diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex | 231 |
1 files changed, 231 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex b/Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex new file mode 100644 index 00000000000..39829705e77 --- /dev/null +++ b/Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex @@ -0,0 +1,231 @@ +\documentclass[a4paper,12pt]{report} + +\usepackage{amsmath} +\usepackage[colorlinks]{hyperref} +\usepackage[style=long3colheader,counter=equation]{glossaries} + +\newcommand{\erf}{\operatorname{erf}} +\newcommand{\erfc}{\operatorname{erfc}} + +\makeglossaries + + % Change the glossary headings + +\renewcommand{\entryname}{Notation} +\renewcommand{\descriptionname}{Function Name} +\renewcommand{\pagelistname}{Number of Formula} + + % define glossary entries + +\newglossaryentry{Gamma}{name=\ensuremath{\Gamma(z)}, +description=Gamma function, +sort=Gamma} + +\newglossaryentry{gamma}{name={\ensuremath{\gamma(\alpha,x)}}, +description=Incomplete gamma function, +sort=gamma} + +\newglossaryentry{iGamma}{name={\ensuremath{\Gamma(\alpha,x)}}, +description=Incomplete gamma function, +sort=Gamma} + +\newglossaryentry{psi}{name=\ensuremath{\psi(x)}, +description=Psi function,sort=psi} + +\newglossaryentry{erf}{name=\ensuremath{\erf(x)}, +description=Error function,sort=erf} + +\newglossaryentry{erfc}{name=\ensuremath{\erfc}, +description=Complementary error function,sort=erfc} + +\newglossaryentry{B}{name={\ensuremath{B(x,y)}}, +description=Beta function,sort=B} + +\newglossaryentry{Bx}{name={\ensuremath{B_x(p,q)}}, +description=Incomplete beta function,sort=Bx} + +\newglossaryentry{Tn}{name=\ensuremath{T_n(x)}, +description=Chebyshev's polynomials of the first kind,sort=Tn} + +\newglossaryentry{Un}{name=\ensuremath{U_n(x)}, +description=Chebyshev's polynomials of the second kind,sort=Un} + +\newglossaryentry{Hn}{name=\ensuremath{H_n(x)}, +description=Hermite polynomials,sort=Hn} + +\newglossaryentry{Ln}{name=\ensuremath{L_n^\alpha(x)}, +description=Laguerre polynomials,sort=Lna} + +\newglossaryentry{Znu}{name=\ensuremath{Z_\nu(z)}, +description=Bessel functions,sort=Z} + +\newglossaryentry{Phi}{name={\ensuremath{\Phi(\alpha,\gamma;z)}}, +description=confluent hypergeometric function,sort=Pagz} + +\newglossaryentry{knu}{name=\ensuremath{k_\nu(x)}, +description=Bateman's function,sort=kv} + +\newglossaryentry{Dp}{name=\ensuremath{D_p(z)}, +description=Parabolic cylinder functions,sort=Dp} + +\newglossaryentry{F}{name={\ensuremath{F(\phi,k)}}, +description=Elliptical integral of the first kind,sort=Fpk} + +\newglossaryentry{C}{name=\ensuremath{C}, +description=Euler's constant,sort=C} + +\newglossaryentry{G}{name=\ensuremath{G}, +description=Catalan's constant,sort=G} + +\begin{document} +\title{A Sample Document Using glossaries.sty} +\author{Nicola Talbot} +\maketitle + +\begin{abstract} +This is a sample document illustrating the use of the \textsf{glossaries} +package. The functions here have been taken from ``Tables of +Integrals, Series, and Products'' by I.S.