summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/chemmacros/chemmacros_doc_en.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/chemmacros/chemmacros_doc_en.tex')
-rw-r--r--Master/texmf-dist/doc/latex/chemmacros/chemmacros_doc_en.tex1640
1 files changed, 861 insertions, 779 deletions
diff --git a/Master/texmf-dist/doc/latex/chemmacros/chemmacros_doc_en.tex b/Master/texmf-dist/doc/latex/chemmacros/chemmacros_doc_en.tex
index 6dc5d64d8b6..1d719c2f66a 100644
--- a/Master/texmf-dist/doc/latex/chemmacros/chemmacros_doc_en.tex
+++ b/Master/texmf-dist/doc/latex/chemmacros/chemmacros_doc_en.tex
@@ -1,96 +1,181 @@
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% ------------------------------------------------------------------------------------- %
-% - chemmacros - chemmacros_doc_en.tex ------------------------------------------------ %
-% - a collection of macros to make typesetting chemistry documents more convenient ---- %
-% ------------------------------------------------------------------------------------- %
-% - Clemens Niederberger -------------------------------------------------------------- %
-% - 2011/06/22 ------------------------------------------------------------------------ %
-% ------------------------------------------------------------------------------------- %
-% - http://www.mychemistry.eu/ -------------------------------------------------------- %
-% - contact@mychemistry.eu ------------------------------------------------------------ %
-% ------------------------------------------------------------------------------------- %
-% - If you have any ideas, questions, suggestions or bugs to report, please feel free - %
-% - to contact me. -------------------------------------------------------------------- %
-% ------------------------------------------------------------------------------------- %
-% - Copyright 2011 Clemens Niederberger - %
-% - - %
-% - This work may be distributed and/or modified under the - %
-% - conditions of the LaTeX Project Public License, either version 1.3 - %
-% - of this license or (at your option) any later version. - %
-% - The latest version of this license is in - %
-% - http://www.latex-project.org/lppl.txt - %
-% - and version 1.3 or later is part of all distributions of LaTeX - %
-% - version 2005/12/01 or later. - %
-% - - %
-% - This work has the LPPL maintenance status `maintained'. - %
-% - - %
-% - The Current Maintainer of this work is Clemens Niederberger. - %
-% - - %
-% - This work consists of the files chemmacros.sty, chemmacros_doc_de.tex, - %
-% - chemmacros_doc_de.tex, README - %
-% ------------------------------------------------------------------------------------- %
-\documentclass[parskip=full]{scrartcl}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% --------------------------------------------------------------------------- %
+% - chemmacros - chemmacros_doc_en.tex - %
+% - macros and commands for chemists - %
+% --------------------------------------------------------------------------- %
+% - Clemens Niederberger - %
+% - 2011/10/28 - %
+% --------------------------------------------------------------------------- %
+% - http://www.mychemistry.eu/ - %
+% - contact@mychemistry.eu - %
+% --------------------------------------------------------------------------- %
+% - If you have any ideas, questions, suggestions or bugs to report, please - %
+% - feel free to contact me. - %
+% --------------------------------------------------------------------------- %
+% - Copyright 2011 Clemens Niederberger - %
+% - - %
+% - This work may be distributed and/or modified under the - %
+% - conditions of the LaTeX Project Public License, either version 1.3 - %
+% - of this license or (at your option) any later version. - %
+% - The latest version of this license is in - %
+% - http://www.latex-project.org/lppl.txt - %
+% - and version 1.3 or later is part of all distributions of LaTeX - %
+% - version 2005/12/01 or later. - %
+% - - %
+% - This work has the LPPL maintenance status `maintained'. - %
+% - - %
+% - The Current Maintainer of this work is Clemens Niederberger. - %
+% - - %
+% - This work consists of the files chemmacros.sty, chemmacros-version1.cfg,- %
+% - chemmacros_doc_de.tex, chemmacros_doc_de.tex, README and the derived - %
+% - files chemmacros_doc_de.pdf and chemmacros_doc_en.pdf - %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\documentclass[nohyper,titlepage,a4paper,nofonts,notoc]{tufte-handout}
+
+\newcommand*\CMname{\textsf{chemmacros}\xspace}
+\newcommand*\CMversion{2.0\xspace}
+\newcommand*\CMdate{2011/10/28\xspace}
+
+% changing some tufte-handout settings
+\titleformat{\section}[hang]{\normalfont\Large\bfseries}{\thesection}{1em}{}[]
+\titleformat{\subsection}[hang]{\normalfont\large\bfseries}{\thesubsection}{1em}{}[]
+\makeatletter
+\def\subsubsection{\@startsection{subsubsection}{3}{\z@}{-3.25ex plus -1ex minus -.2ex}{1.5ex plus .2ex}{\normalsize\bf}}
+\makeatother
+\def\thesubsubsection{\thesection.\thesubsection.\arabic{subsubsection}}
+\titleformat{\subsubsection}[hang]{\normalfont\large\bfseries}{\thesubsection}{1em}{}[]
+\titlespacing*{\subsubsection}{0pt}{3.25ex plus 1ex minus .2ex}{1.5ex plus.2ex}
+\setcounter{secnumdepth}{2}
+
+% need these because of the lots of marginnotes
+\usepackage{etex,morefloats}
+\reserveinserts{150}
+
\usepackage[english]{babel}
\usepackage[utf8]{inputenx}
\usepackage[dvipsnames]{xcolor}
\colorlet{code}{RawSienna}
-\usepackage{listings,url,chemfig,chemstyle,bpchem,booktabs}
-\usepackage[perpage,hang]{footmisc}
- \renewcommand*\thefootnote{\arabic{footnote})}
+\usepackage[normalem]{ulem}
+\usepackage{url,chemfig,chemstyle,bpchem,array,longtable,multirow,booktabs,framed}
\usepackage[version=3,arrows=pgf]{mhchem}
\usepackage[xspace,circled]{chemmacros}
-\usetikzlibrary{calc}
+
+\usepackage{showexpl}
\lstset{literate={ä}{{\"a}}1 {ö}{{\"o}}1 {ü}{{\"u}}1 {Ä}{{\"A}}1 {Ö}{{\"O}}1 {Ü}{{\"U}}1 {ß}{{\ss}}1}
\lstset{
- language=[LaTeX]TeX,
- basicstyle={\ttfamily}, % Grundstil
- extendedchars=true,
- numbers=left, % Zeilennummern
- numberstyle=\tiny, % Größe des Zeilennummern
- numberblanklines=true, % Leerzeilen nummerieren
- gobble=1, % das erste Leerzeichen abschneiden
- xleftmargin=20pt, % Einrückung links
- breaklines=true, % Zeilenumbruch
- moredelim=[is][\color{red!25!purple}]{!!}{!!},% Hervorhebung
- moredelim=[is][\color{black}]{++}{++}, % Hervorhebung der Keywords rückgängig
- commentstyle={\color[named]{Gray}},
- emph={begin,end}, % Umgebungen hervorheben
- emphstyle=\color{red},
- keywordstyle=\color{code},
- keywordstyle=[20]\color{blue},
- morekeywords=[20]{reaction,reactions,reactionsat},
- texcsstyle=[30]\color{code},
- moretexcs=[30]{abinitio,aq,atm,atmosphere,cal,calory,ce,cee,celsius,cf,chemabove,chembelow,chemfig,cip,cis,cmc,CNMR,color,cstsetup,DeclareSIUnit,delm,delp,Dfi,draw,E,el,El,ElPot,ensuremath,enthalpy,Enthalpy,Entropy,gas,Gibbs,gram,Helmholtz,HNMR,HtO,Hpl,Hyd,insitu,IUPAC,joule,kelvin,kilo,latin,lewis,Lfi,liter,liquid,mch,mech,meta,mhName,milli,mmHg,molar,moLar,Molar,mole,MolMass,newman,newreaction,NMR,node,normal,ntr,nu,Nu,ortho,ox,OX,para,pch,per,pH,pKa,pKb,phorb,pOH,porb,prt,pxorb,pyorb,pzorb,R,Rcip,Rconf,redox,renewstate,renewtagform,setorbheight,Scip,Sconf,scrm,scrp,setatomsep,setbondoffset,setmhName,setnewstate,setorbheight,setstatesubscript,setredoxdist,si,SI,sisetup,solid,standardstate,State,text,tikz,torr,trans,transitionstatesymbol,usetikzlibrary,volt,water,xspace,Z}
+ language = [LaTeX]TeX,
+ basicstyle = {\ttfamily},
+ extendedchars = true,
+ numbers = left,
+ numberstyle = \tiny,
+ numberblanklines = true,
+ gobble = 1,
+ xleftmargin = 20pt,
+ breaklines = true,
+ commentstyle = {\color[named]{Gray}},
}
\usepackage{hyperref}
- \hypersetup{colorlinks=true,
- plainpages=false,
- bookmarksopen=true,
- bookmarksopenlevel=2,
- bookmarksnumbered=true,
- pdfauthor={Clemens Niederberger},
- pdftitle={chemmacros - Manual},
- pdfsubject={Hilfsmakros für den Chemiker},
- pdfkeywords={chemmacros},
- pdfcreator={LaTeX}
- }
+\hypersetup{
+ colorlinks = true,
+ plainpages = false,
+ bookmarksopen = true,
+ bookmarksopenlevel = 2,
+ bookmarksnumbered = true,
+ pdfauthor = {Clemens Niederberger},
+ pdftitle = {chemmacros - Manual},
+ pdfsubject = {macros for the chemist},
+ pdfkeywords = {chemmacros},
+ pdfcreator = {LaTeX}
+}
-\newcommand*\paket[1]{`#1'\footnote{\url{http://www.ctan.org/pkg/#1}}}
-\reversemarginpar
-\newcommand*\NEU[1][]{\marginpar{\raggedleft\color{red}NEW \ifx\relax#1\relax\else\normalcolor v.#1\fi}}
-\makeatletter
-\let\CMname\CM@name%
-\makeatother
+\ExplSyntaxOn
+\NewDocumentCommand \paket { o m }
+ {
+ \textsf { #2 }
+ \cs_if_exist:cF { paket @ #2 }
+ {
+ \cs_new_nopar:cpn { paket @ #2 } { }
+ \IfNoValueTF { #1 }
+ { \sidenote { CTAN: ~ \href { http://www.ctan.org/pkg/#2/ } { #2 } } }
+ { \sidenote[][ #1 ] { CTAN: \href { http://www.ctan.org/pkg/#2/ } { #2 } } }
+ }
+ }
+
+\newcommand*\code[1]{{\normalfont\upshape\ttfamily#1}}
+\newcommand*\ma[1]{%
+ {\normalcolor\ttfamily\char`\{#1\char`\}}}
+\newcommand*\oa[1]{%
+ {\normalcolor\ttfamily\char`[#1\char`]}}
+\newcommand*\da[1]{%
+ {\normalcolor\ttfamily\char`(#1\char`)}}
+
+\NewDocumentCommand \cmd { m }
+ {
+ \group_begin:
+ \code { \char`\\ \color{code} #1 }
+ \group_end:
+ }
+
+\NewDocumentCommand \Key { o o d() m m }
+ {
+ \IfNoValueTF { #3 }
+ {
+ \IfNoValueTF { #2 }
+ { \label{key:#4} }
+ { \label{key:#2_#4} }
+ }
+ { \label{key:#3_#4} }
+ \marginnote
+ {
+ \framed
+ \code { \textcolor { blue } { #4 } ~ = ~ #5 }
+ \IfNoValueF { #1 } { \tl_if_blank:nF { #1 } { \newline default: ~ \code { #1 } } }
+ \IfNoValueTF { #2 }
+ { \newline \textcolor { red } { no ~ module } }
+ { \newline module: ~ \code { #2 } }
+ \endframed
+ }
+ }
+
+\NewDocumentCommand \changed { m }
+ {
+ \group_begin:
+ \colorlet { shadecolor } { red!20 }
+ \marginnote
+ {
+ \shaded
+ The ~ command ~ \cmd { #1 } ~ has ~ a ~ new ~ syntax ~ with ~ v2.0 . \tl_use:N \c_space_tl
+ The ~ package ~ option ~ \code { version=1 } \tl_use:N \c_space_tl
+ restores ~ the ~ former ~ syntax.
+ \endshaded
+ }
+ \group_end:
+ }
+
+\NewDocumentCommand \formercmd { m }
+ {
+ \marginnote
+ {
+ \cmd { #1 } ~ is ~ not ~ provided ~ any ~ more. ~ Use ~ package ~ option ~
+ \code { version = 1 } ~ to ~ reactivate ~ it.
