diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/fontsetup/fspsample.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/fontsetup/fspsample.tex | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/Master/texmf-dist/doc/latex/fontsetup/fspsample.tex b/Master/texmf-dist/doc/latex/fontsetup/fspsample.tex index 5a8f9f04635..23ec736e029 100644 --- a/Master/texmf-dist/doc/latex/fontsetup/fspsample.tex +++ b/Master/texmf-dist/doc/latex/fontsetup/fspsample.tex @@ -40,8 +40,8 @@ \begin{theorem}[Dominated convergence of Lebesgue] %Let $g$ be an Assume that $g$ is an -in\-te\-grable func\-tion defined on the measurable set $E$ and hat - $(\,f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that +in\-te\-grable func\-tion defined on the measurable set $E$ and that + $(\,f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able functions so that $|\,f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere then $$\lim_{n\to\infty}\int f_n=\int f.$$ \end{theorem} |