~Gradshteyn and I.M~Ryzhik. +The glossary is a list of special functions, so +the equation number has been used rather than the page number. This +can be done using the \texttt{counter=equation} package +option. +\end{abstract} + +\printglossary[title={Index of Special Functions and Notations}] + +\chapter{Gamma Functions} + +\begin{equation} +\gls{Gamma} = \int_{0}^{\infty}e^{-t}t^{z-1}\,dt +\end{equation} + +\verb|\ensuremath| is only required here if using +hyperlinks. +\begin{equation} +\glslink{Gamma}{\ensuremath{\Gamma(x+1)}} = x\Gamma(x) +\end{equation} + +\begin{equation} +\gls{gamma} = \int_0^x e^{-t}t^{\alpha-1}\,dt +\end{equation} + +\begin{equation} +\gls{iGamma} = \int_x^\infty e^{-t}t^{\alpha-1}\,dt +\end{equation} + +\newpage + +\begin{equation} +\gls{Gamma} = \Gamma(\alpha, x) + \gamma(\alpha, x) +\end{equation} + +\begin{equation} +\gls{psi} = \frac{d}{dx}\ln\Gamma(x) +\end{equation} + +\chapter{Error Functions} + +\begin{equation} +\gls{erf} = \frac{2}{\surd\pi}\int_0^x e^{-t^2}\,dt +\end{equation} + +\begin{equation} +\gls{erfc} = 1 - \erf(x) +\end{equation} + +\chapter{Beta Function} + +\begin{equation} +\gls{B} = 2\int_0^1 t^{x-1}(1-t^2)^{y-1}\,dt +\end{equation} +Alternatively: +\begin{equation} +\gls{B} = 2\int_0^{\frac\pi2}\sin^{2x-1}\phi\cos^{2y-1}\phi\,d\phi +\end{equation} + +\begin{equation} +\gls{B} = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = B(y,x) +\end{equation} + +\begin{equation} +\gls{Bx} = \int_0^x t^{p-1}(1-t)^{q-1}\,dt +\end{equation} + +\chapter{Polynomials} + +\section{Chebyshev's polynomials} + +\begin{equation} +\gls{Tn} = \cos(n\arccos x) +\end{equation} + +\begin{equation} +\gls{Un} = \frac{\sin[(n+1)\arccos x]}{\sin[\arccos x]} +\end{equation} + +\section{Hermite polynomials} + +\begin{equation} +\gls{Hn} = (-1)^n e^{x^2} \frac{d^n}{dx^n}(e^{-x^2}) +\end{equation} + +\section{Laguerre polynomials} + +\begin{equation} +L_n^{\alpha} (x) = \frac{1}{n!}e^x x^{-\alpha} +\frac{d^n}{dx^n}(e^{-x}x^{n+\alpha}) +\end{equation} + +\chapter{Bessel Functions} + +Bessel functions $Z_\nu$ are solutions of +\begin{equation} +\frac{d^2\glslink{Znu}{Z_\nu}}{dz^2} ++ \frac{1}{z}\,\frac{dZ_\nu}{dz} + +\left( 1-\frac{\nu^2}{z^2}Z_\nu = 0 \right) +\end{equation} + +\chapter{Confluent hypergeometric function} + +\begin{equation} +\gls{Phi} = 1 + \frac{\alpha}{\gamma}\,\frac{z}{1!} ++ \frac{\alpha(\alpha+1)}{\gamma(\gamma+1)}\,\frac{z^2}{2!} ++\frac{\alpha(\alpha+1)(\alpha+2)}{\gamma(\gamma+1)(\gamma+2)}\, +\frac{z^3}{3!} + \cdots +\end{equation} + +\begin{equation} +\gls{knu} = \frac{2}{\pi}\int_0^{\pi/2} +\cos(x \tan\theta - \nu\theta)\,d\theta +\end{equation} + +\chapter{Parabolic cylinder functions} + +\begin{equation} +\gls{Dp} = 2^{\frac{p}{2}}e^{-\frac{z^2}{4}} +\left\{ +\frac{\surd\pi}{\Gamma\left(\frac{1-p}{2}\right)} +\Phi\left(-\frac{p}{2},\frac{1}{2};\frac{z^2}{2}\right) +-\frac{\sqrt{2\pi}z}{\Gamma\left(-\frac{p}{2}\right)} +\Phi\left(\frac{1-p}{2},\frac{3}{2};\frac{z^2}{2}\right) +\right\} +\end{equation} + +\chapter{Elliptical Integral of the First Kind} + +\begin{equation} +\gls{F} = \int_0^\phi \frac{d\alpha}{\sqrt{1-k^2\sin^2\alpha}} +\end{equation} + +\chapter{Constants} + +\begin{equation} +\gls{C} = 0.577\,215\,664\,901\ldots +\end{equation} + +\begin{equation} +\gls{G} = 0.915\,965\,594\ldots +\end{equation} + +\end{document} |