summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/fontsetup/fspsample.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/fontsetup/fspsample.tex')
-rw-r--r--Master/texmf-dist/doc/latex/fontsetup/fspsample.tex4
1 files changed, 2 insertions, 2 deletions
diff --git a/Master/texmf-dist/doc/latex/fontsetup/fspsample.tex b/Master/texmf-dist/doc/latex/fontsetup/fspsample.tex
index 5a8f9f04635..23ec736e029 100644
--- a/Master/texmf-dist/doc/latex/fontsetup/fspsample.tex
+++ b/Master/texmf-dist/doc/latex/fontsetup/fspsample.tex
@@ -40,8 +40,8 @@
\begin{theorem}[Dominated convergence of Lebesgue]
%Let $g$ be an
Assume that $g$ is an
-in\-te\-grable func\-tion defined on the measurable set $E$ and hat
- $(\,f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that
+in\-te\-grable func\-tion defined on the measurable set $E$ and that
+ $(\,f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able functions so that
$|\,f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere
then $$\lim_{n\to\infty}\int f_n=\int f.$$
\end{theorem}