summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/exam-n/sample/dynamical2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/exam-n/sample/dynamical2.tex')
-rw-r--r--Master/texmf-dist/doc/latex/exam-n/sample/dynamical2.tex24
1 files changed, 24 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/exam-n/sample/dynamical2.tex b/Master/texmf-dist/doc/latex/exam-n/sample/dynamical2.tex
new file mode 100644
index 00000000000..517ae849205
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/exam-n/sample/dynamical2.tex
@@ -0,0 +1,24 @@
+\documentclass[final]{exam-n}
+\begin{document}
+
+\begin{question}{30} \comment{by John Brown}
+Give the equations of motion for $i=1,\ldots, N$ particles of
+masses $m_i$ and positions $r_i(t)$ under the action of mutual
+gravity alone in an arbitrary inertial frame.
+\partmarks{4}
+
+Use these to derive the following conservation laws of the system:
+
+\part Constancy of linear momentum -- i.e., centre of mass fixed in a
+suitable inertial frame. \partmarks{4}
+ \part Constancy of angular momentum. \partmarks{6}
+ \part Constancy of total energy. \partmarks{8}
+
+How many integrals of motion exist in total?
+\partmarks{2}
+
+Derive the moment of inertia of the system and demonstrate its
+relevance to criteria for escape of particles from the system.
+\partmarks{6}
+\end{question}
+\end{document}