summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex')
-rw-r--r--Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex231
1 files changed, 231 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex b/Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex
new file mode 100644
index 00000000000..39829705e77
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex
@@ -0,0 +1,231 @@
+\documentclass[a4paper,12pt]{report}
+
+\usepackage{amsmath}
+\usepackage[colorlinks]{hyperref}
+\usepackage[style=long3colheader,counter=equation]{glossaries}
+
+\newcommand{\erf}{\operatorname{erf}}
+\newcommand{\erfc}{\operatorname{erfc}}
+
+\makeglossaries
+
+ % Change the glossary headings
+
+\renewcommand{\entryname}{Notation}
+\renewcommand{\descriptionname}{Function Name}
+\renewcommand{\pagelistname}{Number of Formula}
+
+ % define glossary entries
+
+\newglossaryentry{Gamma}{name=\ensuremath{\Gamma(z)},
+description=Gamma function,
+sort=Gamma}
+
+\newglossaryentry{gamma}{name={\ensuremath{\gamma(\alpha,x)}},
+description=Incomplete gamma function,
+sort=gamma}
+
+\newglossaryentry{iGamma}{name={\ensuremath{\Gamma(\alpha,x)}},
+description=Incomplete gamma function,
+sort=Gamma}
+
+\newglossaryentry{psi}{name=\ensuremath{\psi(x)},
+description=Psi function,sort=psi}
+
+\newglossaryentry{erf}{name=\ensuremath{\erf(x)},
+description=Error function,sort=erf}
+
+\newglossaryentry{erfc}{name=\ensuremath{\erfc},
+description=Complementary error function,sort=erfc}
+
+\newglossaryentry{B}{name={\ensuremath{B(x,y)}},
+description=Beta function,sort=B}
+
+\newglossaryentry{Bx}{name={\ensuremath{B_x(p,q)}},
+description=Incomplete beta function,sort=Bx}
+
+\newglossaryentry{Tn}{name=\ensuremath{T_n(x)},
+description=Chebyshev's polynomials of the first kind,sort=Tn}
+
+\newglossaryentry{Un}{name=\ensuremath{U_n(x)},
+description=Chebyshev's polynomials of the second kind,sort=Un}
+
+\newglossaryentry{Hn}{name=\ensuremath{H_n(x)},
+description=Hermite polynomials,sort=Hn}
+
+\newglossaryentry{Ln}{name=\ensuremath{L_n^\alpha(x)},
+description=Laguerre polynomials,sort=Lna}
+
+\newglossaryentry{Znu}{name=\ensuremath{Z_\nu(z)},
+description=Bessel functions,sort=Z}
+
+\newglossaryentry{Phi}{name={\ensuremath{\Phi(\alpha,\gamma;z)}},
+description=confluent hypergeometric function,sort=Pagz}
+
+\newglossaryentry{knu}{name=\ensuremath{k_\nu(x)},
+description=Bateman's function,sort=kv}
+
+\newglossaryentry{Dp}{name=\ensuremath{D_p(z)},
+description=Parabolic cylinder functions,sort=Dp}
+
+\newglossaryentry{F}{name={\ensuremath{F(\phi,k)}},
+description=Elliptical integral of the first kind,sort=Fpk}
+
+\newglossaryentry{C}{name=\ensuremath{C},
+description=Euler's constant,sort=C}
+
+\newglossaryentry{G}{name=\ensuremath{G},
+description=Catalan's constant,sort=G}
+
+\begin{document}
+\title{A Sample Document Using glossaries.sty}
+\author{Nicola Talbot}
+\maketitle
+
+\begin{abstract}
+This is a sample document illustrating the use of the \textsf{glossaries}
+package. The functions here have been taken from ``Tables of
+Integrals, Series, and Products'' by I.S.~Gradshteyn and I.M~Ryzhik.
+The glossary is a list of special functions, so
+the equation number has been used rather than the page number. This
+can be done using the \texttt{counter=equation} package
+option.
+\end{abstract}
+
+\printglossary[title={Index of Special Functions and Notations}]
+
+\chapter{Gamma Functions}
+
+\begin{equation}
+\gls{Gamma} = \int_{0}^{\infty}e^{-t}t^{z-1}\,dt
+\end{equation}
+
+\verb|\ensuremath| is only required here if using
+hyperlinks.
