorMessage("unexpected token", $lc); + next LINE; + } + +@ The [[ArrowShape]] command has either one or three arguments. If the only argument of +the command is the token [[default]], then the parameters associated with the +arrow shape resume their default values. Now, if there are three arguments, these are +used to specify the shape of an arrow. The command actually sets the three global variables +[[$arrowLength]], [[$arrowAngleB]] and [[$arrowAngleC]]. Arguments whose value is equal +to zero, do not affect the value of the corresponding global variables. To reset the +values of the global variables one should use the commane with [[default]] as it +only argument. The syntax of the command is as follows: +<center> +<tt>"ArrowShape" "(" expr [ units ] "," expr "," expr ")"</tt> or<br> +<tt>"ArrowShape" "(" "default" ")" </tt> +</center>> +Here [[units]] is any valid TeX unit (e.g., "mm", "cm", etc.). Note that if +any of the three expressions is equal to zero, the default value is taken +instead. As direct consequence, if the value of the first expression is zero, +the units part is actually ignored. + +<<process <tt>ArrowShape</tt> command>>= + + chk_lparen("$cmd",$lc); + if (s/^default//i) { + $arrowLength = 2; + $arrowLengthUnits = "mm"; + $arrowAngleB = 30; + $arrowAngleC = 40; + } + else { + my ($LocalArrowLength, $LocalArrowAngleB ,$LocalArrowAngleC) = (0,0,0); + $LocalArrowLength = expr($lc); + if (s/^\s*($units)//i) { + $arrowLengthUnits = "$1"; + } + else { + $xunits =~ /(\d+(\.\d+)?)\s*($units)/; + $LocalArrowLength *= $1; + $arrowLengthUnits = "$3"; + } + chk_comma($lc); + $LocalArrowAngleB = expr($lc); + chk_comma($lc); + $LocalArrowAngleC = expr($lc); + $arrowLength = ($LocalArrowLength == 0 ? 2 : $LocalArrowLength); + $arrowLengthUnits = ($LocalArrowLength == 0 ? "mm" : $arrowLengthUnits); + $arrowAngleB = ($LocalArrowAngleB == 0 ? 30 : $LocalArrowAngleB); + $arrowAngleC = ($LocalArrowAngleC == 0 ? 40 : $LocalArrowAngleC); + } + chk_rparen("after $cmd arguments",$lc); + chk_comment("after $cmd command",$lc); + print OUT "%% arrowLength = $arrowLength$arrowLengthUnits, ", + "arrowAngleB = $arrowAngleB ", + "and arrowAngleC = $arrowAngleC\n" if $comments_on; + +@ The [[PointSymbol]] command is used to set the point symbol and possibly its +line-free radius. The point symbol can be either a LaTeX symbol or the word [[default]] +which corresponds to the default point symbol, i.e., <tt>$\bullet$</tt>. The line-free +radius can be an expression. Here is the complete syntax: +<pre> + pointsymbol ::= "pointsymbol" ( symbol [ "," radius]) + symbol ::= "default" | circle | square | LaTeX_Code + circle ::= "circle" "(" expression ")" + square ::= "square" "(" expression ")" + radius ::= expression +</pre> +Note that the <tt>LaTeX_Code</tt> can contain the symbols <tt>\,</tt> and +<tt>\)</tt> which are escape sequences for a comma and right parenthesis, respectively. + +<<process <tt>PointSymbol</tt> command>>= + + chk_lparen("$cmd",$lc); + if (s/^default//i) #default point symbol + { + $defaultsymbol = "\$\\bullet\$"; + } + elsif (s/^(circle|square)//i) { + $defaultsymbol = $1; + chk_lparen($defaultsymbol, $lc); + $GlobalDimOfPoints = expr($lc); + chk_rparen("expression", $lc); + } + elsif (s/^(((\\,){1}|(\\\)){1}|(\\\s){1}|[^\),\s])+)//) #arbitrary LaTeX point + { + $defaultsymbol = $1; + $defaultsymbol=~ s/\\\)/\)/g; + $defaultsymbol=~ s/\\,/,/g; + $defaultsymbol=~ s/\\ / /g; + } + else + { + PrintErrorMessage("unrecognized point symbol",$lc); + } + if (s/\s*,\s*//) { + $defaultLFradius = expr($lc); + } + chk_rparen("after $cmd arguments",$lc); + chk_comment("after $cmd command",$lc); + +@ The [[system]] command provides a shell escape. However, we use a subroutine +to check whether the argument of the command contains tainted data. If this +is the case, then we simply ignore this command. The syntax of the command +is as follows: +<pre> + system-cmd ::= "system" "(" string ")" +</pre> +where string is just a sequence of characters enclosed in quotation marks. +We start by parsing a left parenthesis and then we get the command by +calling the subroutine [[get_string]]. If there is an error we skip this +command. Otherwise, we assign to the variable [[$_]] what is left. Now we check +if the variable [[$command]] contains any tainted data. If it doesn't, we +execute the command, otherwise we print an error message and skip to the +next input line. Next, we