+ }
+ }
+\ExplSyntaxOff
+
+\newcommand*\eg{\mbox{e.\,g.}\xspace}
\newcommand*\ie{\mbox{i.\,e.}\xspace}
+\newcommand*\etc{\mbox{etc.}\xspace}
\newcommand*\TikZ{\mbox{Ti\textbf{\textit{k}}Z}\xspace}
+
\begin{document}
\begin{titlepage}
+ \begin{fullwidth}
\centering
- \Huge\CMname\ v\makeatletter\CM@version\makeatother
+ \Huge chemmacros v\CMversion
\vskip.5cm
- \Large\makeatletter\CM@date\makeatother
+ \Large\CMdate
\vskip.5cm
\large Clemens \textsc{Niederberger}
\vskip.25cm
@@ -98,870 +183,867 @@
\href{mailto:contact@mychemistry.eu}{contact@mychemistry.eu}
\vskip2cm
\begin{abstract}
- `\CMname' is a collection of macros and commands which are intended to make typesetting chemistry documents with \LaTeXe\ faster and more convenient. Coverage includes some nomenclature commands, oxidation numbers, thermodynamic data, newman projections, \etc
+ \CMname is a collection of macros and commands which are intended to make typesetting chemistry documents with \LaTeXe\ faster and more convenient. Coverage includes some nomenclature commands, oxidation numbers, thermodynamic data, newman projections, \etc
\end{abstract}
+ \end{fullwidth}
\end{titlepage}
\tableofcontents
-\section{Licence, Requirements}
-`\CMname' v\makeatletter\CM@version\makeatother\ underlies the The \LaTeX\ project public license\\(\url{http://www.latex-project.org/lppl.txt}).
-
-`\CMname' internally loads the packages \paket{amsmath}, \paket{ifthen}, \paket{siunitx}, \paket{xparse} and `tikz' (\TikZ = \paket{pgf}) as well as the tikzlibrary \lstinline=calc=. If they're missing it will cause an error.
-
-`siunitx' needs \LaTeX3 support as provided in the \paket{expl3} and \paket{xpackages} bundles. `xparse' is part of the `xpackages' bundle. This means, that `\CMname' also needs \LaTeX3 support.
-
-The definition of some commands depends on which packages else have been loaded. Some commands are only defined if a certain package has been loaded. This concerns the packages \paket{bpchem}, \paket{chemstyle} and \paket{mhchem}.It is mentioned explicitly in the documentation, if a command has a definition depending on one of these packages.
+\section{What's New?}
+With the update to v\CMversion lot's has changed behind the scenes. The settings now are done completely with a key/value system. This way there are now much more possibilities to customize commands. This also means that the syntax of a number of commands has changed\changed{command}. In order to provide compatibility with documents set with v1.*, there is now the package option \code{version=1}, which restores the old definitions. If a command has been changed, you can see this through a note in the margin. Some commands now are deprecated\formercmd{command} and are not longer provided unless the option \code{version=1} is used.
-The package option \lstinline=bpchem= (section \ref{sec:optionen}) needs the package `bpchem' to be available.
+\section{Licence, Requirements}
+\CMname v\CMversion underlies the The \LaTeX\ project public license version 1.3 or later. (\url{http://www.latex-project.org/lppl.txt})
-The package option \lstinline=xspace= (section \ref{sec:optionen}) needs the package \paket{xspace} to be available.
+\CMname uses the packages \textsf{expl3}, \paket{xparse}, \paket{l3keys2e} and \paket{xfrac}, which are part of the bundles \paket{l3kernel} and \paket{l3packages}. \paket{expl3} is part of \paket{l3kernel}, and \paket{xparse}, \paket{l3keys2e} and \paket{xfrac} are part of \paket{l3packages}.
-If the user loads `mhchem', the packages \paket{mathtools} and \paket{environ} are needed.
+\CMname also uses the packages \paket{siunitx}, \paket{mhchem}, \paket{mathtools} and \paket{environ} as well as \TikZ (\paket{pgf}) and the \TikZ libraries \code{calc} and \code{arrows}.
-\textbf{Please take notice, that the package options have changed with version 1.1.}
+Package option \code{bpchem} (section \ref{sec:optionen}) needs the package \paket{bpchem} and package option \code{xspace} needs the package \paket{xspace}.
-\newpage
\section{Package Options}\label{sec:optionen}
-\NEU[1.1]`\CMname' has four package options:
+\CMname has several package options.\marginnote{This document is set with default behaviour.}\marginnote[\baselineskip]{\code{bpchem = false} \NMR;\\\code{bpchem = true} {\chemsetup[option]{bpchem}\NMR};}\marginnote[\baselineskip]{\code{circled = none} {\chemsetup[option]{circled=none}\mch\ \pch\ \fmch\ \fpch}\\\code{circled = formal, circletype = chem} {\chemsetup[option]{circled}\mch\ \pch\ \fmch\ \fpch}\\\code{circled = all, circletype = chem} {\chemsetup[option]{circled=all,circletype=chem}\mch\ \pch\ \fmch\ \fpch}\\\code{circled = formal, circletype = math} {\chemsetup[option]{circled,circletype=math}\mch\ \pch\ \fmch\ \fpch}\\\code{circled = all, circletype = math} {\chemsetup[option]{circled=all,circletype=math}\mch\ \pch\ \fmch\ \fpch}} They all are used as key/value pairs like \cmd{usepackage\oa{option1 = <value1>, option2 = <value2>}\ma{chemmacros}}. Some also can be used without value (\cmd{usepackage\oa{option1, option2}\ma{chemmacros}}), which means that the \uline{underlined} value is used.
\begin{description}
- \item[\texttt{bpchem}] With this option first the package `bpchem' is loaded and second the appearance of the \lstinline=\NMR= command is changed to match the `bpchem' commands \lstinline=\HNMR= and \lstinline=\CNMR=. Without option: \NMR; with option: \HNMR;
- \item[\texttt{circled}] Some chemists -- like me -- prefer circled charge symbols to have a clear distinction between charge and math symbols. In `\CMname's default behaviour they're \emph{not} circled ($+$ und $-$). With the option \lstinline+circled+ all commands of `\CMname' use the circled ones ($\oplus$ und $\ominus$).
- \item[\texttt{german}] This option changes \lstinline=\pKa= from \mbox{\textsl{p}$K_\mathrm{A}$} into \mbox{\textsl{p}$K_\mathrm{S}$}. Also the phase identifiers \lstinline=\solid= and \lstinline=\liquid= are changed from \solid\ and \liquid\ into \solid[f] and \liquid[f\/l].
- \item[\texttt{xspace}] With this option, the following commands get a \lstinline=\xspace=: \lstinline=\Hpl= \lstinline=\HtO= \lstinline=\water= \lstinline=\Hyd= \lstinline=\HtO= \lstinline=\pH= \lstinline=\pOH= \lstinline=\pKa= \lstinline=\pKb= \lstinline=\cis= \lstinline=\trans= \lstinline=\insitu= \lstinline=\abinitio= \lstinline=\mech= \lstinline=\NMR= \Hpl \HtO \water \Hyd \HtO \pH \pOH \pKa \pKb \cis \trans \insitu \abinitio \mech \NMR\\
- The two commands \lstinline=\cis= and \lstinline=\trans= are also defined by the `bpchem' package. If you load that package, they are redefined by `\CMname'. In the definition of `bpchem' they \textit{always} have a \lstinline=\xspace=, with `\CMname' only with option \lstinline=xspace=. Apart from that they're identical.
+ \item[\code{bpchem = \uline{true}/false>}] This option loads the package \paket{bpchem} and adjusts the layout of the \cmd{NMR} command to the \paket{bpchem} commands \cmd{HNMR} and \cmd{CNMR}. (default: \code{false})\label{key:option_bpchem}
+ %
+ \item[\code{circled = \uline{formal}/all/none}] \CMname uses two different kinds of charges\footnote{Thanks to Christoph Sch\"afer, who pointed out to me, that v1.1 handled the charges too undifferentiated!}, which indicate the usage of real ($+/-$ ) and formal (\fplus/\fminus) charges. The option \code{formal} distinguishes between them, option \code{none} displays them all without circle, option \code{all} circles all (default: \code{formal}).\label{key:option_circled}
+ %
+ \item[\code{circletype = \uline{chem}/math}] This option switches between two kinds of circled charge symbols: \cmd{fplus} \fplus\ and \code{\$\cmd{oplus}\$} $\oplus$. (Default: \code{chem})\label{key:option_circletype}
+ %
+ \item[\code{EZ = \uline{chemmacros}/cool}] The command \cmd{E} is defined by the package \paket{cool} as well as by \CMname. With this option you can choose, which definition is used, see page \pageref{EZ}. (default: \code{chemmacros})\label{key:option_EZ}
+ %
+ \item[\code{german = \uline{true}/false}]\marginnote{\code{german = false} {\chemsetup[option]{german=false}\pKa, \sld, \lqd}\\\code{german = true} \pKa, \sld, \lqd} This option changes the commands \cmd{pKa}, \cmd{sld} and \cmd{lqd} (default: \code{false})\label{key:option_german}
+ %
+ \item[\code{version = 1/2}] This option restores the old definitions of some commands, so documents set with v1.* will still compile correctly. You'll find notes in the margin for every changed command. (default: \code{2})\label{key:option_version}
+ %
+ \item[\code{xspace = \uline{true}/false}] With this option most commands are defined with a \cmd{xspace}. (default: \code{true})\label{key:option_xspace}
\end{description}
-\section{Particles, Ions and a Symbol}\label{sec:teilchen}
-Some simple macros for displaying often needed particles and a symbol. Please note, that they're displayed differently depending on the package options used, see section \ref{sec:optionen}.
-\begin{itemize}
- \item\lstinline=\Hpl= \Hpl (proton)
- \item\lstinline=\Hyd= \Hyd (hydroxide)
- \item\NEU[1.1]\lstinline=\HtO= \HtO (oxonium) (\textbf{H} \textbf{t}hree \textbf{O})
- \item\NEU[1.1]\lstinline=\water= \water
- \item\lstinline=\el= \el (electron)
- \item\lstinline=\prt= \prt (proton)
- \item\lstinline=\ntr= \ntr (neutron)
- \item\NEU[1.1]\lstinline=\Nu= \Nu (nucleophile)
- \item\NEU[1.1]\lstinline=\El= \El (electrophile)
- \item\lstinline=\transitionstatesymbol= \transitionstatesymbol\ transition state symbol (uses `\TikZ')
-\end{itemize}
-These commands are working both in text mode and math mode. Depending on wether `mhchem' has been loaded, atoms are defined with the \lstinline=\cf{}= command or with \lstinline=\mbox{}=.
-
-\NEU[1.1]There is another command which allows to typeset radicals with charges and subscripts.
+\section{Setup}
+Various of \CMname's commands have key/value pairs with which they are customized. Most times they can be used as (optional) argument of the copmmands themselves. They also can most times be used with the \cmd{chemsetup} command.
+\begin{framed}
+ \cmd{chemsetup\oa{<module>}\ma{<key> = <value>}} or \\
+ \cmd{chemsetup\ma{<module>/<key> = <value>}}
+\end{framed}
+The keys\Key[<default>][<module>]{<key>}{<value>} each belong to a module, which defines for which commands they are intended for. If a key is presented, you'll see a box in the margin that gives you information to that key. You have two ways to use keys with the \cmd{chemsetup}, as you can see in the box above.
+
+The package options can also be seen as keys belonging to the module \code{option}. This means they can also be used with the \cmd{chemsetup} command (except for the option \code{version=1/2}).
+\begin{LTXexample}[pos=b]
+ \chemsetup[option]{circled=none}\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \\
+ \chemsetup[option]{circled=formal}\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \\
+ \chemsetup[option]{circletype=math}\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \\
+ \chemsetup{option/circletype=chem,option/circled=all}\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \\
+ \chemsetup{option/circletype=math}\mch\ \pch\ \fmch\ \fpch\ \el\ \prt
+\end{LTXexample}
+Keys \emph{not} belonging to a module \emph{cannot} be used with \cmd{chemsetup}!