+\begin{equation}
+\glslink{Gamma}{\ensuremath{\Gamma(x+1)}} = x\Gamma(x)
+\end{equation}
+
+\begin{equation}
+\gls{gamma} = \int_0^x e^{-t}t^{\alpha-1}\,dt
+\end{equation}
+
+\begin{equation}
+\gls{iGamma} = \int_x^\infty e^{-t}t^{\alpha-1}\,dt
+\end{equation}
+
+\newpage
+
+\begin{equation}
+\gls{Gamma} = \Gamma(\alpha, x) + \gamma(\alpha, x)
+\end{equation}
+
+\begin{equation}
+\gls{psi} = \frac{d}{dx}\ln\Gamma(x)
+\end{equation}
+
+\chapter{Error Functions}
+
+\begin{equation}
+\gls{erf} = \frac{2}{\surd\pi}\int_0^x e^{-t^2}\,dt
+\end{equation}
+
+\begin{equation}
+\gls{erfc} = 1 - \erf(x)
+\end{equation}
+
+\chapter{Beta Function}
+
+\begin{equation}
+\gls{B} = 2\int_0^1 t^{x-1}(1-t^2)^{y-1}\,dt
+\end{equation}
+Alternatively:
+\begin{equation}
+\gls{B} = 2\int_0^{\frac\pi2}\sin^{2x-1}\phi\cos^{2y-1}\phi\,d\phi
+\end{equation}
+
+\begin{equation}
+\gls{B} = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = B(y,x)
+\end{equation}
+
+\begin{equation}
+\gls{Bx} = \int_0^x t^{p-1}(1-t)^{q-1}\,dt
+\end{equation}
+
+\chapter{Polynomials}
+
+\section{Chebyshev's polynomials}
+
+\begin{equation}
+\gls{Tn} = \cos(n\arccos x)
+\end{equation}
+
+\begin{equation}
+\gls{Un} = \frac{\sin[(n+1)\arccos x]}{\sin[\arccos x]}
+\end{equation}
+
+\section{Hermite polynomials}
+
+\begin{equation}
+\gls{Hn} = (-1)^n e^{x^2} \frac{d^n}{dx^n}(e^{-x^2})
+\end{equation}
+
+\section{Laguerre polynomials}
+
+\begin{equation}
+L_n^{\alpha} (x) = \frac{1}{n!}e^x x^{-\alpha}
+\frac{d^n}{dx^n}(e^{-x}x^{n+\alpha})
+\end{equation}
+
+\chapter{Bessel Functions}
+
+Bessel functions $Z_\nu$ are solutions of
+\begin{equation}
+\frac{d^2\glslink{Znu}{Z_\nu}}{dz^2}
++ \frac{1}{z}\,\frac{dZ_\nu}{dz} +
+\left( 1-\frac{\nu^2}{z^2}Z_\nu = 0 \right)
+\end{equation}
+
+\chapter{Confluent hypergeometric function}
+
+\begin{equation}
+\gls{Phi} = 1 + \frac{\alpha}{\gamma}\,\frac{z}{1!}
++ \frac{\alpha(\alpha+1)}{\gamma(\gamma+1)}\,\frac{z^2}{2!}
++\frac{\alpha(\alpha+1)(\alpha+2)}{\gamma(\gamma+1)(\gamma+2)}\,
+\frac{z^3}{3!} + \cdots
+\end{equation}
+
+\begin{equation}
+\gls{knu} = \frac{2}{\pi}\int_0^{\pi/2}
+\cos(x \tan\theta - \nu\theta)\,d\theta
+\end{equation}
+
+\chapter{Parabolic cylinder functions}
+
+\begin{equation}
+\gls{Dp} = 2^{\frac{p}{2}}e^{-\frac{z^2}{4}}
+\left\{
+\frac{\surd\pi}{\Gamma\left(\frac{1-p}{2}\right)}
+\Phi\left(-\frac{p}{2},\frac{1}{2};\frac{z^2}{2}\right)
+-\frac{\sqrt{2\pi}z}{\Gamma\left(-\frac{p}{2}\right)}
+\Phi\left(\frac{1-p}{2},\frac{3}{2};\frac{z^2}{2}\right)
+\right\}
+\end{equation}
+
+\chapter{Elliptical Integral of the First Kind}
+
+\begin{equation}
+\gls{F} = \int_0^\phi \frac{d\alpha}{\sqrt{1-k^2\sin^2\alpha}}
+\end{equation}
+
+\chapter{Constants}
+
+\begin{equation}
+\gls{C} = 0.577\,215\,664\,901\ldots
+\end{equation}
+
+\begin{equation}
+\gls{G} = 0.915\,965\,594\ldots
+\end{equation}
+
+\end{document}