check for closing right parenthesis and a possible +trailing comment. + +<<process <tt>system</tt> command>>= + + chk_lparen("$cmd",$lc); + my ($error, $command, $rest) = get_string($_); + next LINE if $error == 1; + $_ = $rest; + if (! is_tainted($command)) { + system($command); + } + else { + PrintErrorMessage("String \"$command\" has tainted data", $lc); + next LINE; + } + chk_rparen("after $cmd arguments",$lc); + chk_comment("after $cmd command",$lc); + +@ The [[text]] command is used to put a piece of text or a symbol on +a particular point of the resulting graph. The syntax of the command is +as follows: +<pre> + text-comm ::= "text" "(" text ")" "{"coords"} "[" pos-code "]" + text ::= ascii string + coords ::= Coord "," Coord | + Point-Name "," "shift" "(" Coord "," Coord ")" | + Point-Name "," "polar" "(" Coord "," Coord [angle-unit] ")" + Coord ::= decimal number | variable | pair-of-Point-Names + pair-of-Point-Names ::= Point-Name Point-Name + angle-unit ::= "deg" | "rad" + pos-code ::= lr-code [tb-code] | tb-code [lr-code] + lr-code ::= "l" | "r" + tb-code ::= "t" | "b" | "B" +</pre> +Initially, we parse the [[text]]. Since the text may contain parentheses +we assume that the user enters pairs of matching parentheses. Note, that +this is a flaw in the original design of the language, which may be remedied +in future releases of the software. Then, we check the [[coords]] part. Next, +if there is a left square bracket, we assume the user has specified the +[[pos-code]]. We conclude by checking a possible trailing comment. +The next thing we do is to generate the PiCTeX code. The two possible +forms follow: +<center> +<tt>\put {TEXT} [POS] at Px Py</tt><br> +<tt>\put {TEXT} at Px Py</tt><br> +</center> + +<<process <tt>text</tt> command>>= + + chk_lparen("text",$lc); + my ($level,$text)=(1,""); + TEXTLOOP: while (1) + { + $level++ if /^\(/; + $level-- if /^\)/; + s/^(.)//; + last TEXTLOOP if $level==0; + $text .= $1; + } + chk_lcb("text part",$lc); + my ($Px, $Py,$dummy,$pos); + $pos=""; + s/\s*//; + <<process coordinates part of text command>> + chk_rcb("coordinates part of text command",$lc); + if (s/^\[//) + { + s/\s*//; + <<process optional part of text command>> + s/\s*//; + chk_rsb("optional part of text command",$lc); + } + chk_comment($lc); + if ($pos eq "") + { + printf OUT "\\put {%s} at %f %f\n", $text, $Px, $Py; + } + else + { + printf OUT "\\put {%s} [%s] at %f %f\n", $text, $pos, $Px, $Py; + } + +@ In this section we define the code that handles the coordinates part +of the [[text]] command. The code just implements the grammar given above. +If the first token is a number, we assume this is the x-coordinate. If +it is a variable, we assume its value is the x-coordinate. However, if +it is a point name, we check whether the next token is another point name. +In this case we compute the distance between the two points. In case we +have a single point followed by a comma, we expect to have either a polar +or a shift part, which we process the same we processed them in the point +command. + +<<process coordinates part of text command>>= + + if (/^[^\W\d_]\d{0,3}\s*[^,\w]/) { + my $Tcoord = get_point($lc); + my ($x,$y,$pSV,$pS)=unpack("d3A*",$PointTable{$Tcoord}); + $Px = $x; + $Py = $y; + } + elsif (/[^\W\d_]\d{0,3}\s*,\s*shift|polar/i) { + s/^([^\W\d_]\d{0,3})//i; + my $PointA = $1; + if (exists($PointTable{lc($PointA)})) { + s/\s*//; + if (s/^,//) { + s/\s*//; + if (s/^shift(?=\W)//i) { + <<process <tt>shift</tt> case>> + } + elsif (s/^polar(?=\W)//i) { + <<process <tt>polar</tt> case>> + } + } + } + else { + PrintErrorMessage("undefined point/var",$lc); + next LINE; + } + } + else { + $Px = expr(); + chk_comma($lc); + $Py = expr(); + } + +@ In this section we process the optional part of the [[text]] command. +The general rule is that we are allowed to have up to two options one +from the characters [[l]] and [[r]] and one from the the characters +[[B]], [[b]], and [[t]]. We first check whether the next character is +letter, if it isn't we issue an error message and continue with the next +input line. If it is a letter we check whether it belongs to one of the +two groups and if it doesn't we issue an error message and continue with the +next input line. If the next character belongs to first group, i.e., it is +either [[l]] or [[r]], we store this character into the variable [[$pos]]. Next, +we check whether there is another letter. If it is a letter, we store it +in the variable [[$np]]. Now we make sure that this character belongs to the +other group, i.e., it is either [[b]], [[B]], or [[t]]. In case it belongs +to the other group, we append the value of [[$np]] to the string stored in +the variable [[$pos]]. Otherwise we issue an error message and continue with the +next input line. We work similarly for the other case. In order to check +whether a character belongs to some group of characters, we use the user +defined function [[memberOf]]. + +<<process optional part of text command>>= + + if (s/^(\w{1})\s*//) { + $pos .