summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/guide-to-latex/exercises/chap7/exer7-21b.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/guide-to-latex/exercises/chap7/exer7-21b.tex')
-rw-r--r--Master/texmf-dist/doc/latex/guide-to-latex/exercises/chap7/exer7-21b.tex76
1 files changed, 76 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/guide-to-latex/exercises/chap7/exer7-21b.tex b/Master/texmf-dist/doc/latex/guide-to-latex/exercises/chap7/exer7-21b.tex
new file mode 100644
index 00000000000..42a54e46336
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/guide-to-latex/exercises/chap7/exer7-21b.tex
@@ -0,0 +1,76 @@
+%========================================================================
+% With an slightly increased \textwidth a better presentation for the
+% whole math. table can be made together with an even simpler solution.
+%========================================================================
+\documentclass{article}
+\setlength{\textwidth}{135mm}
+\begin{document}
+\newcommand{\D}{\displaystyle}
+\newcommand{\bm}{\boldmath}
+\[ \begin{array}{@{}|c|c|c|@{}}\hline
+\multicolumn{3}{@{}|c|@{}}{\rule[-0.125cm]{0mm}{0.5cm}%
+\mbox{Equations for the tangential plane and surface normal}}\\
+\hline
+\mbox{Equation}&&\\
+\mbox{for the} & \mbox{Tangential plane} & \mbox{Surface normal}\\
+\mbox{surface} & & \\ \hline
+\rule{0mm}{0.583cm}F(x,y,z)=0
+ & \begin{array}[t]{r@{\:+\:}l}
+ \D\frac{\partial F}{\partial x}(X-x)
+ & \D\frac{\partial F}{\partial y}(Y-y) \\[2ex]
+ & \D\frac{\partial F}{\partial z}(Z-z) = 0
+ \end{array}
+ & \D\frac{X-x}{\D\frac{\partial F}{\partial x}} =
+ \frac{Y-y}{\D\frac{\partial F}{\partial y}} =
+ \frac{Z-z}{\D\frac{\partial F}{\partial z}}\\
+\rule[-0.42cm]{0mm}{1cm}z=f(x,y)
+ & Z-z = p(X-x) + q(Y-y)
+ & \D\frac{X-x}{p} = \frac{Y-y}{q} = \frac{Z-z}{-1}\\
+\begin{array}{c} x=x(u,v)\\y=y(u,v)\\z=z(u,v) \end{array}
+ & \begin{array}{|ccc|}
+ X-x & Y-y & Z-z\\[0.5ex]
+ \D\frac{\partial x}{\partial u} &
+ \D\frac{\partial y}{\partial u} &
+ \D\frac{\partial z}{\partial u} \\[2.0ex]
+ \D\frac{\partial x}{\partial v} &
+ \D\frac{\partial y}{\partial v} &
+ \D\frac{\partial z}{\partial v}
+ \end{array} = 0
+ & \D\frac{X-x}{\left|\begin{array}{c}
+ \frac{\partial y}{\partial u}\;
+ \frac{\partial z}{\partial u}\\[0.8ex]
+ \frac{\partial y}{\partial v}\;\frac{\partial z}{\partial v}
+ \end{array}\right|}
+ \D \frac{Y-y}{\left|\begin{array}{c}
+ \frac{\partial z}{\partial u}\;
+ \frac{\partial x}{\partial u}\\[0.8ex]
+ \frac{\partial z}{\partial v}\;\frac{\partial x}{\partial v}
+ \end{array}\right|}
+ \D \frac{Z-z}{\left|\begin{array}{c}
+ \frac{\partial x}{\partial u}\;
+ \frac{\partial y}{\partial u}\\[0.8ex]
+ \frac{\partial x}{\partial v}\;\frac{\partial y}{\partial v}
+ \end{array}\right|} \\
+\rule[-0.42cm]{0mm}{1.17cm}\mbox{\boldmath$r=r$}(u,v)
+ & \begin{array}{r}
+ \mbox{\boldmath$(R-r)(r_1\times r_2) = \mbox{\unboldmath$0$}$}\\
+ \mbox{or\qquad\boldmath$(R-r)N = \mbox{\unboldmath$0$}$}
+ \end{array}
+ & \begin{array}{r@{\;=\;}l}
+ \mbox{\boldmath$R$} & \mbox{\boldmath$r +
+ \mbox{\unboldmath$\lambda$}(r_1\times r_2$)}\\
+ \mbox{or\quad\boldmath$R$} &
+ \mbox{\boldmath$r + \mbox{\unboldmath$\lambda$}N$}
+ \end{array}\\ \hline
+\multicolumn{3}{@{}|c|@{}}{\parbox{12.5cm}{\vspace*{0.5ex}In this table
+ $x,\,y,\,z$ and
+ \mbox{\boldmath$r$} are the coordinates and the radius vector of a fixed
+ point $M$ on the curve; $X,\,Y,\,Z$, and \mbox{\boldmath$R$} are the
+ coordinates and radius vector of a point on the tangential plane or surface
+ normal with reference to $M$; furthermore,
+ $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$
+ and $\mbox{\boldmath$r_1$} = \partial\mbox{\boldmath$r$}/\partial u$,
+ $\mbox{\boldmath$r_2$} = \partial\mbox{\boldmath$r$}/\partial v$.}}
+\\[0.8ex] \hline
+\end{array} \]
+\end{document}