+
+\section{Particles, Ions and Symbols}\label{sec:teilchen}
+Some simple macros for displaying often needed particles and a symbol. Please note, that they're displayed differently depending on the package options used, see section \ref{sec:optionen}.\marginnote{These commands can be used in text as well as in math mode.}
\begin{itemize}
- \item\lstinline=\R[<sign>]{<subscript>}= \eg \lstinline=\R[+]{tert} \R[-]{sek} \R{prim}= \R[+]{tert} \R[-]{sek} \R{prim}
+ \item\cmd{Hpl} \Hpl (proton)
+ \item\cmd{Hyd} \Hyd (hydroxide)
+ \item\cmd{HtO} \HtO (oxonium ion) (\textbf{H} \textbf{t}hree \textbf{O})
+ \item\cmd{water} \water
+ \item\cmd{el} \el (electron)
+ \item\cmd{prt} \prt (proton)
+ \item\cmd{ntr} \ntr (neutron)
+ \item\cmd{Nu} \Nu (nucleophile)
+ \item\cmd{El} \El (electrophile)
+ \item\cmd{fplus} \fplus
+ \item\cmd{fminus} \fminus
+ \item\cmd{transitionstatesymbol} \transitionstatesymbol\ (uses \TikZ)
+ \item\cmd{standardstate} \standardstate. This symbol is only provided by \CMname, if the package \paket{chemstyle} is not loaded; the idea is borrowed from there\footnote{thanks to the package author \href{http://www.texdev.net/}{Joseph Wright}.}.
\end{itemize}
+There is another command which allows to typeset radicals with charges and subscripts.
+\begin{framed}
+ \cmd{R\oa{<sign>}\ma{<subscript>}}
+\end{framed}
+\begin{LTXexample}
+ \R[+]{tert} \R[-]{sek} \R{prim}
+\end{LTXexample}
\section{Stereo Descriptors, Nomenclature, Latin Phrases}\label{sec:stereo}
\subsection{Stereo Descriptors and Nomenclature}
The following macros are intended to make the writing of IUPAC names more convenient:
\begin{itemize}
\item Cahn-Ingold-Prelog:
- \begin{itemize}
- \item\lstinline=\Rcip= \Rcip
- \item\lstinline=\Scip= \Scip
- \item\lstinline=\cip{<conf>}= e.\,g.: \lstinline=\cip{R,S}= \cip{R,S}
- \end{itemize}
+ \begin{framed}
+ \cmd{Rcip} \Rcip \\
+ \cmd{Scip} \Scip \\
+ \cmd{cip\ma{<conf>}} \eg: \cmd{cip\ma{R,S}} \cip{R,S}
+ \end{framed}
\item Fischer:
- \begin{itemize}
- \item\lstinline=\Dfi= \Dfi
- \item\lstinline=\Lfi= \Lfi
- \end{itemize}
- \item cis/trans \&\ zusammen/entgegen:
- \begin{itemize}
- \item\lstinline=\Z= \Z
- \item\lstinline=\E= \E
- \item\lstinline=\cis= \cis (This command is also defined by the package `bpchem'. `\CMname' redefines it, see section \ref{sec:optionen}.)
- \item\lstinline=\trans= \trans (This command is also defined by the package `bpchem'. `\CMname' redefines it, see section \ref{sec:optionen}.)
- \end{itemize}
+ \begin{framed}
+ \cmd{Dfi} \Dfi \\
+ \cmd{Lfi} \Lfi
+ \end{framed}
+ \item cis/trans and zusammen/entgegen:\marginnote{Please notice, that the commands \cmd{cis} and \cmd{trans} are defined by the \paket{bpchem} package as well. If you load that package, they are redefined by \CMname. With \paket{bpchem} they \textit{always} get a \cmd{xspace}, with \CMname only , when option \code{xspace} is used.}
+ \begin{framed}
+ \cmd{Z} \Z\label{EZ} \\
+ \cmd{E} \E\ (\cmd{E} is also defined by the package \paket{cool}. By using the package option \code{EZ = cool} instead of \cmd{E} and \cmd{Z} \CMname defines \cmd{Ent} and \cmd{Zus}.) \\
+ \cmd{cis} \cis \\
+ \cmd{trans} \trans
+ \end{framed}
\item ortho/meta/para:
- \begin{itemize}
- \item\lstinline=\ortho= \ortho
- \item\lstinline=\meta= \meta
- \item\lstinline=\para= \para
- \end{itemize}
-\end{itemize}
-absolute configuration (uses `\TikZ'):
-\begin{itemize}
- \item\lstinline=\Rconf[<letter>]= \lstinline=\Rconf=: \Rconf \quad\lstinline=\Rconf[]=: \Rconf[]
- \item\lstinline=\Sconf[<letter>]= \lstinline=\Sconf=: \Sconf \quad\lstinline=\Sconf[]=: \Sconf[]
+ \begin{framed}
+ \cmd{ortho} \ortho \\
+ \cmd{meta} \meta \\
+ \cmd{para} \para
+ \end{framed}
\end{itemize}
+absolute configuration (uses \TikZ):
+\begin{framed}
+ \cmd{Rconf\oa{<letter>}} \cmd{Rconf}: \Rconf \quad\cmd{Rconf\oa{}}: \Rconf[] \\
+ \cmd{Sconf\oa{<letter>}} \cmd{Sconf}: \Sconf \quad\cmd{Sconf\oa{}}: \Sconf[]
+\end{framed}
+
+Examples:\marginnote{Of course the appearance depends on the font you chose:\par\cip{2S,3R} \E \Z \Dfi \Lfi\par\fontfamily{ptm}\selectfont\cip{2S,3R} \E \Z \Dfi \Lfi\par\fontfamily{ppl}\selectfont\cip{2S,3R} \E \Z \Dfi \Lfi}
+\begin{LTXexample}[pos=b]
+ \Dfi-Weins\"aure = \cip{2S,3S}-Weins\"aure \\
+ \Dfi-($-$)-Threose = \cip{2S,3R}-($-$)-2,3,4-Trihydroxybutanal \\
+ \cis-2-Buten = \Z-2-Butene, \cip{2E,4Z}-Hexadiene \\
+ \meta-Xylol = 1,3-Dimethylbenzene \\
+ % with bpchem's command \IUPAC:
+ \IUPAC{\Dfi\-Wein\|s\"aure} = \IUPAC{\cip{2S,3S}\-Wein\|s\"aure}, \IUPAC{\Dfi\-($-$)\-Threose} = \IUPAC{\cip{2S,3R}\-($-$)\-2,3,4\-Tri\|hydroxy\|butanal}
+\end{LTXexample}
-Examples:
-\begin{lstlisting}
- \Dfi-Tartaric Acid = \cip{2S,3S}-Tartaric Acid
-\end{lstlisting}
-\Dfi-Tartaric Acid = \cip{2S,3S}-Tartaric Acid
-\begin{lstlisting}
- \Dfi-($-$)-Threose = \cip{2S,3R}-($-$)-2,3,4-Trihydroxybutanal
-\end{lstlisting}
-\Dfi-($-$)-Threose = \cip{2S,3R}-($-$)-2,3,4-Trihydroxybutanal
-\begin{lstlisting}
- \cis-2-Buten = \Z-2-Butene, \cip{2E,4Z}-Hexadiene
-\end{lstlisting}
-\cis-2-Buten = \Z-2-Butene, \cip{2E,4Z}-Hexadiene
-\begin{lstlisting}
- \meta-Xylol = 1,3-Dimethylbenzene
-\end{lstlisting}
-\meta-Xylol = 1,3-Dimethylbenzene
-\begin{lstlisting}
- % with `bpchem' command \IUPAC:
- \IUPAC{\Dfi-Tar\|taric Acid} = \IUPAC{\cip{2S,3S}-Tar\|taric Acid}, \IUPAC{\Dfi-($-$)-Threose} = \IUPAC{\cip{2S,3R}-($-$)-2,3,4\-Tri\|hydroxy\|butanal}
-\end{lstlisting}
-\IUPAC{\Dfi-Tar\|taric Acid} = \IUPAC{\cip{2S,3S}-Tar\|taric Acid}, \IUPAC{\Dfi-($-$)-Threose} = \IUPAC{\cip{2S,3R}-($-$)-2,3,4\-Tri\|hydroxy\|butanal}
-
-The last example uses the \lstinline=\IUPAC= command, which is provided by the `bpchem' package.
-
-Of course the appearance depends on the font you chose:
-\begin{lstlisting}
- \cip{2S,3R} \E \Z \Dfi \Lfi \par
- \fontfamily{ptm}\selectfont
- \cip{2S,3R} \E \Z \Dfi \Lfi \par
- \fontfamily{ppl}\selectfont
- \cip{2S,3R} \E \Z \Dfi \Lfi
-\end{lstlisting}
-\cip{2S,3R} \E \Z \Dfi \Lfi
-
-\fontfamily{ptm}\selectfont
-\cip{2S,3R} \E \Z \Dfi \Lfi
-
-\fontfamily{ppl}\selectfont
-\cip{2S,3R} \E \Z \Dfi \Lfi
-\fontfamily{cmr}\selectfont
-
+\newpage
\subsection{Latin Phrases}
-\NEU[1.1]At last there are two commands for common latin phrases.
-\begin{itemize}
- \item\lstinline=\insitu= \insitu
- \item\lstinline=\abinitio= \abinitio
-\end{itemize}
-If the package `chemstyle' has been loaded, too\footnote{`chemstyle' defines other similar commands like \etal, \invacuo.}, they are defined using `chemstyle's \lstinline=\latin= command. This means that then the appearance depends on `chemstyle's option \lstinline=abbremph=:
-\begin{lstlisting}
+At last there are two commands for common latin phrases.
+\begin{framed}
+ \cmd{insitu} \insitu \\
+ \cmd{abinitio} \abinitio
+\end{framed}
+If the package \paket{chemstyle} has been loaded, too\footnote{\paket{chemstyle} defines other similar commands like \etal, \invacuo.}, they are defined using \paket{chemstyle}'s \cmd{latin} command. This means that then the appearance depends on \paket{chemstyle}'s option \code{abbremph}:
+\begin{LTXexample}
\insitu, \abinitio\\
\cstsetup{abbremph=false}
\insitu, \abinitio
-\end{lstlisting}
-{\insitu, \abinitio\\
-\cstsetup{abbremph=false}
-\insitu, \abinitio}
+\end{LTXexample}
+If \paket{chemstyle} hasn't been loaded, they're always in \textit{italics}.
-If `chemstyle' hasn't been loaded, they're always in \textit{italics}.
-
-\section{Units with `siunitx'}\label{sec:einheiten}
-\NEU[1.1]In chemistry some non-SI units are very common. `siunitx' provides the command \lstinline=\DeclareSIUnit{<command>}{<unit>}= to add arbitrary units. `\CMname' uses that command to provide some units. Like all `siunitx' units they're only valid inside \lstinline=\SI{<num>}{<unit>}= and \lstinline=\si{<unit>}=.
+\section{Units with \textsf{siunitx}}\label{sec:einheiten}
+In chemistry some non-SI units are very common. \paket{siunitx} provides the command \cmd{DeclareSIUnit\ma{<command>}\ma{<unit>}} to add arbitrary units. \CMname uses that command to provide some units. Like all \paket{siunitx} units they're only valid inside \cmd{SI\ma{<num>}\ma{<unit>}} and \cmd{si\ma{<unit>}}.
\begin{itemize}
- \item\lstinline=\atmosphere= \si{\atmosphere}
- \item\lstinline=\atm= \si{\atm}
- \item\lstinline=\calory= \si{\calory}
- \item\lstinline=\cal= \si{\cal}
- \item\lstinline=\cmc= \si{\cmc} {}\footnote[1]{These units are also defined by `chemstyle'. They are only defined by `\CMname', if `chemstyle' is not loaded.}
- \item\lstinline=\molar= \si{\molar} {}\footnotemark[1]
- \item\lstinline=\moLar= \si{\moLar}
- \item\lstinline=\Molar= \si{\Molar} {}\footnotemark[1]
- \item\lstinline=\MolMass= \si{\MolMass}
- \item\lstinline=\normal= \si{\normal}
- \item\lstinline=\torr= \si{\torr}
+ \item\cmd{atmosphere} \si{\atmosphere}
+ \item\cmd{atm} \si{\atm}
+ \item\cmd{calory} \si{\calory}
+ \item\cmd{cal} \si{\cal}
+ \item\cmd{cmc} \si{\cmc}\marginnote{The units \cmd{cmc}, \cmd{molar}, and \cmd{Molar} are defined by the package \paket{chemstyle} as well. \CMname only defines them, if \paket{chemstyle} is not loaded.}
+ \item\cmd{molar} \si{\molar}
+ \item\cmd{moLar} \si{\moLar}
+ \item\cmd{Molar} \si{\Molar}
+ \item\cmd{MolMass} \si{\MolMass}
+ \item\cmd{normal} \si{\normal}
+ \item\cmd{torr} \si{\torr}
\end{itemize}
-By the way: \lstinline=\mmHg= \si{\mmHg} is already defined by `siunitx'.
