diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/glossary/sampleEqPg.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/glossary/sampleEqPg.tex | 254 |
1 files changed, 254 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/glossary/sampleEqPg.tex b/Master/texmf-dist/doc/latex/glossary/sampleEqPg.tex new file mode 100644 index 00000000000..06eca783988 --- /dev/null +++ b/Master/texmf-dist/doc/latex/glossary/sampleEqPg.tex @@ -0,0 +1,254 @@ +%% +%% This is file `sampleEqPg.tex', +%% generated with the docstrip utility. +%% +%% The original source files were: +%% +%% glossary.dtx (with options: `sampleEqPg.tex,package') +%% Copyright (C) 2005 Nicola Talbot, all rights reserved. +%% If you modify this file, you must change its name first. +%% You are NOT ALLOWED to distribute this file alone. You are NOT +%% ALLOWED to take money for the distribution or use of either this +%% file or a changed version, except for a nominal charge for copying +%% etc. +%% \CharacterTable +%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z +%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z +%% Digits \0\1\2\3\4\5\6\7\8\9 +%% Exclamation \! Double quote \" Hash (number) \# +%% Dollar \$ Percent \% Ampersand \& +%% Acute accent \' Left paren \( Right paren \) +%% Asterisk \* Plus \+ Comma \, +%% Minus \- Point \. Solidus \/ +%% Colon \: Semicolon \; Less than \< +%% Equals \= Greater than \> Question mark \? +%% Commercial at \@ Left bracket \[ Backslash \\ +%% Right bracket \] Circumflex \^ Underscore \_ +%% Grave accent \` Left brace \{ Vertical bar \| +%% Right brace \} Tilde \~} +\documentclass[a4paper,12pt]{report} + +\usepackage{amsmath} +\usepackage[header,toc,border=none,cols=3]{glossary} + +\newcommand{\erf}{\operatorname{erf}} +\newcommand{\erfc}{\operatorname{erfc}} + +\renewcommand{\theglossarynum}{\theequation} +\renewcommand{\pagecompositor}{.} + +\renewcommand{\glossaryname}{Index of Special Functions and Notations} + +\renewcommand{\glossarypreamble}{Numbers in italic indicate the equation number, +numbers in bold indicate page numbers where the main definition occurs.\par} + +\setglossary{glsnumformat=textit} + +\renewcommand{\glossaryheader}{\bfseries Notation & +\multicolumn{2}{c}{\bfseries +\begin{tabular}{c}Name of the Function and\\the number of +the formula\end{tabular}}\\} + +\renewcommand{\shortglossaryname}{Special Functions} + +\makeglossary + +\pagestyle{headings} + +\begin{document} + +\title{Sample Document Using Interchangable Numbering} +\author{Nicola Talbot} +\maketitle + +\begin{abstract} +This is a sample document illustrating the use of the \textsf{glossary} +package. The functions here have been taken from ``Tables of +Integrals, Series, and Products'' by I.S.~Gradshteyn and I.M~Ryzhik. + +The glossary lists both page number and equation numbers. Since the +equation numbers depend on chapter numbers, the page compositor needs +to be redefined. (Note that this example will only work where the +page number and equation number compositor is the same. So it won't work +if, say, the page numbers are of the form 2-4 and the equation numbers +are of the form 4.6) As most of the glossary entries should have an italic +format, it is easiest to set the default format to italic. + +\end{abstract} + +\tableofcontents + +\printglossary + +\newcommand{\myglossary}[2]{% +\renewcommand{\theglossarynum}{#1}\glossary{#2}} + +\newcommand{\glossarypage}[1]{% +\renewcommand{\theglossarynum}{\thepage}\glossary{#1,format=textbf}} +\newcommand{\glossaryequation}[1]{% +\renewcommand{\theglossarynum}{\theequation}\glossary{#1}} + +\chapter{Gamma Functions} + +The gamma function is defined as +\renewcommand{\theglossarynum}{\thepage} +\glossary{name=$\Gamma(z)$,description=Gamma function,sort=Gamma,format=textbf} +\renewcommand{\theglossarynum}{\theequation} +\begin{equation} +\Gamma(z) = \int_{0}^{\infty}e^{-t}t^{z-1}\,dt +\end{equation} +\glossary{name=$\Gamma(z)$,description=Gamma function,sort=Gamma} + +\begin{equation} +\Gamma(x+1) = x\Gamma(x) +\end{equation} +\glossary{name=$\Gamma(z)$,description=Gamma function,sort=Gamma} + +\begin{equation} +\gamma(\alpha, x) = \int_0^x e^{-t}t^{\alpha-1}\,dt +\end{equation} +\glossary{name={$\gamma(\alpha,x)$},description=Incomplete gamma function,sort=gamma} + +\begin{equation} +\Gamma(\alpha, x) = \int_x^\infty