summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/gauss/gauss-ex.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/gauss/gauss-ex.tex')
-rw-r--r--Master/texmf-dist/doc/latex/gauss/gauss-ex.tex66
1 files changed, 66 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/gauss/gauss-ex.tex b/Master/texmf-dist/doc/latex/gauss/gauss-ex.tex
new file mode 100644
index 00000000000..35a6bafaf5b
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/gauss/gauss-ex.tex
@@ -0,0 +1,66 @@
+%
+% This file is part of the gauss package by Manuel Kauers.
+% Its purpose is to demonstrate the usage of the package.
+% See the gauss-doc.dvi file for further information.
+%
+\documentclass{article}
+\usepackage{amsmath}
+\usepackage{gauss}
+\usepackage{amssymb} % to import \leadsto
+
+\begin{document}
+
+ \section{An Example for Gaussian Elimination}
+
+ Consider the real matrix
+ \[
+ A(t):=\begin{pmatrix}
+ 1 & 1 & 1 \\
+ t & 2t & 2 \\
+ t+1 & 0 & 2t
+ \end{pmatrix},
+ \]
+ which depends on a real valued parameter~$t$.
+ We want to find all solutions of the homogenous linear system defined by $A$
+ depending on the parameter~$t$.
+
+ Therefore, we use the Algorithm Gauss:
+ \begin{alignat*}1
+ A(t)=\begin{gmatrix}[p]
+ 1 & 1 & 1 \\
+ t & 2t & 2 \\
+ t+1 & 0 & 2t
+ \rowops
+ \add[-t]{0}{1}
+ \add[-(t+1)]{0}{2}
+ \end{gmatrix}\kern-6.23pt\leadsto&
+ \begin{gmatrix}[p]
+ 1 & 1 & 1 \\
+ 0 & t & 2-t \\
+ 0 & -t-1 & t-1
+ \rowops
+ \add12
+ \mult{2}{\cdot(-1)}
+ \end{gmatrix}\\
+ \leadsto&\begin{gmatrix}[p]
+ 1 & 1 & 1 \\
+ 0 & t & 2-t \\
+ 0 & 1 & -1
+ \rowops
+ \swap12
+ \add[-t]12
+ \mult2{:2}
+ \end{gmatrix}\\
+ \leadsto&\begin{pmatrix}
+ 1 & 1 & 1 \\
+ 0 & 1 & -1 \\
+ 0 & 0 & 1
+ \end{pmatrix}.
+ \end{alignat*}
+
+ \subsection*{Conclusion}
+
+ We have learned that the matrix $A$ defined above is regular for all real
+ valued~$t$, and we hopefully also have learned how to use the gauss package.
+
+\end{document} \ No newline at end of file