+\marginnote[-3\baselineskip]{By the way: \cmd{mmHg} \si{\mmHg} already is defined by \paket{siunitx} and \paket{chemstyle}.}
\section{Acid/Base}\label{sec:saeure_base}
-\NEU[1.1]Easy representation of \pH, \pKa \ldots
-\begin{itemize}
- \item\lstinline=\pH= \pH
- \item\lstinline=\pOH= \pOH
- \item\lstinline=\pKa[<num>]= \lstinline=\pKa= \pKa, \lstinline=\pKa[1]= \pKa[1]
- \item\lstinline=\pKb[<num>]= \lstinline=\pKb= \pKb, \lstinline=\pKb[1]= \pKb[1]
-\end{itemize}
-These commands can be used both in text and in math mode as well as inside the \lstinline=\ce=\linebreak command of the `mhchem' package. The command \lstinline=\pKa= depends on the package option \lstinline=german=, see section \ref{sec:optionen}.
-
-\section{Oxidation Numbers and (real) Charges}\label{sec:ladungen}
+Easy representation of \pH, \pKa \ldots\marginnote{These commands can be used both in text and in math mode as well as inside the \cmd{ce} command of the \paket{mhchem} package. The command \cmd{pKa} depends on the package option \code{german}, see section \ref{sec:optionen}.}
+\begin{framed}
+ \cmd{pH} \pH \\
+ \cmd{pOH} \pOH \\
+ \cmd{pKa\oa{<num>}} \cmd{pKa} \pKa, \cmd{pKa\oa{1}} \pKa[1] \\
+ \cmd{pKb\oa{<num>}} \cmd{pKb} \pKb, \cmd{pKb\oa{1}} \pKb[1] \\
+ \cmd{p\ma{<anything>}} \eg \cmd{p\ma{K\_w}} \p{K_w}
+\end{framed}
+\begin{LTXexample}
+ \pKa \pKa[1] \pKb \pKb[1]\\
+ \chemsetup[option]{german=true}
+ \pKa \pKa[1] \pKb \pKb[1]
+\end{LTXexample}
+
+\section{Oxidation Numbers, real and formal Charges}\label{sec:ladungen}
+\CMname distinguishes between real ($+$/$-$) and formal (\fplus/\fminus) charge symbols, also see section \ref{sec:optionen}. All commands using formal charge symbols start with a \code{f}.
\subsection{Ion Charges}\label{ssec:ionen}
-Simple displaying of charges:
+Simple displaying of (real) charges:
+\begin{framed}
+ \cmd{pch\oa{<number>}} positive charge (\textbf{p}lus + \textbf{ch}arge) \\
+ \cmd{mch\oa{<number>}} negative charge (\textbf{m}inus + \textbf{ch}arge)
+\end{framed}
+\begin{LTXexample}
+ \pch, Na\pch, Ca\pch[2]\\
+ \mch, F\mch, S\mch[2]
+\end{LTXexample}
+
+The same for formal charges:
+\begin{framed}
+ \cmd{fpch\oa{<number>}} positive charge\\
+ \cmd{fmch\oa{<number>}} negative charge
+\end{framed}
+\begin{LTXexample}
+ \fpch\ \fmch\ \fpch[3] \fmch[3]
+\end{LTXexample}
+
+There is a key which influences the behaviour of the charges\Key[false][charges]{append}{\uline{true}/false}.
\begin{itemize}
- \item\lstinline=\pch[<number>]= positive charge (\textbf{p}lus + \textbf{ch}arge): \lstinline=\pch= \pch, \lstinline=Na\pch= Na\pch, \lstinline=Ca\pch[2]= Ca\pch[2]
- \item\lstinline=\mch[<number>]= negative charge (\textbf{m}inus + \textbf{ch}arge): \lstinline=\mch= \mch, \lstinline=F\mch= F\mch, \lstinline=S\mch[2]= S\mch[2]
+ \item\code{append = \uline{true}/false} if set \code{true}, the charge is appended together with an empty group.
\end{itemize}
+This is, how the key influences the behaviour:
+\begin{LTXexample}
+ \chemsetup[charges]{append=false}
+ \ce{H\pch\aq} \ce{H\aq\pch}
+
+ \chemsetup[charges]{append=true}
+ \ce{H\pch\aq} \ce{H\aq\pch}
+\end{LTXexample}
+In most cases this behaviour will be unwanted. However, in some cases it might be useful, for example together with the \cmd{ox} (see next section):
+\begin{LTXexample}
+ \chemsetup[charges]{append=false}
+ \ce{\ox{1,H}\pch\aq}
+
+ \chemsetup[charges]{append=true}
+ \ce{\ox{1,H}\pch\aq}
+\end{LTXexample}
\subsection{Oxidation Numbers}\label{ssec:oxidationszahlen}
-Typesetting oxidation numbers:
+Typesetting oxidation numbers:\changed{ox}
+\begin{framed}
+ \cmd{ox\oa{<keyval>}\ma{<number>,<atom>}} places \code{<number>} above \code{<atom>}\\
+ \code{<number>} has to be a (rational) number!
+\end{framed}
+\begin{LTXexample}
+ \ox{+1,Na}, \ox{2,Ca}, \ox{-2,S}, \ox{-1,F}
+\end{LTXexample}
+
+There are a number of keys, that can be used to modify the \cmd{ox} command.\Key[true][ox]{parse}{\uline{true}/false}\Key[true][ox]{roman}{\uline{true}/false}
\begin{itemize}
- \item\lstinline=\ox{<number>,<atom>}= places \lstinline=<number>= above \lstinline=<atom>=; \lstinline=\ox{+1,Na}=, \lstinline=\ox{+I,Na}=, \lstinline=\ox{-2,S}=, \lstinline=\ox{-II,S}= \ox{+1,Na}, \ox{+I,Na}, \ox{-2,S}, \ox{-II,S}
+ \item\code{parse = \uline{true}/false} when \code{false} an arbitrary entry can be used for \code{<number>}.
+ \item\code{roman = \uline{true}/false} switches from roman to arabic numbers.
+ \item\code{pos = top/super/side}; \code{top} places \code{<number>} above \code{<atom>}, \code{super} to the upper right and \code{side} to the right and inside brackets.
+ \item\code{explicit-sign = \uline{true}/false} shows the $+$ for positiv numbers and the $\pm$ for $0$.
+ \item\code{decimal-marker = comma/point} choice for the decimal marker for formal oxidation numbers like \ox{1.2,X}.
\end{itemize}
-If the package `mhchem' has been loaded \lstinline=<atom>= is set inside the \lstinline=\ce= command: \lstinline=\ox{+II,Ca}\ox{-I,F2}= \ox{+II,Ca}\ox{-I,F2}. Without `mhchem' this isn't working this way {\makeatletter\def\oxNoMhchem#1#2{\ensuremath{\overset{\text{\tiny\CM@ox@sign#1}}{\text{#2}}}}\makeatother(\oxNoMhchem{+II}{Ca}\oxNoMhchem{-I}{F2}) and you need to use the math way: \lstinline=\ox{+II,Ca}\ox{-I,F$_2$}= \oxNoMhchem{+II}{Ca}\oxNoMhchem{-I}{F$_2$}}.
+\Key[top][ox]{pos}{top/super/side}\Key[false][ox]{explicit-sign}{\uline{true}/false}\Key[point][ox]{decimal-marker}{comma/point}
+\begin{LTXexample}
+ \ox[roman=false]{2,Ca} \ox{2,Ca} \\
+ \ox[pos=super]{3,Fe}-Oxide \\
+ \ox[pos=side]{3,Fe}-Oxide \\
+ \ox[parse=false]{?,Mn}
+\end{LTXexample}
+The \code{pos=super} variant also can be set with the shortcut \cmd{ox*}:
+\begin{LTXexample}
+ \ox{3,Fe} \ox*{3,Fe}
+\end{LTXexample}
+Using the \code{explicit-sign} key will always show the sign of the oxidation number:
+\begin{LTXexample}
+ \chemsetup[ox]{explicit-sign = true}
+ \ox{+1,Na}, \ox{2,Ca}, \ox{-2,S}, \ox{0,F2}
+\end{LTXexample}
+As you could see in the last example, \code{<atom>} is placed within \paket{mhchem}'s \cmd{ce} command. However, using this fact does not necessarily give good results.
+\begin{LTXexample}[pos=b]
+ Compare \ox{-1,O2^{2-}} to \ce{\ox{-1,O}{}_2 \mch[2]} or \ce{\ox{-1,O}{}_2^{2-}}.
+\end{LTXexample}
+Sometimes one might want to use formal oxidation numbers like \num{.5} or $\frac{1}{3}$. This is possible:
+\begin{LTXexample}
+ \ox{.5,Br2\pch} \ox{1/3,I3+}
+\end{LTXexample}
\subsection{Partial Charges and similar Stuff}\label{ssec:partialladungen}
The next ones probably are seldomly needed but nevertheless useful:
-\begin{itemize}
- \item\lstinline=\delp= \delp (\textbf{del}ta + \textbf{p}lus)
- \item\lstinline=\delm= \delm (\textbf{del}ta + \textbf{m}inus)
-\end{itemize}
-These macros for example can be used with the \lstinline=\ox= command or with the \paket{chemfig} package:
-\begin{lstlisting}
- \ox{\delp,H}\ox{\delm,Cl}\par
+\begin{framed}
+ \cmd{delp} \delp\ (\textbf{del}ta + \textbf{p}lus) \\
+ \cmd{delm} \delm\ (\textbf{del}ta + \textbf{m}inus) \\
+ \cmd{fdelp} \fdelp \\
+ \cmd{fdelm} \fdelm
+\end{framed}
+These macros for example can be used with the \cmd{ox} command or with the \paket{chemfig} package:
+\begin{LTXexample}[pos=b]
+ \chemsetup{
+ option/circled = all,
+ ox/parse = false
+ }
+ \ox{\delp,H}\ox{\delm,Cl} \hspace*{1cm}
\chemfig{\chemabove[3pt]{\lewis{246,Br}}{\delm}-\chemabove[3pt]{H}{\delp}}
-\end{lstlisting}
-\ox{\delp,H}\ox{\delm,Cl}\par
-\chemfig{\chemabove[3pt]{\lewis{246,Br}}{\delm}-\chemabove[3pt]{H}{\delp}}
-
-The following macros are useful together with `chemfig', too.
-\begin{itemize}
- \item\lstinline=\scrp= \scrp (\textbf{scr}iptstyle + \textbf{p}lus)
- \item\lstinline=\scrm= \scrm (\textbf{scr}iptstyle + \textbf{m}inus)
-\end{itemize}
-For example:
-\begin{lstlisting}
- {\setatomsep{1.8em}\chemfig{CH_3-\chemabove{C}{\scrp}(-[6]C|H_3)-\vphantom{H_3}CH_3}}
-\end{lstlisting}
-{\setatomsep{1.8em}\chemfig{CH_3-\chemabove{C}{\scrp}(-[6]C|H_3)-\vphantom{H_3}CH_3}}
+\end{LTXexample}
+
+The following macros are useful together with \paket{chemfig}, too.
