diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/guide-to-latex/exercises/chap7/exer7-21b.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/guide-to-latex/exercises/chap7/exer7-21b.tex | 76 |
1 files changed, 76 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/guide-to-latex/exercises/chap7/exer7-21b.tex b/Master/texmf-dist/doc/latex/guide-to-latex/exercises/chap7/exer7-21b.tex new file mode 100644 index 00000000000..42a54e46336 --- /dev/null +++ b/Master/texmf-dist/doc/latex/guide-to-latex/exercises/chap7/exer7-21b.tex @@ -0,0 +1,76 @@ +%======================================================================== +% With an slightly increased \textwidth a better presentation for the +% whole math. table can be made together with an even simpler solution. +%======================================================================== +\documentclass{article} +\setlength{\textwidth}{135mm} +\begin{document} +\newcommand{\D}{\displaystyle} +\newcommand{\bm}{\boldmath} +\[ \begin{array}{@{}|c|c|c|@{}}\hline +\multicolumn{3}{@{}|c|@{}}{\rule[-0.125cm]{0mm}{0.5cm}% +\mbox{Equations for the tangential plane and surface normal}}\\ +\hline +\mbox{Equation}&&\\ +\mbox{for the} & \mbox{Tangential plane} & \mbox{Surface normal}\\ +\mbox{surface} & & \\ \hline +\rule{0mm}{0.583cm}F(x,y,z)=0 + & \begin{array}[t]{r@{\:+\:}l} + \D\frac{\partial F}{\partial x}(X-x) + & \D\frac{\partial F}{\partial y}(Y-y) \\[2ex] + & \D\frac{\partial F}{\partial z}(Z-z) = 0 + \end{array} + & \D\frac{X-x}{\D\frac{\partial F}{\partial x}} = + \frac{Y-y}{\D\frac{\partial F}{\partial y}} = + \frac{Z-z}{\D\frac{\partial F}{\partial z}}\\ +\rule[-0.42cm]{0mm}{1cm}z=f(x,y) + & Z-z = p(X-x) + q(Y-y) + & \D\frac{X-x}{p} = \frac{Y-y}{q} = \frac{Z-z}{-1}\\ +\begin{array}{c} x=x(u,v)\\y=y(u,v)\\z=z(u,v) \end{array} + & \begin{array}{|ccc|} + X-x & Y-y & Z-z\\[0.5ex] + \D\frac{\partial x}{\partial u} & + \D\frac{\partial y}{\partial u} & + \D\frac{\partial z}{\partial u} \\[2.0ex] + \D\frac{\partial x}{\partial v} & + \D\frac{\partial y}{\partial v} & + \D\frac{\partial z}{\partial v} + \end{array} = 0 + & \D\frac{X-x}{\left|\begin{array}{c} + \frac{\partial y}{\partial u}\; + \frac{\partial z}{\partial u}\\[0.8ex] + \frac{\partial y}{\partial v}\;\frac{\partial z}{\partial v} + \end{array}\right|} + \D \frac{Y-y}{\left|\begin{array}{c} + \frac{\partial z}{\partial u}\; + \frac{\partial x}{\partial u}\\[0.8ex] + \frac{\partial z}{\partial v}\;\frac{\partial x}{\partial v} + \end{array}\right|} + \D \frac{Z-z}{\left|\begin{array}{c} + \frac{\partial x}{\partial u}\; + \frac{\partial y}{\partial u}\\[0.8ex] + \frac{\partial x}{\partial v}\;\frac{\partial y}{\partial v} + \end{array}\right|} \\ +\rule[-0.42cm]{0mm}{1.17cm}\mbox{\boldmath$r=r$}(u,v) + & \begin{array}{r} + \mbox{\boldmath$(R-r)(r_1\times r_2) = \mbox{\unboldmath$0$}$}\\ + \mbox{or\qquad\boldmath$(R-r)N = \mbox{\unboldmath$0$}$} + \end{array} + & \begin{array}{r@{\;=\;}l} + \mbox{\boldmath$R$} & \mbox{\boldmath$r + + \mbox{\unboldmath$\lambda$}(r_1\times r_2$)}\\ + \mbox{or\quad\boldmath$R$} & + \mbox{\boldmath$r + \mbox{\unboldmath$\lambda$}N$} + \end{array}\\ \hline +\multicolumn{3}{@{}|c|@{}}{\parbox{12.5cm}{\vspace*{0.5ex}In this table + $x,\,y,\,z$ and + \mbox{\boldmath$r$} are the coordinates and the radius vector of a fixed + point $M$ on the curve; $X,\,Y,\,Z$, and \mbox{\boldmath$R$} are the + coordinates and radius vector of a point on the tangential plane or surface + normal with reference to $M$; furthermore, + $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$ + and $\mbox{\boldmath$r_1$} = \partial\mbox{\boldmath$r$}/\partial u$, + $\mbox{\boldmath$r_2$} = \partial\mbox{\boldmath$r$}/\partial v$.}} +\\[0.8ex] \hline +\end{array} \] +\end{document} |