summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/glossary/sampleEqPg.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/glossary/sampleEqPg.tex')
-rw-r--r--Master/texmf-dist/doc/latex/glossary/sampleEqPg.tex254
1 files changed, 254 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/glossary/sampleEqPg.tex b/Master/texmf-dist/doc/latex/glossary/sampleEqPg.tex
new file mode 100644
index 00000000000..06eca783988
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/glossary/sampleEqPg.tex
@@ -0,0 +1,254 @@
+%%
+%% This is file `sampleEqPg.tex',
+%% generated with the docstrip utility.
+%%
+%% The original source files were:
+%%
+%% glossary.dtx (with options: `sampleEqPg.tex,package')
+%% Copyright (C) 2005 Nicola Talbot, all rights reserved.
+%% If you modify this file, you must change its name first.
+%% You are NOT ALLOWED to distribute this file alone. You are NOT
+%% ALLOWED to take money for the distribution or use of either this
+%% file or a changed version, except for a nominal charge for copying
+%% etc.
+%% \CharacterTable
+%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
+%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
+%% Digits \0\1\2\3\4\5\6\7\8\9
+%% Exclamation \! Double quote \" Hash (number) \#
+%% Dollar \$ Percent \% Ampersand \&
+%% Acute accent \' Left paren \( Right paren \)
+%% Asterisk \* Plus \+ Comma \,
+%% Minus \- Point \. Solidus \/
+%% Colon \: Semicolon \; Less than \<
+%% Equals \= Greater than \> Question mark \?
+%% Commercial at \@ Left bracket \[ Backslash \\
+%% Right bracket \] Circumflex \^ Underscore \_
+%% Grave accent \` Left brace \{ Vertical bar \|
+%% Right brace \} Tilde \~}
+\documentclass[a4paper,12pt]{report}
+
+\usepackage{amsmath}
+\usepackage[header,toc,border=none,cols=3]{glossary}
+
+\newcommand{\erf}{\operatorname{erf}}
+\newcommand{\erfc}{\operatorname{erfc}}
+
+\renewcommand{\theglossarynum}{\theequation}
+\renewcommand{\pagecompositor}{.}
+
+\renewcommand{\glossaryname}{Index of Special Functions and Notations}
+
+\renewcommand{\glossarypreamble}{Numbers in italic indicate the equation number,
+numbers in bold indicate page numbers where the main definition occurs.\par}
+
+\setglossary{glsnumformat=textit}
+
+\renewcommand{\glossaryheader}{\bfseries Notation &
+\multicolumn{2}{c}{\bfseries
+\begin{tabular}{c}Name of the Function and\\the number of
+the formula\end{tabular}}\\}
+
+\renewcommand{\shortglossaryname}{Special Functions}
+
+\makeglossary
+
+\pagestyle{headings}
+
+\begin{document}
+
+\title{Sample Document Using Interchangable Numbering}
+\author{Nicola Talbot}
+\maketitle
+
+\begin{abstract}
+This is a sample document illustrating the use of the \textsf{glossary}
+package. The functions here have been taken from ``Tables of
+Integrals, Series, and Products'' by I.S.~Gradshteyn and I.M~Ryzhik.
+
+The glossary lists both page number and equation numbers. Since the
+equation numbers depend on chapter numbers, the page compositor needs
+to be redefined. (Note that this example will only work where the
+page number and equation number compositor is the same. So it won't work
+if, say, the page numbers are of the form 2-4 and the equation numbers
+are of the form 4.6) As most of the glossary entries should have an italic
+format, it is easiest to set the default format to italic.
+
+\end{abstract}
+
+\tableofcontents
+
+\printglossary
+
+\newcommand{\myglossary}[2]{%
+\renewcommand{\theglossarynum}{#1}\glossary{#2}}
+
+\newcommand{\glossarypage}[1]{%
+\renewcommand{\theglossarynum}{\thepage}\glossary{#1,format=textbf}}
+\newcommand{\glossaryequation}[1]{%
+\renewcommand{\theglossarynum}{\theequation}\glossary{#1}}
+
+\chapter{Gamma Functions}
+
+The gamma function is defined as
+\renewcommand{\theglossarynum}{\thepage}
+\glossary{name=$\Gamma(z)$,description=Gamma function,sort=Gamma,format=textbf}
+\renewcommand{\theglossarynum}{\theequation}
+\begin{equation}
+\Gamma(z) = \int_{0}^{\infty}e^{-t}t^{z-1}\,dt
+\end{equation}
+\glossary{name=$\Gamma(z)$,description=Gamma function,sort=Gamma}
+
+\begin{equation}
+\Gamma(x+1) = x\Gamma(x)
+\end{equation}
+\glossary{name=$\Gamma(z)$,description=Gamma function,sort=Gamma}
+
+\begin{equation}
+\gamma(\alpha, x) = \int_0^x e^{-t}t^{\alpha-1}\,dt
+\end{equation}
+\glossary{name={$\gamma(\alpha,x)$},description=Incomplete gamma function,sort=gamma}