+\begin{framed}
+ \cmd{scrp} \scrp (\textbf{scr}iptstyle + \textbf{p}lus) \\
+ \cmd{scrm} \scrm (\textbf{scr}iptstyle + \textbf{m}inus) \\
+ \cmd{fscrp} \fscrp \\
+ \cmd{fscrm} \fscrm
+\end{framed}
+\begin{LTXexample}[pos=b,rframe=]
+ \setatomsep{1.8em}\chemfig{CH_3-\chemabove{C}{\scrp}(-[6]C|H_3)-\vphantom{H_3}CH_3}
+
+ \chemfig{\fmch{}|O-\chemabove{N}{\fscrp}(-[1]O|\fmch)-[7]O|\fmch}
+\end{LTXexample}
-\newpage
\section{Reaction Mechanisms}\label{sec:mechanismen}
-\NEU[1.1]With the command
-\begin{lstlisting}
- \mech[<type>]
-\end{lstlisting}
-one can specify the most common reaction mechanisms. \lstinline=<type>= can have one of the following values:
+With the command\marginnote{This command can also be used in math mode and inside the \cmd{ce} command of the \paket{mhchem} package.}
+\begin{framed}
+ \cmd{mech\oa{<type>}}
+\end{framed}
+one can specify the most common reaction mechanisms. \code{<type>} can have one of the following values:
\begin{itemize}
- \item\lstinline+<type>=+ (empty, no opt. argument) nucleophilic substitution \lstinline=\mech= \mech
- \item\lstinline+<type>=1+ unimolecular nucleophilic substitution \lstinline=\mech[1]= \mech[1]
- \item\lstinline+<type>=2+ bimolecular nucleophilic substitution \lstinline=\mech[2]= \mech[2]
- \item\lstinline+<type>=se+ electrophilic substitution \lstinline=\mech[se]= \mech[se]
- \item\lstinline+<type>=1e+ unimolecular electrophilic substitution \lstinline=\mech[1e]= \mech[1e]
- \item\lstinline+<type>=2e+ bimolecular electrophilic substitution \lstinline=\mech[2e]= \mech[2e]
- \item\lstinline+<type>=ar+ electrophilic aromatic substitution \lstinline=\mech[ar]= \mech[ar]
- \item\lstinline+<type>=+ elimination \lstinline=\mech[e]= \mech[e] (probably never to be used)
- \item\lstinline+<type>=e1+ unimolecular elimination \lstinline=\mech[e1]= \mech[e1]
- \item\lstinline+<type>=e2+ bimolecular elimination \lstinline=\mech[e2]= \mech[e2]
- \item\lstinline+<type>=cb+ unimolecular elimination "conjugated base", \ie via carbanion \lstinline=\mech[cb]= \mech[cb]
+ \item\cmd{mech} (empty, no opt. argument) nucleophilic substitution \mech
+ \item\cmd{mech\oa{1}} unimolecular nucleophilic substitution \mech[1]
+ \item\cmd{mech\oa{2}} bimolecular nucleophilic substitution \mech[2]
+ \item\cmd{mech\oa{se}} electrophilic substitution \mech[se]
+ \item\cmd{mech\oa{1e}} unimolecular electrophilic substitution \mech[1e]
+ \item\cmd{mech\oa{2e}} bimolecular electrophilic substitution \mech[2e]
+ \item\cmd{mech\oa{ar}} electrophilic aromatic substitution \mech[ar]
+ \item\cmd{mech\oa{e}} elimination \mech[e]
+ \item\cmd{mech\oa{e1}} unimolecular elimination \mech[e1]
+ \item\cmd{mech\oa{e2}} bimolecular elimination \mech[e2]
+ \item\cmd{mech\oa{cb}} unimolecular elimination "conjugated base", \ie via carbanion \mech[cb]
\end{itemize}
-This command can also be used in math mode and inside the \lstinline=\ce= command of the `mhchem' package.
-\begin{lstlisting}
- $\mech[cb]$ \ce{\mech[2]} \ce{\mech[ar]}
-\end{lstlisting}
-$\mech[cb]$ \ce{\mech[2]} \ce{\mech[ar]}
\section{Redox Reactions}\label{sec:redoxreaktionen}
-`\CMname' provides two commands\footnote{Thanks to \href{http://www.mathannotated.com/}{Peter Cao} who suggested this feature.} to visualize the transfer of electrons in redox reactions. Both commands are using `\TikZ'.
-\begin{lstlisting}
- \OX{<name>,<atom>}
- \redox(<name1>,<name2>)[<tikz>][<dim>]{<text>}
-\end{lstlisting}
-\lstinline=\OX= places \lstinline=<atom>= into a node, which is named with \lstinline=<name>=. If you have set two \lstinline=\OX=, they can be connected with a line using \lstinline=\redox=. To do so the names of the two nodes that are to be connected are written in the round braces. Since \lstinline=\redox= draws a tikzpicture with options \lstinline=remember picture,overlay=, the document needs to be \emph{compiled at least two times}.
-\begin{lstlisting}
+\CMname provides two commands\footnote{Thanks to \href{http://www.mathannotated.com/}{Peter Cao} who suggested this feature.}, to visualize the transfer of electrons in redox reactions. Both commands are using \TikZ.
+\begin{framed}
+ \cmd{OX\ma{<name>,<atom>}}\\
+ \cmd{redox\da{<name1>,<name2>}\oa{<tikz>}\oa{<num>}\ma{<text>}}
+\end{framed}
+\cmd{OX} places \code{<atom>} into a node, which is named with \code{<name>}. If you have set two \cmd{OX}, they can be connected with a line using \cmd{redox}. To do so the names of the two nodes that are to be connected are written in the round braces. Since \cmd{redox} draws a tikzpicture with options \code{remember picture,overlay}, the document needs to be \emph{compiled at least two times}.
+\begin{LTXexample}[rframe=]
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b){oxidation}
-\end{lstlisting}
-\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b){oxidation}
-
-This line can be customized using `\TikZ' keys in \lstinline=<tikz>=:
-\begin{lstlisting}
+\end{LTXexample}
+This line can be customized using \TikZ keys in \oa{<tikz>}:
+\begin{LTXexample}[rframe=]
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox}
-\end{lstlisting}
-\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox}
-
-\NEU[1.1]\lstinline=<dim>= can be used to adjust the length of the \emph{vertical parts} of the line. The default length is \lstinline=.6em=. This length is multiplied with \lstinline=<dim>=. If you use a negative value the line is placed \emph{below} the text.
-\begin{lstlisting}
+\end{LTXexample}
+With the argument \oa{<num>} the length of the vertical parts of the line can be adjusted. The default length is \code{.6em}. This length is multiplied with \code{<num>}. If you use a negative value the line is placed \emph{below} the text.
+\begin{LTXexample}[rframe=]
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch
\redox(a,b)[->,red]{ox}
\redox(a,b)[<-,blue][-1]{red}
-\end{lstlisting}
-\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch
-\redox(a,b)[->,red]{ox}
-\redox(a,b)[<-,blue][-1]{red}
-\vskip3mm
-
-The default length of the vertical lines can be customized with \lstinline=\setredoxdist{<length>}=:
-\begin{lstlisting}
- \OX{a,A} $\rightarrow$ \OX{b,B}
- \redox(a,b){}
- \bigskip
- \setredoxdist{1em}
- \OX{a,A} $\rightarrow$ \OX{b,B}
- \redox(a,b){}
-\end{lstlisting}
-{\OX{a,A} $\rightarrow$ \OX{b,B}
-\redox(a,b){}
-\bigskip
-\setredoxdist{1em}
-\OX{a,A} $\rightarrow$ \OX{b,B}
-\redox(a,b){}}
-
-An empty argument resets the length to the default value.
-
-Both commands also can be used with the `mhchem' command \lstinline=\ce= and with the \lstinline=\ox= command (section \ref{ssec:oxidationszahlen}).
-\begin{lstlisting}
+\end{LTXexample}
+The default length of the vertical lines can be customized with the key\Key[.6em][redox]{dist}{<dim>} \code{dist}:
+\begin{LTXexample}[rframe=]
+ \chemsetup{redox/dist=1em}
+ \OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox}
+\end{LTXexample}
+Additionally the key\Key[.2em][redox]{sep}{<dim>} \code{sep} can be used to change the distance between the atom and the beginning of the line.
+\begin{LTXexample}[rframe=]
+ \chemsetup{redox/sep=.5em}
+ \OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox}
+\end{LTXexample}
+
+Examples:
+\begin{LTXexample}[rframe=]
\ce{ 2 \OX{o1,Na} + \OX{r1,Cl2} -> 2 \OX{o2,Na}\pch + 2 \OX{r2,Cl}\mch }
\redox(o1,o2){\small OX: $- 2\el$}
\redox(r1,r2)[][-1]{\small RED: $+ 2\el$}
-\end{lstlisting}
-\ce{ 2 \OX{o1,Na} + \OX{r1,Cl2} -> 2 \OX{o2,Na}\pch + 2 \OX{r2,Cl}\mch }
-\redox(o1,o2){\small OX: $- 2\el$}
-\redox(r1,r2)[][-1]{\small RED: $+ 2\el$}
-\vskip1cm
-
-\begin{lstlisting}
- \ce{ 2 \OX{o1,\ox{0,Na}} + \OX{r1,\ox{0,Cl2}} -> 2 \OX{o2,\ox{+I,Na}}\pch + 2 \OX{r2,\ox{-I,Cl}}\mch }
+\end{LTXexample}
+\begin{LTXexample}[rframe=]
+ \chemsetup[charges]{append}
+ \ce{ 2 \OX{o1,\ox{0,Na}} + \OX{r1,\ox{0,Cl2}} -> 2 \OX{o2,\ox{+1,Na}}\pch + 2 \OX{r2,\ox{-1,Cl}}\mch }
\redox(o1,o2){\small OX: $- 2\el$}
\redox(r1,r2)[][-1]{\small RED: $+ 2\el$}
-\end{lstlisting}
-\ce{ 2 \OX{o1,\ox{0,Na}} + \OX{r1,\ox{0,Cl2}} -> 2 \OX{o2,\ox{+I,Na}}\pch + 2 \OX{r2,\ox{-I,Cl}}\mch }
-\redox(o1,o2){\small OX: $- 2\el$}
-\redox(r1,r2)[][-1]{\small RED: $+ 2\el$}
-\vskip1cm
-
-\begin{lstlisting}
- \ce{ 2 \OX{o1,\ox{0,Na}} + \OX{r1,\ox{0,Cl2}} -> 2 \OX{o2,\ox{+I,Na}}\pch + 2 \OX{r2,\ox{-I,Cl}}\mch }
+\end{LTXexample}
+\begin{LTXexample}[rframe=]
+ \chemsetup[charges]{append}
+ \ce{ 2 \OX{o1,\ox{0,Na}} + \OX{r1,\ox{0,Cl2}} -> 2 \OX{o2,\ox{+1,Na}}\pch + 2 \OX{r2,\ox{-1,Cl}}\mch }
\redox(o1,o2)[draw=red,->][3.33]{\small OX: $- 2\el$}
\redox(r1,r2)[draw=blue,->]{\small RED: $+ 2\el$}
-\end{lstlisting}
-\vskip1cm
-\ce{ 2 \OX{o1,\ox{0,Na}} + \OX{r1,\ox{0,Cl2}} -> 2 \OX{o2,\ox{+I,Na}}\pch + 2 \OX{r2,\ox{-I,Cl}}\mch }
-\redox(o1,o2)[draw=red,->][3.33]{\small OX: $- 2\el$}
-\redox(r1,r2)[draw=blue,->]{\small RED: $+ 2\el$}
-
-\begin{lstlisting}
- \ce{ 2 \OX{o1,\ox{0,Na}} + \OX{r1,\ox{0,Cl2}} -> 2 \OX{o2,\ox{+I,Na}}\pch + 2 \OX{r2,\ox{-I,Cl}}\mch }
+ \end{LTXexample}
+\begin{LTXexample}[rframe=]
+ \chemsetup[charges]{append}
+ \ce{ 2 \OX{o1,\ox{0,Na}} + \OX{r1,\ox{0,Cl2}} -> 2 \OX{o2,\ox{+1,Na}}\pch + 2 \OX{r2,\ox{-1,Cl}}\mch }
\redox(o1,o2)[green,-stealth]{\small OX: $- 2\el$}
\redox(r1,r2)[purple,-stealth][-1]{\small RED: $+ 2\el$}
-\end{lstlisting}
-\ce{ 2 \OX{o1,\ox{0,Na}} + \OX{r1,\ox{0,Cl2}} -> 2 \OX{o2,\ox{+I,Na}}\pch + 2 \OX{r2,\ox{-I,Cl}}\mch }
-\redox(o1,o2)[red,-stealth]{\small OX: $- 2\el$}
-\redox(r1,r2)[blue,-stealth][-1]{\small RED: $+ 2\el$}
-\vskip1cm
-
+\end{LTXexample}
+
+In v1.1 there was the command \cmd{setredoxdist\ma{<dim>}}\formercmd{setredoxdist\ma{<dim>}}. By using the package option \code{version=1} it is provided again.
