summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/eqexam/examples/quiz01.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/eqexam/examples/quiz01.tex')
-rw-r--r--Master/texmf-dist/doc/latex/eqexam/examples/quiz01.tex104
1 files changed, 104 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/eqexam/examples/quiz01.tex b/Master/texmf-dist/doc/latex/eqexam/examples/quiz01.tex
new file mode 100644
index 00000000000..abedc62eab4
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/eqexam/examples/quiz01.tex
@@ -0,0 +1,104 @@
+\documentclass{article}
+\usepackage{amsmath}
+\usepackage[myconfig,forpaper,pointsonleft,nosolutions]{eqexam}
+
+\examNum{1}
+\forVersion a
+\VersionAtext{Quiz~\nExam--003}
+\VersionBtext{Quiz~\nExam--007}
+\shortVersionAtext{Q{\nExam}s3}
+\shortVersionBtext{Q{\nExam}s7}
+
+\title[\sExam]{\bfseries\Exam}
+\author{D. P. Story}
+\subject[C1]{Calculus I}
+\date{Spring \the\year}
+\keywords{Test~\nExam, Section \ifAB{003}{007}}
+\email{dpstory@uakron.edu}
+
+\everymath{\displaystyle}
+
+\begin{document}
+
+\maketitle
+
+\begin{exam}{Part1}
+
+\begin{instructions}[Instructions:]
+Solve each of the following problems without error. \textit{Show all details.} Box in your
+$\boxed{\text{answers}}$. Use good notation, you \emph{will} be marked off for bad notation.
+\textbf{Note:} The value of a limit can be a number, the symbol $+\infty$, the symbol $-\infty$,
+or may be labelled DNE (for ``does not exist'').
+\end{instructions}
+
+\begin{problem}[4]
+Compute $ \ifAB{\lim_{x\to-1}\frac{4x^2+x}{x}}{\lim_{x\to2}\frac{1-3x}{x+1}}$
+\begin{solution}[2in]
+As discussed in class, this is a ``Skill Level 0'' limit problem:
+$$
+\ifAB{\lim_{x\to-1}\frac{4x^2+x}{x}}{\lim_{x\to2}\frac{1-3x}{x+1}}
+ = \ifAB{\frac{4(-1)^2+(-1)}{-1}}{\lim_{x\to2}\frac{1-3(2)}{2+1}}
+ = \boxed{\ifAB{-3}{-\frac{5}{3}}}
+$$
+\end{solution}
+\end{problem}
+
+\begin{problem}[3]
+Define the function $ f(x) = \begin{cases} 2x^3 - 1 & x < -2\\ 2- x^2 & x \ge -2\end{cases}$.
+Compute $\lim_{x\to\ifAB{-2^-}{-2^+}} f(x) $, show the details of your reasoning.
+
+\begin{solution}[2in]
+We use standard techniques:
+\begin{verA}
+\begin{alignat*}{2}
+ \lim_{x\to-2^-} f(x) &
+ = \lim_{x\to-2^-} (2x^3-1) &&\qquad\text{since $ x < -2$}\\&
+ = 2(-2)^3 - 1&&\qquad\text{now a skill level 0 problem}\\&
+ = \boxed{-17}
+\end{alignat*}
+\end{verA}
+\begin{verB}
+\begin{alignat*}{2}
+ \lim_{x\to-2^+} f(x) &
+ = \lim_{x\to-2^+} (2- x^2) &&\qquad\text{since $ x < -2$}\\&
+ = 2 - (-2)^2&&\qquad\text{now a skill level 0 problem}\\&
+ = \boxed{-2}
+\end{alignat*}
+\end{verB}
+\end{solution}
+\end{problem}
+
+\begin{problem}[3]
+Compute $\ifAB{\lim_{x\to2} \frac{1-x}{(x-2)^2}}
+ {\lim_{x\to3} \frac{x-2}{(3-x)^2}}$
+
+\begin{solution}[1in]
+\begin{verA}
+Notice the denominator goes to zero, but the numerator does not;
+this indicates a vertical asymptote usually. Because the
+denominator is squared, it's always positive. When $x$ is
+``close'' to $2$, $1 - x < 0$, that is, when $x$ is ``close'' to
+$2$ the numerator is \emph{negative}. The ratio of the numerator and
+denominator is \emph{negative} when $x$ is ``close'' to $2$. Thus, we
+conclude,
+$$
+ \boxed{\lim_{x\to2} \frac{1-x}{(x-2)^2} = -\infty}
+$$
+\end{verA}
+\begin{verB}
+Notice the denominator goes to zero, but the numerator does not;
+this indicates a vertical asymptote usually. Because the
+denominator is squared, it's always positive. When $x$ is
+``close'' to $3$, $x - 2 > 0$, that is, when $x$ is ``close'' to
+$3$ the numerator is \emph{positive}. The ratio of the numerator and
+denominator is \emph{positive} when $x$ is ``close'' to $3$. Thus, we
+conclude,
+$$
+ \boxed{\lim_{x\to3} \frac{x-2}{(3-x)^2} = +\infty}
+$$
+\end{verB}
+\end{solution}
+\end{problem}
+
+\end{exam}
+\end{document}