= $1; + if (memberOf($pos, "l", "r")) { + if (s/^(\w{1})\s*//) { + my $np = $1; + if (memberOf($np, "t", "b", "B")) { + $pos .= $np; + } + else { + if (memberOf($np, "l", "r")) { + PrintErrorMessage("$np can't follow 'l' or 'r'", $lc); + } + else { + PrintErrorMessage("$np is not a valid positioning option", $lc); + } + next LINE; + } + } + } + elsif (memberOf($pos, "t", "b", "B")) { + if (s/^(\w{1})\s*//) { + my $np = $1; + if (memberOf($np, "l", "r")) { + $pos .= $np; + } + else { + if (memberOf($np, "t", "b", "B")) { + PrintErrorMessage("$np can't follow 't', 'b', or 'B'", $lc); + } + else { + PrintErrorMessage("$np is not a valid positioning option", $lc); + } + next LINE; + } + } + } + else { + PrintErrorMessage("$pos is not a valid positioning option", $lc); + next LINE; + } + } + else { + PrintErrorMessage("illegal token in optional part of text command",$lc); + next LINE; + } + +@ The [[const]] command is used to store values into a comma separated +list of named constants. Constant names have the same format as point names, +i.e., they start with a letter and are followed by up to two digits. The +whole operation is performed by a [[do-while]] construct that checks that +there is a valid constant name, a [[=]] sign, and an expression. The +[[do-while]] construct terminates if the next token isn't a comma. Variable +[[$Constname]] is used to store the initial variable name, while we store +in variable [[$varname]] the lowercase version of the variable name. In addition, +we make sure a constant is not redefined (or else it wouldn't be a constant:-). +The last thing we do is to check whether there is a trailing comment. +In case there, we simply ignore itl; otherwise we print a warning message. + +<<process <tt>const</tt> command>>= + do{ + s/\s*//; + PrintErrorMessage("no identifier found after token const",$lc) + if $_ !~ s/^([^\W\d_]\d{0,3})//i; + my $Constname = $1; + my $constname = lc($Constname); + if (exists $ConstTable{$constname}) { + PrintErrorMessage("Redefinition of constant $constname",$lc); + } + s/\s*//; #remove leading white space + PrintErrorMessage("did not find expected = sign",$lc) + if $_ !~ s/^[=]//i; + my $val = expr($lc); + $VarTable{$constname} = $val; + $ConstTable{$constname} = 1; + print OUT "%% $Constname = $val\n" if $comments_on; + }while (s/^,//); + chk_comment($lc); + s/\s*//; + if (/^[^%]/) { + PrintWarningMessage("Trailing text is ignored",$lc); + } + +@ The [[var]] command is used to store values into a comma separated +list of named variables. Variable names have the same format as point names, +i.e., they start with a letter and are followed by up to two digits. The +whole operation is performed by a [[do-while]] construct that checks that +there is a valid variable name, a [[=]] sign, and an expression. The +[[do-while]] construct terminates if the next token isn't a comma. The variable +[[$Varname]] is used to store the initial variable name, while we store +in the variable [[$varname]] the lowercase version of the variable name. +The last thing we do is to check whether there is a trailing comment. +In case there, we simply ignore itl; otherwise we print a warning message. + +<<process <tt>var</tt> command>>= + do{ + s/\s*//; + PrintErrorMessage("no identifier found after token var",$lc) + if $_ !~ s/^([^\W\d_]\d{0,3})//i; + my $Varname = $1; + my $varname = lc($Varname); + if (exists $ConstTable{$varname}) { + PrintErrorMessage("Redefinition of constant $varname",$lc); + } + s/\s*//; #remove leading white space + PrintErrorMessage("did not find expected = sign",$lc) + if $_ !~ s/^[=]//i; + my $val = expr($lc); + $VarTable{$varname} = $val; + print OUT "%% $Varname = $val\n" if $comments_on; + }while (s/^,//); + chk_comment($lc); + s/\s*//; + if (/^[^%]/) { + PrintWarningMessage("Trailing text is ignored",$lc); + } |