+
+\newpage
\section{(Standard) State, Thermodynamics}\label{sec:standardstate}
\subsection{Thermodynamic Variables}\label{ssec:siunitx}
-The following commands use `siunitx':
+The following commands use \paket{siunitx}:\changed{Enthalpy}\changed{Entropy}\changed{Gibbs}
+\begin{framed}
+ \cmd{Enthalpy\oa{<keyval>}\da{<subscript>}\ma{<value>}} \\
+ \cmd{Entropy\oa{<keyval>}\da{<subscript>}\ma{<value>}} \\
+ \cmd{Gibbs\oa{<keyval>}\da{<subscript>}\ma{<value>}}
+\end{framed}
+Their usage is pretty much self-explaining:
+\begin{LTXexample}
+ \Enthalpy{123} \\
+ \Entropy{123} \\
+ \Gibbs{123}
+\end{LTXexample}
+The argument \da{<subscript>} adds a subscript for specification: \cmd{Enthalpy\da{r}\ma{123}} \Enthalpy(r){123}.
+
+There are several keys to customize the commands.\Key[\cmd{standardstate}](thermo){exponent}{<anything>}\Key(thermo){delta}{<anything>/false}\Key(thermo){subscript}{left/right}\Key(thermo){unit}{<unit>}
\begin{itemize}
- \item\lstinline=\Enthalpy[<sub>,<sup>,<unit>,<subscript pos>]{<value>}=
- \item\lstinline=\Entropy[<sub>,<sup>,<unit>,<subscript pos>]{<value>}=
- \item\lstinline=\Gibbs[<sub>,<sup>,<unit>,<subscript pos>]{<value>}=
+ \item\code{exponent = <anything>}
+ \item\code{delta = <anything>/false}
+ \item\code{subscript = left/right}
+ \item\code{unit = <unit>}
\end{itemize}
-Their usage is pretty much self-explaining:\\
-\lstinline=\Enthalpy{-123.4}= gives \Enthalpy{-123.4}.\\
-If you want to specify what kind of enthalpy (reaction, formation, \ldots) is meant, you can use the first optional argument \lstinline=<sub>=:\\
-\lstinline=\Enthalpy[r]{-123.4}= \Enthalpy[r]{-123.4}\\
-\lstinline=\Enthalpy[vapor.,,,right]{123}= \Enthalpy[vapor.,,,right]{123}
-
-\NEU[1.1]In the last example you could see the usage of the fourth optional argument (\lstinline=<subscript pos>=). It is used to specify whether the subscript is placed to the right or to the left of the main symbol. It can have the values \lstinline=left= (or empty) or \lstinline=right=.
-
-The standard state symbol can be replaced by the second optional argument \lstinline=<sup>=\ldots\\
-\lstinline=\Enthalpy[,\transitionstatesymbol]{-123.4}= \Enthalpy[,\transitionstatesymbol]{-123.4}\\
-\ldots and else depends if the package `chemstyle' has been loaded, see section \ref{standardstatesymbol}.
-
-The third optional argument \lstinline=<unit>= can be used to change the unit:\\
-\lstinline=\Enthalpy[,,\kilo\calory\per\mole]{-123.4}= \Enthalpy[,,\kilo\calory\per\mole]{-123.4}\\
-The unit is set corresponding to the rules of `siunitx' and depends on its settings:
-\begin{lstlisting}
- \Enthalpy{-1234.56e3}\par
+The default values depend on the command.
+\begin{LTXexample}
+ \Enthalpy[unit=\kilo\joule]{-285} \\
+ \Gibbs[delta=false]{0} \\
+ \Entropy[delta=\Delta,exponent=]{56.7}
+\end{LTXexample}
+The unit is set corresponding to the rules of \paket{siunitx} and depends on its settings:
+\begin{LTXexample}[pos=b]
+ \Enthalpy{-1234.56e3} \\
\sisetup{per-mode=symbol,exponent-product=\cdot,output-decimal-marker={,},group-four-digits=true}
\Enthalpy{-1234.56e3}
-\end{lstlisting}
-{\Enthalpy{-1234.56e3}\par
-\sisetup{per-mode=symbol,exponent-product=\cdot,output-decimal-marker={,},group-four-digits=true}
-\Enthalpy{-1234.56e3}}
-
-The other two commands work exactly the same way.
-\begin{lstlisting}
- \Entropy{12.3}, \Gibbs{-12.3}.
-\end{lstlisting}
-\Entropy{12.3}, \Gibbs{-12.3}.
+\end{LTXexample}
\subsubsection{Create New Variables}
-You can use the command
-\begin{lstlisting}
- \setnewstate[<standard sup>,<Delta symbol>,<subscript pos>]{<name>}{<symbol>}{<unit>}
-\end{lstlisting}
+You can use the command\changed{setnewstate}
+\begin{framed}
+ \cmd{setnewstate\oa{<keyval>}\ma{<name>}\ma{<symbol>}\ma{<unit>}}
+\end{framed}
to create new corresponding commands:
-\begin{lstlisting}
+\begin{LTXexample}
\setnewstate{Helmholtz}{A}{\kilo\joule\per\mole}
- \setnewstate[ ,,right]{ElPot}{E}{\volt}
- \Helmholtz{123.4} \ElPot{-1.1} \ElPot[\ce{Sn}|\ce{Sn \pch[2]}||\ce{Pb \pch[2]}|\ce{Pb},0]{0.01}
-\end{lstlisting}
-{\setnewstate{Helmholtz}{A}{\kilo\joule\per\mole}\setnewstate[ ,,right]{ElPot}{E}{\volt}\Helmholtz{123.4} \ElPot{-1.1} \ElPot[\ce{Sn}|\ce{Sn \pch[2]}||\ce{Pb \pch[2]}|\ce{Pb},0]{0.01}
-
-As you can see, \lstinline=\ElPot= has its subscript by definition on the right as default behaviour. Of course you can still place it on the left by using the option \lstinline=\ElPot[r,,,left]{0.12}= \ElPot[r,,,left]{0.12} (even if this example might not make much sense).}
-
-Indeed, the commands
-\begin{lstlisting}
- \Enthalpy, \Entropy, \Gibbs
-\end{lstlisting}
-are defined as follows:
-\begin{lstlisting}
- \setnewstate{Enthalpy}{H}{\kilo\joule\per\mole}
- \setnewstate[, ]{Entropy}{S}{\joule\per\kelvin\per\mole}
- \setnewstate{Gibbs}{G}{\kilo\joule\per\mole}
-\end{lstlisting}
+ \setnewstate[subscript-left=false,exponent=]{ElPot}{E}{\volt}
+ \Helmholtz{123.4} \\
+ \ElPot{-1.1} \\
+ \ElPot[exponent=0]($\ce{Sn}|\ce{Sn \pch[2]}||\ce{Pb \pch[2]}|\ce{Pb}$){0.01}
+\end{LTXexample}
+
+The command has some keys with which the default behaviour of the new command can be set.\Key[\cmd{standardstate}](newstate){exponent}{<anything>}\Key[\cmd{Delta}](newstate){delta}{<anything>/false}\Key[true](newstate){subscript-left}{true/false}\Key(newstate){subscript}{<anything>}
+\begin{itemize}
+ \item\code{exponent = <anything>}
+ \item\code{delta = <anything>/false}
+ \item\code{subscript-left = true/false}
+ \item\code{subscript = <anything>}
+\end{itemize}
\subsubsection{Redefine Variables}
-\NEU[1.1]With
-\begin{lstlisting}
- \renewstate[<standard sup>,<Delta symbol>,<subscript pos>]{<name>}{<symbol>}{<unit>}
-\end{lstlisting}
+With\changed{renewstate}
+\begin{framed}
+ \cmd{renewstate\oa{<keyval>}\ma{<name>}\ma{<symbol>}\ma{<unit>}}
+\end{framed}
you can redefine the already existing commands:
-\begin{lstlisting}
+\begin{LTXexample}
\renewstate{Enthalpy}{h}{\joule}
- \Enthalpy[f]{12.5}
-\end{lstlisting}
-{\renewstate{Enthalpy}{h}{\joule}\Enthalpy[f]{12.5}}
+ \Enthalpy(f){12.5}
+\end{LTXexample}
+The command is analogous to \cmd{setnewstate}, \ie it has the same keys.
So -- for following thermodynamic conventions -- one could define a molar and an absolute variable:
-\begin{lstlisting}
- \setnewstate[ ]{enthalpy}{h}{\kilo\joule\per\mole}% molar
- \renewstate[ ]{Enthalpy}{H}{\kilo\joule}% absolute
+\begin{LTXexample}
+ \setnewstate[exponent=]{enthalpy}{h}{\kilo\joule\per\mole}% molar
+ \renewstate[exponent=]{Enthalpy}{H}{\kilo\joule}% absolut
\enthalpy{-12.3} \Enthalpy{-12.3}
-\end{lstlisting}
-{\setnewstate[ ]{enthalpy}{h}{\kilo\joule\per\mole}% molar
-\renewstate[ ]{Enthalpy}{H}{\kilo\joule}% absolute
-\enthalpy{-12.3} \Enthalpy{-12.3}
-}
+\end{LTXexample}
\subsection{State}\label{ssec:state}
-The commands presented in section \ref{ssec:siunitx} internally all use the command
-\begin{lstlisting}
- \State[<superscript>,<Delta symbol>,<subscript pos>]{<symbol>}{<subscript>}
-\end{lstlisting}
-It can be used to write the thermodynamic variables without value and unit. Please note that \lstinline={<subscript>}= is an \emph{optional} argument.
+The commands presented in section \ref{ssec:siunitx} internally all use the command\marginnote{Please note that \ma{<subscript>} is an \emph{optional} argument.}\changed{State}
+\begin{framed}
+ \cmd{State\oa{<keyval>}\ma{<symbol>}\ma{<subscript>}}
+\end{framed}
+It can be used to write the thermodynamic variables without value and unit.
Examples:
-\begin{lstlisting}
- \State{A}, \State{G}{f}, \State[ ,,right]{E}{\ce{Na}}, \State[\SI{1000}{\celsius}]{H}
-\end{lstlisting}
-\State{A}, \State{G}{f}, \State[ ,,right]{E}{\ce{Na}}, \State[\SI{1000}{\celsius}]{H}
-
-I admit: not in every case it is easier or more convenient to use this command instead of the direct typing, for example \lstinline=$\Delta E_\ce{Na}$= $\Delta E_\ce{Na}$. The examples only are intended to show how the command works and what it \emph{can} be used for. The first example surely is typed faster than \lstinline=$\Delta_\mathrm{f}G^\standardstate$= $\Delta_\mathrm{f}G^\standardstate$.
-
-\label{standardstatesymbol}The standard state symbol \standardstate\ is only used, if the package `chemstyle' is loaded, which provides it with the command \lstinline=\standardstate=. Else the symbol \lstinline=\circ= $\circ$ is used. \lstinline=\State{A}{b}=: with `chemstyle' \State{A}{b}, without \State[\circ]{A}{b}.
-
-\NEU[1.1]With the command
-\begin{lstlisting}
- \setstatesubscript{<subscript pos>}
-\end{lstlisting}
-one can change the predefined value of the subscript postition. You probably have noticed, that its default value is \lstinline=left=.
-\begin{lstlisting}
- \State{A}{b}\\
- \setstatesubscript{right}
- \State{A}{b}
-\end{lstlisting}
-{\State{A}{b}\\
- \setstatesubscript{right}
- \State{A}{b}}
-
-This command does \emph{not} change the behaviour of \lstinline=\setnewstate= and \lstinline=\renewstate=.
+\begin{LTXexample}
+ \State{A}, \State{G}{f}, \State[subscript-left=false]{E}{\ce{Na}}, \State[exponent=\SI{1000}{\celsius}]{H}
+\end{LTXexample}
-\section{Spectroscopy}\label{sec:spektroskopie}
-\NEU[1.1]If substances are examined wether they are what they're supposed to, one often needs NMR spectroscopy. Measured results then are written in a way like: \NMR(400)[CDCl3] = \num{1.59}\ldots\ `\CMname' provides a command which simplifies writing this down (uses `siunitx').