e^{-t}t^{\alpha-1}\,dt +\end{equation} +\glossary{name={$\Gamma(\alpha,x)$},description=Incomplete gamma function,sort=Gamma} + +\newpage + +\begin{equation} +\Gamma(\alpha) = \Gamma(\alpha, x) + \gamma(\alpha, x) +\end{equation} +\glossary{name=$\Gamma(z)$,description=Gamma function,sort=Gamma} + +\begin{equation} +\psi(x) = \frac{d}{dx}\ln\Gamma(x) +\end{equation} +\glossary{name=$\psi(x)$,description=Psi function,sort=psi} + +\chapter{Error Functions} + +The error function is defined as: +\renewcommand{\theglossarynum}{\thepage} +\glossary{name=$\erf(x)$,description=Error function,sort=erf,format=textbf} +\renewcommand{\theglossarynum}{\theequation} +\begin{equation} +\erf(x) = \frac{2}{\surd\pi}\int_0^x e^{-t^2}\,dt +\end{equation} +\glossary{name=$\erf(x)$,description=Error function,sort=erf} + +\begin{equation} +\erfc(x) = 1 - \erf(x) +\end{equation} +\glossary{name=$\erfc(x)$,description=Complementary error function,sort=erfc} + +\chapter{Beta Function} + +\begin{equation} +B(x,y) = 2\int_0^1 t^{x-1}(1-t^2)^{y-1}\,dt +\end{equation} +\glossary{name={$B(x,y)$},description=Beta function,sort=B} +Alternatively: +\begin{equation} +B(x,y) = 2\int_0^{\frac\pi2}\sin^{2x-1}\phi\cos^{2y-1}\phi\,d\phi +\end{equation} +\glossary{name={$B(x,y)$},description=Beta function,sort=B} + +\begin{equation} +B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = B(y,x) +\end{equation} +\glossary{name={$B(x,y)$},description=Beta function,sort=B} + +\begin{equation} +B_x(p,q) = \int_0^x t^{p-1}(1-t)^{q-1}\,dt +\end{equation} +\glossary{name={$B_x(p,q)$},description=Incomplete beta function,sort=Bx} + +\chapter{Chebyshev's polynomials} + +\begin{equation} +T_n(x) = \cos(n\arccos x) +\end{equation} +\glossary{name=$T_n(x)$,description=Chebyshev's polynomials of the first kind,sort=Tn} + +\begin{equation} +U_n(x) = \frac{\sin[(n+1)\arccos x]}{\sin[\arccos x]} +\end{equation} +\glossary{name=$U_n(x)$,description=Chebyshev's polynomials of the second kind,sort=Un} + +\chapter{Hermite polynomials} + +\begin{equation} +H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n}(e^{-x^2}) +\end{equation} +\glossary{name=$H_n(x)$,description=Hermite polynomials,sort=Hn} + +\chapter{Laguerre polynomials} + +\begin{equation} +L_n^{\alpha} (x) = \frac{1}{n!}e^x x^{-\alpha} \frac{d^n}{dx^n}(e^{-x}x^{n+\alpha}) +\end{equation} +\glossary{name=$L_n^\alpha(x)$,description=Laguerre polynomials,sort=Lna} + +\chapter{Bessel Functions} + +Bessel functions $Z_\nu(z)$ are solutions of +\begin{equation} +\frac{d^2Z_\nu}{dz^2} + \frac{1}{z}\,\frac{dZ_\nu}{dz} + +\left( +1-\frac{\nu^2}{z^2}Z_\nu = 0 +\right) +\end{equation} +\glossary{name=$Z_\nu(z)$,description=Bessel functions,sort=Z} + +\chapter{Confluent hypergeometric function} + +\begin{equation} +\Phi(\alpha,\gamma;z) = 1 + \frac{\alpha}{\gamma}\,\frac{z}{1!} ++ \frac{\alpha(\alpha+1)}{\gamma(\gamma+1)}\,\frac{z^2}{2!} ++\frac{\alpha(\alpha+1)(\alpha+2)}{\gamma(\gamma+1)(\gamma+2)}\,\frac{z^3}{3!} ++ \cdots +\end{equation} +\glossary{name={$\Phi(\alpha,\gamma;z)$},description=confluent hypergeometric function,sort=Pagz} + +\begin{equation} +k_\nu(x) = \frac{2}{\pi}\int_0^{\pi/2}\cos(x \tan\theta - \nu\theta)\,d\theta +\end{equation} +\glossary{name=$k_\nu(x)$,description=Bateman's function,sort=kv} + +\chapter{Parabolic cylinder functions} + +\begin{equation} +D_p(z) = 2^{\frac{p}{2}}e^{-\frac{z^2}{4}} +\left\{ +\frac{\surd\pi}{\Gamma\left(\frac{1-p}{2}\right)} +\Phi\left(-\frac{p}{2},\frac{1}{2};\frac{z^2}{2}\right) +-\frac{\sqrt{2\pi}z}{\Gamma\left(-\frac{p}{2}\right)} +\Phi\left(\frac{1-p}{2},\frac{3}{2};\frac{z^2}{2}\right) +\right\} +\end{equation} +\glossary{name=$D_p(z)$,description=Parabolic cylinder functions,sort=Dp} + +\chapter{Elliptical Integral of the First Kind} + +\begin{equation} +F(\phi, k) = \int_0^\phi \frac{d\alpha}{\sqrt{1-k^2\sin^2\alpha}} +\end{equation} +\glossary{name={$F(\phi,k)$},description=Elliptical integral of the first kind,sort=Fpk} + +\chapter{Constants} + +\begin{equation} +C = 0.577\,215\,664\,901\ldots +\end{equation} +\glossary{name=$C$,description=Euler's constant,sort=C} + +\begin{equation} +G = 0.915\,965\,594\ldots +\end{equation} +\glossary{name=$G$,description=Catalan's constant,sort=G} + +\end{document} +\endinput +%% +%% End of file `sampleEqPg.tex'. |