+
+\begin{equation}
+\Gamma(\alpha, x) = \int_x^\infty e^{-t}t^{\alpha-1}\,dt
+\end{equation}
+\glossary{name={$\Gamma(\alpha,x)$},description=Incomplete gamma function,sort=Gamma}
+
+\newpage
+
+\begin{equation}
+\Gamma(\alpha) = \Gamma(\alpha, x) + \gamma(\alpha, x)
+\end{equation}
+\glossary{name=$\Gamma(z)$,description=Gamma function,sort=Gamma}
+
+\begin{equation}
+\psi(x) = \frac{d}{dx}\ln\Gamma(x)
+\end{equation}
+\glossary{name=$\psi(x)$,description=Psi function,sort=psi}
+
+\chapter{Error Functions}
+
+The error function is defined as:
+\renewcommand{\theglossarynum}{\thepage}
+\glossary{name=$\erf(x)$,description=Error function,sort=erf,format=textbf}
+\renewcommand{\theglossarynum}{\theequation}
+\begin{equation}
+\erf(x) = \frac{2}{\surd\pi}\int_0^x e^{-t^2}\,dt
+\end{equation}
+\glossary{name=$\erf(x)$,description=Error function,sort=erf}
+
+\begin{equation}
+\erfc(x) = 1 - \erf(x)
+\end{equation}
+\glossary{name=$\erfc(x)$,description=Complementary error function,sort=erfc}
+
+\chapter{Beta Function}
+
+\begin{equation}
+B(x,y) = 2\int_0^1 t^{x-1}(1-t^2)^{y-1}\,dt
+\end{equation}
+\glossary{name={$B(x,y)$},description=Beta function,sort=B}
+Alternatively:
+\begin{equation}
+B(x,y) = 2\int_0^{\frac\pi2}\sin^{2x-1}\phi\cos^{2y-1}\phi\,d\phi
+\end{equation}
+\glossary{name={$B(x,y)$},description=Beta function,sort=B}
+
+\begin{equation}
+B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = B(y,x)
+\end{equation}
+\glossary{name={$B(x,y)$},description=Beta function,sort=B}
+
+\begin{equation}
+B_x(p,q) = \int_0^x t^{p-1}(1-t)^{q-1}\,dt
+\end{equation}
+\glossary{name={$B_x(p,q)$},description=Incomplete beta function,sort=Bx}
+
+\chapter{Chebyshev's polynomials}
+
+\begin{equation}
+T_n(x) = \cos(n\arccos x)
+\end{equation}
+\glossary{name=$T_n(x)$,description=Chebyshev's polynomials of the first kind,sort=Tn}
+
+\begin{equation}
+U_n(x) = \frac{\sin[(n+1)\arccos x]}{\sin[\arccos x]}
+\end{equation}
+\glossary{name=$U_n(x)$,description=Chebyshev's polynomials of the second kind,sort=Un}
+
+\chapter{Hermite polynomials}
+
+\begin{equation}
+H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n}(e^{-x^2})
+\end{equation}
+\glossary{name=$H_n(x)$,description=Hermite polynomials,sort=Hn}
+
+\chapter{Laguerre polynomials}
+
+\begin{equation}
+L_n^{\alpha} (x) = \frac{1}{n!}e^x x^{-\alpha} \frac{d^n}{dx^n}(e^{-x}x^{n+\alpha})
+\end{equation}
+\glossary{name=$L_n^\alpha(x)$,description=Laguerre polynomials,sort=Lna}
+
+\chapter{Bessel Functions}
+
+Bessel functions $Z_\nu(z)$ are solutions of
+\begin{equation}
+\frac{d^2Z_\nu}{dz^2} + \frac{1}{z}\,\frac{dZ_\nu}{dz} +
+\left(
+1-\frac{\nu^2}{z^2}Z_\nu = 0
+\right)
+\end{equation}
+\glossary{name=$Z_\nu(z)$,description=Bessel functions,sort=Z}
+
+\chapter{Confluent hypergeometric function}
+
+\begin{equation}
+\Phi(\alpha,\gamma;z) = 1 + \frac{\alpha}{\gamma}\,\frac{z}{1!}
++ \frac{\alpha(\alpha+1)}{\gamma(\gamma+1)}\,\frac{z^2}{2!}
++\frac{\alpha(\alpha+1)(\alpha+2)}{\gamma(\gamma+1)(\gamma+2)}\,\frac{z^3}{3!}
++ \cdots
+\end{equation}
+\glossary{name={$\Phi(\alpha,\gamma;z)$},description=confluent hypergeometric function,sort=Pagz}
+
+\begin{equation}
+k_\nu(x) = \frac{2}{\pi}\int_0^{\pi/2}\cos(x \tan\theta - \nu\theta)\,d\theta
+\end{equation}
+\glossary{name=$k_\nu(x)$,description=Bateman's function,sort=kv}
+
+\chapter{Parabolic cylinder functions}
+
+\begin{equation}
+D_p(z) = 2^{\frac{p}{2}}e^{-\frac{z^2}{4}}
+\left\{
+\frac{\surd\pi}{\Gamma\left(\frac{1-p}{2}\right)}
+\Phi\left(-\frac{p}{2},\frac{1}{2};\frac{z^2}{2}\right)
+-\frac{\sqrt{2\pi}z}{\Gamma\left(-\frac{p}{2}\right)}
+\Phi\left(\frac{1-p}{2},\frac{3}{2};\frac{z^2}{2}\right)
+\right\}
+\end{equation}
+\glossary{name=$D_p(z)$,description=Parabolic cylinder functions,sort=Dp}
+
+\chapter{Elliptical Integral of the First Kind}
+
+\begin{equation}
+F(\phi, k) = \int_0^\phi \frac{d\alpha}{\sqrt{1-k^2\sin^2\alpha}}
+\end{equation}
+\glossary{name={$F(\phi,k)$},description=Elliptical integral of the first kind,sort=Fpk}
+
+\chapter{Constants}
+
+\begin{equation}
+C = 0.577\,215\,664\,901\ldots
+\end{equation}
+\glossary{name=$C$,description=Euler's constant,sort=C}
+
+\begin{equation}
+G = 0.915\,965\,594\ldots
+\end{equation}
+\glossary{name=$G$,description=Catalan's constant,sort=G}
+
+\end{document}
+\endinput
+%%
+%% End of file `sampleEqPg.tex'.