-\begin{lstlisting}
- \NMR{<num>,<elem>}(<num>,<unit>)[<solvent>]
- \NMR*{<num>,<elem>}(<num>,<unit>)[<solvent>]
-\end{lstlisting}
-\emph{All} arguments are optional! Without arguments we get:
+Again there are some keys to customize the command:\Key[\cmd{standardstate}][state](state){exponent}{<anything>}\Key[true][state](state){subscript-left}{true/false}\Key[\cmd{Delta}][state](state){delta}{<anything>/false}
\begin{itemize}
- \item\lstinline=\NMR= {\NMR} (very much like the `bpchem' command \lstinline=\HNMR=)
- \item\lstinline=\NMR*= {\NMR*} (without \verb=: $\delta$=)
+ \item\code{exponent = <anything>}
+ \item\code{subscript-left = true/false}
+ \item\code{delta = <anything>/false}
\end{itemize}
+
+In v1.1 there was the command \cmd{setstatesubscript\ma{<subscript pos>}}\formercmd{setstatesubscript\ma{<subscript pos>}}. By using the package option \code{version=1} it is provided again.
+
+\section{Spectroscopy}\label{sec:spektroskopie}
+\marginnote[\baselineskip]{If you want the command to look like the corresponding \paket{bpchem} commands (\paket{bpchem} command \cmd{HNMR} \HNMR and \CMname command \cmd{NMR} \NMR), then you use the package option \code{bpchem} (see section \ref{sec:optionen}).}If substances are examined wether they are what they're supposed to, one often needs NMR spectroscopy. Measured results then are written in a way like: \NMR(400)[CDCl3] = \num{1.59}\ldots\ \CMname provides a command which simplifies writing this down (uses \paket{siunitx}).
+\begin{framed}
+ \cmd{NMR\ma{<num>,<elem>}\da{<num>,<unit>}\oa{<solvent>}} \\
+ \cmd{NMR*\ma{<num>,<elem>}\da{<num>,<unit>}\oa{<solvent>}}
+\end{framed}
+\emph{All} arguments are optional! Without arguments we get:\marginnote[\baselineskip]{All arguments can be combined freely, the command can also be used in math mode.}
+\begin{LTXexample}
+ \NMR \\
+ \NMR*
+\end{LTXexample}
With the first argument you can specify the kind of NMR:
-\begin{itemize}
- \item\lstinline=\NMR{13,C}= \NMR{13,C}
- \item\lstinline=\NMR*{13,C}= \NMR*{13,C}
-\end{itemize}
+\begin{LTXexample}
+ \NMR{13,C}
+\end{LTXexample}
With the second argument the frequency (in \si{\mega\hertz}) can be specified:
-\begin{itemize}
- \item\lstinline=\NMR(400)= \NMR(400)
- \item\lstinline=\NMR*(400)= \NMR*(400)
-\end{itemize}
+\begin{LTXexample}
+ \NMR(400)
+\end{LTXexample}
You also can change the unit:
-\begin{itemize}
- \item\lstinline=\NMR(4e8,\hertz)= \NMR(4e8,\hertz)
- \item\lstinline=\NMR*(4e8,\hertz)= \NMR*(4e8,\hertz)
-\end{itemize}
-Please note that the setup of `siunitx' also has an impact on this command:
-\begin{itemize}
- \item\lstinline+\sisetup{exponent-product=\cdot}\NMR(4e8,\hertz)+ {\sisetup{exponent-product=\cdot}\NMR(4e8,\hertz)}
- \item\lstinline+\sisetup{exponent-product=\cdot}\NMR*(4e8,\hertz)+ {\sisetup{exponent-product=\cdot}\NMR*(4e8,\hertz)}
-\end{itemize}
+\begin{LTXexample}
+ \NMR(4e8,\hertz)
+\end{LTXexample}
+Please note that the setup of \paket{siunitx} also has an impact on this command:
+\begin{LTXexample}
+ \sisetup{exponent-product=\cdot}\NMR(4e8,\hertz)
+\end{LTXexample}
And finally with the third argument the solvent can be specified:
-\begin{itemize}
- \item\lstinline=\NMR[CDCl3]= \NMR[CDCl3]
- \item\lstinline=\NMR*[CDCl3]= \NMR*[CDCl3]
-\end{itemize}
-Depending on wether you use `mhchem' or not, the solvent is written inside the \lstinline=\ce= command. If you don't use `mhchem', the subscript isn't recognized automatically and you need the use the math mode:
-\begin{itemize}
- \item\lstinline=\NMR[CDCl$_3$]= \NMR[CDCl$_3$]
- \item\lstinline=\NMR*[CDCl$_3$]= \NMR*[CDCl$_3$]
-\end{itemize}
-
-All arguments can be combined freely, the command can also be used inside math mode.
+\begin{LTXexample}
+ \NMR[CDCl3]
+\end{LTXexample}
-If you want the appearance to match the ones of `bpchem' (compare `bpchem' command \lstinline=\HNMR= \HNMR to `\CMname' command \lstinline=\NMR= \NMR), you can use the package option \lstinline=bpchem= (see section \ref{sec:optionen}).
+With the keys \code{unit}\Key[\cmd{mega}\cmd{hertz}][nmr]{unit}{<unit>} and \code{nucleus}\Key[\ma{1,H}][nmr]{nucleus}{\ma{<num>,<elem>}} the default unit and the default nucleus can be changed.
Examples:
-\begin{lstlisting}
- \NMR{13,C}(100) \\
- \NMR*{13,C}(100) \\
- \NMR*{19,F}[CFCl3] \\
- \NMR*{19,F}(285)[CFCl3] \\
+\begin{LTXexample}
+ {\chemsetup[nmr]{nucleus={13,C}}\NMR(100) \NMR*(100) } \\
+ \NMR*{19,F}[CFCl3] \NMR*{19,F}(285)[CFCl3] \\
\NMR(400)[CDCl3] = \num{1.59} (q, 1H, \textit{J} = \SI{11.6}{\hertz}, H-4)
-\end{lstlisting}
-\NMR{13,C}(100) \\
-\NMR*{13,C}(100) \\
-\NMR*{19,F}[CFCl3] \\
-\NMR*{19,F}(285)[CFCl3] \\
-\NMR(400)[CDCl3] = \num{1.59} (q, 1H, \textit{J} = \SI{11.6}{\hertz}, H-4)
+\end{LTXexample}
-\section{Commands for `mhchem'}\label{sec:mhchem}
-There are some commands which are meant for the use with `mhchem'. They are defined if `mhchem' is loaded. Before they're described some words on using commands inside the \lstinline=\ce= and \lstinline=\cee= commands. Probably due to the way these commands are processed there can be difficulties especially when using commands with arguments.
+\section{Commands for \textsf{mhchem}}\label{sec:mhchem}
+From v2.0 \CMname loads the package \paket{mhchem}.
+
+Before the commands are described some words on using commands inside the \cmd{ce} and \cmd{cee} commands. Probably due to the way these commands are processed there can be difficulties especially when using commands with arguments.
Often you have to leave blank spaces:
-\begin{lstlisting}
+\begin{LTXexample}
\ce{Na\pch}\\ % no problem
\ce{Ca\pch[2]}\\ % displayed wrong
\ce{Ca \pch[2]}\\ % displayed right
\ce{Ca$\pch[2]$} % displayed right
-\end{lstlisting}
-\ce{Na\pch}\\
-\ce{Ca\pch[2]}\\
-\ce{Ca \pch[2]}\\
-\ce{Ca$\pch[2]$}
+\end{LTXexample}
You also need to put curly braces at the end of commands:
-\begin{lstlisting}
+\begin{LTXexample}
\ce{\mch OMe}\\ % displayed wrong
\ce{\mch{} OMe}\\ % displayed right
\ce{$\mch$OMe} % displayed right
-\end{lstlisting}
-\ce{\mch OMe}\\
-\ce{\mch{} OMe}\\
-\ce{$\mch$OMe}
+\end{LTXexample}
-This is \emph{not} only true for `\CMname' commands!
-\begin{lstlisting}
+This is \emph{not} only true for \CMname commands!
+\begin{LTXexample}[pos=b]
\ce{A \quad B} \ce{Na2\textbf{O}}\\ % displayed wrong
\ce{A \quad{} B} \ce{Na2 \textbf{O}}\\ % displayed right
\ce{A $\quad$ B} \ce{Na2 \textbf{O}} % displayed right
-\end{lstlisting}
-\ce{A \quad B} \ce{Na2\textbf{O}}\\
-\ce{A \quad{} B} \ce{Na2 \textbf{O}}\\
-\ce{A $\quad$ B} \ce{Na2 \textbf{O}}
+\end{LTXexample}
-As you can see in most cases instead of using blank spaces or curly braces you can also put the according command between \lstinline=$ $=.
+As you can see in most cases instead of using blank spaces or curly braces you can also put the according command between \code{\$ \$}.
\subsection{Reaction Environments}\label{ssec:mhchem_reaktionen}
-\subsubsection{Defined by `\CMname'}
+\subsubsection{Defined by \CMname}
You can use these environments for numbered\ldots
-\begin{lstlisting}
- \begin{reaction}
- <mhchem code>
- \end{reaction}
- \begin{reactions}
- <mhchem code>
- \end{reactions}
-\end{lstlisting}
+\begin{framed}
+\cmd{begin\ma{reaction}}\\
+ \code{<mhchem code>}\\
+\cmd{end\ma{reaction}}\\
+\cmd{begin\ma{reactions}}\\
+ \code{<mhchem code>}\\
+\cmd{end\ma{reactions}}
+\end{framed}
\ldots and their starred versions for unnumbered reactions.
-\begin{lstlisting}
- \begin{reaction*}
- <mhchem code>
- \end{reaction*}
- \begin{reactions*}
- <mhchem code>
- \end{reactions*}
-\end{lstlisting}
+\begin{framed}
+\cmd{begin\ma{reaction*}}\\
+ \code{<mhchem code>}\\
+\cmd{end\ma{reaction*}}\\
+\cmd{begin\ma{reactions*}}\\
+ \code{<mhchem code>}\\
+\cmd{end\ma{reactions*}}
+\end{framed}
With them you can create (un)numbered reaction equations similar to mathematical equations.
-The environments \verb=reaction=/\verb=reaction*= use the \lstinline=equation=/\lstinline=equation*= environments and the environments \verb=reactions=/\verb=reactions*= use the \lstinline=align=/\lstinline=align*= environments to display the reactions.
+The environments \code{reaction}/\code{reaction*} use the \code{equation}/\code{equation*} environments and the environments \code{reactions}/ \code{reactions*} use the \code{align}/\code{align*} environments to display the reactions.
-Reaction with counter:
-\begin{lstlisting}
+\begin{LTXexample}[pos=b]
+ Reaction with counter:
\begin{reaction}
A -> B
\end{reaction}
-\end{lstlisting}
-\begin{reaction}
- A -> B
-\end{reaction}
-Reaction without counter:
-\begin{lstlisting}
+\end{LTXexample}
+
+\begin{LTXexample}[pos=b]
+ Reaction without counter:
\begin{reaction*}
C -> D
\end{reaction*}
-\end{lstlisting}
-\begin{reaction*}
- C -> D
-\end{reaction*}
-Several aligned reactions with counter:
-\begin{lstlisting}
+\end{LTXexample}
+
+\begin{LTXexample}[pos=b]
+ Several aligned reactions with counter:
\begin{reactions}
A &-> B + C \\
D + E &-> F
\end{reactions}
-\end{lstlisting}
-\begin{reactions}
- A &-> B + C \\
- D + E &-> F
-\end{reactions}
-Several aligned reactions without counter:
-\begin{lstlisting}
+\end{LTXexample}
+
+\begin{LTXexample}[pos=b]
+ Several aligned reactions without counter:
\begin{reactions*}
G &-> H + I \\
J + K &-> L
\end{reactions*}
-\end{lstlisting}
-\begin{reactions*}
- G &-> H + I \\
- J + K &-> L
-\end{reactions*}
-
-If you want to change the layout of the counter tags, you can use \lstinline=\renewtagform{<tagname>}[<format>]{<right delim>}{<left delim>}=\footnote{Provided by the `mathtools' package.}.
-\begin{lstlisting}
- \renewtagform{CMreaction}[R \textbf]{[}{]}
+\end{LTXexample}
+
+If you want to change the layout of the counter tags, you can use \cmd{renewtagform\ma{<tagname>}\oa{<format>}\ma{<right delim>}\ma{<left delim>}}\footnote{Provided by the \paket{mathtools} package}.
+\begin{LTXexample}[pos=b]
+ \renewtagform{reaction}[R \textbf]{[}{]}
\begin{reaction}
H2O + CO2 <<=> H2CO3
\end{reaction}
-\end{lstlisting}
-{\renewtagform{CMreaction}[R \textbf]{[}{]}
-\begin{reaction}
- H2O + CO2 <<=> H2CO3
-\end{reaction}
-}
+\end{LTXexample}
+Note, that the name of the tagform has changed with v2.0. It was called \code{CMreaction} in v1.*. Option \code{version=1} restores this name.
