summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/examdesign/exampleb.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/examdesign/exampleb.tex')
-rw-r--r--Master/texmf-dist/doc/latex/examdesign/exampleb.tex113
1 files changed, 113 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/examdesign/exampleb.tex b/Master/texmf-dist/doc/latex/examdesign/exampleb.tex
new file mode 100644
index 00000000000..d5a73bd9098
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/examdesign/exampleb.tex
@@ -0,0 +1,113 @@
+\documentclass[10pt, onekey]{exam}
+\Fullpages
+\NumberOfVersions{4}
+\def\eV{\mbox{eV}}
+
+\begin{document}
+
+\begin{frontmatter}
+\vspace*{3in}
+\begin{center}
+ \huge Modern Physics \\[6pt]
+ \Large Final Exam
+\end{center}
+\vfill
+\begin{flushright}
+ Name: \rule{3in}{.4pt} \\[10pt]
+ Student I.D.: \rule{3in}{.4pt}
+\end{flushright}
+\end{frontmatter}
+
+\begin{examtop}
+\end{examtop}
+
+\begin{shortanswer}[title={\Large Short Answer (10 pts each)},suppressprefix]
+Answer all problems in as thorough detail as possible. Be sure to include all
+your work. Partial credit will be given even if the answer is not fully correct.
+
+\begin{question}
+ Determine the charge in the rest mass of a system consisting of a proton
+ and an electron as the two particles combine to form a hydrogen atom. The
+ ionization energy of hydrogen is 13.6 eV.
+ \examvspace*{1.5in}
+ \begin{answer}
+ The rest mass of the proton is $1.672649 \times 10^{-27}$kg; that of the
+ electron is $9.109534 \times 10^{-31}$kg. When the electron and proton
+ combine to form a hydrogen atom, the ionization energy of 13.6 eV is
+ released as ultraviolet radiation. The rest mass of the hydrogen atom is
+ therefore smaller than the sum of the electron and proton rest masses by
+ the amount
+ \[
+ \Delta M = {(13.6 \eV)(1.6 \times 10^{-19} J/\eV) \over (3 \times 10^8 m/s)^2}
+ = 2.42 \times 10^{-35}kg
+ \]
+ \end{answer}
+\end{question}
+
+\begin{question}
+ The Eiffel Tower in Paris is 300m tall. What is the fractional gravitational
+ red shift due to this elevation difference?
+ \examvspace*{1in}
+ \begin{answer}
+ \[
+ {\delta\nu \over \nu} = {gH \over c^2} = {(9.8m/s^2)(300m) \over
+ (3 \times 10^8 m/s)^2} = 3.27\times 10^{-14}
+ \]
+ \end{answer}
+\end{question}
+
+\begin{question}
+ Derive Stefan's law from Planck's law. Using that result, obtain an
+ expression for the Stefan-Boltzmann constant $\sigma$ in terms of known
+ physical constants and determine its value.
+ \examvspace*{1.5in}
+ \begin{answer}
+ The radiance
+ \end{answer}
+\end{question}
+
+\begin{question}
+ Calculate the density of an object of one solar mass whose radius is the
+ critical Schwarzschild radius. Compare this density with the nuclear
+ density of approximately $2.3 \times 10^{17} kg/m^3$.
+ \examvspace*{1.5in}
+ \begin{answer}
+ The mass of the sun is $2 \times 10^{30} kg$. The universal gravitational
+ constant is $6.67 \times 10^{-11} N\cdot m^2/kg^2$.
+
+ The Schwarzschild radius of one solar mass is
+ \begin{eqnarray*}
+ R_c & = & {2(2 \times 10^{30}lg)(6.67 \times 10^{-11} N\cdot m62/kg^2)
+ \over (3 \times 10^8 m/s)^2} \\
+ & = & 2.96 \times 10^3 m \approx 3 km
+ \end{eqnarray*}
+ If the sun collapsed to a sphere of 3 km radius without loss of mass, it
+ would then be a black hole. The mass density would be
+ \[
+ \rho = {M \over V} = {2 \times 10^{30} kg \over ({4\pi \over 3})
+ (2.96 \times 10^3 m)^3} = 1.84 \times 10^{19} kg/m^3
+ \]
+ \end{answer}
+\end{question}
+\end{shortanswer}
+
+\begin{endmatter}
+ \vspace*{1.5in}
+ \centerline{\Large A Partial List of Fundamental Constants}
+ \bigskip
+ \begin{center}
+ \begin{tabular}{lcl}
+ Constant & Symbol & Approximate Value \\ \hline
+ Speed of light in vacuum & $c$ & $3.00 \times 10^8$m/s \\
+ Permeability of vacuum & $\mu_0$ & $12.6 \times 10^{-7}$H/m \\
+ Permittivity of vacuum & $\epsilon_0$ & $8.85 \times 10^{-12}$F/m \\
+ Magnetic flux quantum & $\phi_0 = {h \over 2e}$ & $2.07 \times 10^{-15}$Wb \\
+ Electron mass & $m_e$ & $9.11 \times 10^{-31}$kg \\
+ Proton mass & $m_p$ & $1.673 \times 10^{-27}$kg \\
+ Neutron mass & $m_n$ & $1.675 \times 10^{-27}$kg \\
+ Proton-electron mass ratio & $m_p \over m_e$ & 1836
+ \end{tabular}
+ \end{center}
+\end{endmatter}
+
+\end{document}