\subsubsection{Own Reactions}
-\NEU[1.1]You can create new types of reactions with the command:
-\begin{lstlisting}
- \newreaction{<name>}{<math name>}
-\end{lstlisting}
-\lstinline=<name>= will be the name of the new environment. \lstinline=<math name>= is the used math environment.
-
-The command has variants. The first one is \lstinline=\newreaction*=, which will also define a starred version of the new environment, if the starred math environment exists. If it doesn't exist, this will cause an error.
-
-The second one is \lstinline=\newreaction+=, which is used to define an environment with a mandatory argument. Of course this only works, if the used math environment has a mandatory argument.
-
-You can also use the combined version \lstinline=\newreaction*+=.
-
-The predefined environments are defined via
-\begin{lstlisting}
- \newreaction*{++reaction++}{equation}
- \newreaction*{++reactions++}{align}
-\end{lstlisting}
-
-Let's suppose, you'd like to have the alignment behaviour of the \lstinline=alignat= environment for `mhchem' reactions. You could do the following:
-\begin{lstlisting}
- \newreaction*+{++reactionsat++}{alignat}
-\end{lstlisting}
-With this the \verb=reactionsat= environment is defined.
-\begin{lstlisting}
+You can create new types of reactions with the command:\changed{newreaction}
+\begin{framed}
+ \cmd{newreaction\oa{<keyval>}\ma{<name>}\ma{<math name>}}
+\end{framed}
+\code{<name>} will be the name of the new environment. \code{<math name>} is the used math environment.
+
+The command has two keys. There is \code{star}\Key[false]{star}{true/false}, which will also define a starred version of the new environment, if the starred math environment exists. If it doesn't exist, this will cause an error.
+
+Then there is \code{arg}\Key[false]{arg}{true/false}, which is used to define an environment with a mandatory argument. Of course this only works, if the used math environment has a mandatory argument.
+
+The predefined environments are defined via\\
+\cmd{newreaction\oa{star}\ma{reaction}\ma{equation}} and\\
+\cmd{reaction\oa{star}\ma{reactions}{align}}.
+
+Let's suppose, you'd like to have the alignment behaviour of the \code{alignat} environment for \paket{mhchem} reactions. You could do the following:\\
+\cmd{newreaction\oa{star,arg}\ma{reactionsat}\ma{alignat}}
+
+With this the \code{reactionsat} environment is defined.
+\begin{LTXexample}[pos=b]
+ \newreaction[star,arg]{reactionsat}{alignat}
\begin{reactionsat}{3}
A &-> B &&-> C &&-> D \\
aaaaa &-> bbbbb &&-> ccccc &&-> ddddd
\end{reactionsat}
\begin{reactionsat*}{2}
A &-> B & C &-> D \\
- aaaaa &-> bbbbb &$\quad$ ccccc &-> ddddd
+ aaaaa &-> bbbbb &\quad{} ccccc &-> ddddd
\end{reactionsat*}
-\end{lstlisting}
-\newreaction*+{reactionsat}{alignat}
-\begin{reactionsat}{3}
- A &-> B &&-> C &&-> D \\
- aaaaa &-> bbbbb &&-> ccccc &&-> ddddd
-\end{reactionsat}
-\begin{reactionsat*}{2}
- A &-> B & C &-> D \\
- aaaaa &-> bbbbb &$\quad$ ccccc &-> ddddd
-\end{reactionsat*}
+\end{LTXexample}
\subsection{Phases}\label{ssec:mhchem_phasen}
-\NEU[1.1]These commands are intended to indicate the phase of a compound. Although these commands were intended for the use with `mhchem' they can be used without it as well and are also defined if `mhchem' isn't loaded.
-\begin{lstlisting}
- \solid[<anything>]
- \liquid[<anything>]
- \gas
- \aq % dissolved in water
-\end{lstlisting}
-I always found it tedious to type out phase indicators:
-\begin{lstlisting}
- \ce{C_{(s)} + 2 H2O_{(l)} -> CO2_{(g)} + 2 H2_{(g)}}
-\end{lstlisting}
-The same result now can be achieved with:
-\begin{lstlisting}
- \ce{C\solid{} + 2 H2O\liquid{} -> CO2\gas{} + 2 H2\gas}
-\end{lstlisting}
-\ce{C\solid{} + 2 H2O\liquid{} -> CO2\gas{} + 2 H2\gas}
-
-To make it complete: \lstinline=NaCl\aq= gives NaCl\aq.
-
-With the package option \lstinline=german= (see section \ref{sec:optionen}) you get:\\
-\ce{C \solid[f] + 2 H2O \liquid[f\/l] -> CO2 \gas{} + 2 H2 \gas}
-
-You can get the same result without the package option by using the arguments:
-\begin{lstlisting}
- \ce{C \solid[f] + 2 H2O \liquid[fl] -> CO2\gas{} + 2 H2\gas}
-\end{lstlisting}
-\ce{C \solid[f] + 2 H2O \liquid[fl] -> CO2\gas{} + 2 H2\gas}
-
-If you looked closely, you have probably noticed that the german \lstinline=\liquid= isn't identical to \lstinline=\liquid[fl]= but to \lstinline=\liquid[f\/l]=. This makes the subscript more readable.
-
-Of course it doesn't matter which command with optional argument you use. Both of them just write a subscript with braces. \lstinline=\solid[f]= is identical to \lstinline=\liquid[f]=.
+These commands are intended to indicate the phase of a compound. Although these commands were intended for the use with \paket{mhchem} they can be used without it as well.
+\begin{itemize}
+ \item\cmd{sld\oa{<anything>}} \sld\formercmd{solid}
+ \item\cmd{lqd\oa{<anything>}} \lqd\formercmd{liquid}
+ \item\cmd{gas} \gas
+ \item\cmd{aq} \aq
+\end{itemize}
+Please notice, that the commands \cmd{solid} and \cmd{liquid} are now called \cmd{sld} and \cmd{lqd}, respectively.
+
+\begin{LTXexample}[pos=b]
+ \ce{C\sld{} + 2 H2O\lqd{} -> CO2\gas{} + 2 H2\gas}\\
+ To make it complete: NaCl\aq.
+\end{LTXexample}
+
+With the package option \code{german} (see section \ref{sec:optionen}) or by using the optional arguments you get the german versions:
+\begin{LTXexample}[pos=b]
+ {\chemsetup[option]{german=true}
+ \ce{C\sld{} + 2 H2O\lqd{} -> CO2\gas{} + 2 H2\gas} }\\
+ \ce{C \sld[f] + 2 H2O \lqd[fl] -> CO2\gas{} + 2 H2\gas}
+\end{LTXexample}
+
+If you looked closely, you have probably noticed that the german \cmd{lqd} isn't identical to \cmd{lqd\oa{fl}} but to \cmd{lqd\oa{f\textbackslash /l}}. This makes the subscript more readable.
+
+Of course it doesn't matter which command with optional argument you use. Both of them just write a subscript with braces. \cmd{sld\oa{f}} is identical to \cmd{lqd\oa{f}}.
One can think of other uses, too:
-\begin{lstlisting}
- C\solid[graphite]
-\end{lstlisting}
-C\solid[graphite]
+\begin{LTXexample}
+ C\sld[graphite]
+\end{LTXexample}
\subsection{Text Under Compounds}\label{ssec:mhchem_beschriftung}
-\NEU[1.1]It has always been a bit laborious to write something under a molecule with `mhchem'. `\CMname' provides a command for that:
-\begin{lstlisting}
- \mhName[<width>][<textattr>]{<mhchem code>}{<name>}
-\end{lstlisting}
+\CMname provides a command, with which you can place text below of compounds.\changed{mhName}\Key[\cmd{centering}][mhName]{align}{<alignment>}\Key[][mhName]{fontattr}{<commands>}\Key[\cmd{tiny}][mhName]{fontsize}{<fontsize>}\Key[][mhName]{width}{<dim>}
+\begin{framed}
+ \cmd{mhName\oa{<keyval>}\ma{<formula>}\ma{<text>}}
+\end{framed}
For example:
-\begin{lstlisting}
+\begin{LTXexample}[pos=b]
\ce{4 C2H5Cl + Pb / Na -> \mhName{Pb(C2H5)4}{former antiknock additive} + NaCl}
-\end{lstlisting}
-\ce{4 C2H5Cl + Pb / Na -> \mhName{Pb(C2H5)4}{former antiknock additive} + NaCl}
-
-As you can see the text is set centered and \lstinline=\tiny=, while the molecule uses it's normal space. With the first optional argument you can choose the width, that the molecule uses:
-\begin{lstlisting}
- \ce{4 C2H5Cl + Pb / Na -> \mhName[3cm]{Pb(C2H5)4}{former antiknock additive} + NaCl}
-\end{lstlisting}
-\ce{4 C2H5Cl + Pb / Na -> \mhName[3cm]{Pb(C2H5)4}{former antiknock additive} + NaCl}
-
-The text attributes have \lstinline=\centering\tiny= as default. Using other attributes can overwrite them in certain circumstances:
-\begin{lstlisting}
- \ce{4 C2H5Cl + Pb / Na -> \mhName[3cm]{Pb(C2H5)4}{\small former antiknock additive} + NaCl}\\
- \ce{4 C2H5Cl + Pb / Na -> \mhName[3cm]{Pb(C2H5)4}{\raggedright\color{red}\bfseries former antiknock additive} + NaCl}
-\end{lstlisting}
-\ce{4 C2H5Cl + Pb / Na -> \mhName[3cm]{Pb(C2H5)4}{\small former antiknock additive} + NaCl}\\
-\ce{4 C2H5Cl + Pb / Na -> \mhName[3cm]{Pb(C2H5)4}{\raggedright\color{red}\bfseries former antiknock additive} + NaCl}
-
-Using the second optional argument will overwrite them in any case:
-\begin{lstlisting}
- \ce{4 C2H5Cl + Pb / Na -> \mhName[3cm][\small]{Pb(C2H5)4}{former antiknock additive} + NaCl}\\
- \ce{4 C2H5Cl + Pb / Na -> \mhName[3cm][\raggedright\color{red}\bfseries]{Pb(C2H5)4}{former antiknock additive} + NaCl}
-\end{lstlisting}
-\ce{4 C2H5Cl + Pb / Na -> \mhName[3cm][\small]{Pb(C2H5)4}{former antiknock additive} + NaCl}\\
-\ce{4 C2H5Cl + Pb / Na -> \mhName[3cm][\raggedright\color{red}\bfseries]{Pb(C2H5)4}{former antiknock additive} + NaCl}
-
-You can change the default values globally by using
-\begin{lstlisting}
- \setmhName{<textattr>}
-\end{lstlisting}
-With this command you can change the predefined settings as you like:
-\begin{lstlisting}
- \setmhName{\centering\footnotesize\color{blue}}
+\end{LTXexample}
+
+There are several keys to customize \cmd{mhName}.
+\begin{itemize}
+ \item\code{align}
+ \item\code{fontattr}
+ \item\code{fontsize}
+ \item\code{width}
+\end{itemize}
+\begin{LTXexample}[pos=b]
+ \ce{4 C2H5Cl + Pb / Na -> \mhName[fontsize=\footnotesize]{Pb(C2H5)4}{former antiknock additive} + NaCl}\\
+ \chemsetup[mhName]{align=\raggedright,fontsize=\small,fontattr=\bfseries\color{red},width=3cm}
\ce{4 C2H5Cl + Pb / Na -> \mhName{Pb(C2H5)4}{former antiknock additive} + NaCl}
-\end{lstlisting}
-{\setmhName{\centering\footnotesize\color{blue}}
-\ce{4 C2H5Cl + Pb / Na -> \mhName{Pb(C2H5)4}{former antiknock additive} + NaCl}}
+\end{LTXexample}
+
+In v1.1 there was the command \cmd{setmhName\ma{<textattr>}}\formercmd{setmhName\ma{<textattr>}}. By using the package option \code{version=1} it is provided again.
\section{Newman Projections}\label{sec:newman}
-The command
-\begin{lstlisting}
- \newman[<angle>,<scale>,<tikz>]{<1>,<2>,<3>,<4>,<5>,<6>}
-\end{lstlisting}
-allows you to create newman projections (uses `\TikZ'). Examples:
-\begin{lstlisting}
- \newman{}\par% default: staggered
- \newman[175]{}\par% rotated by 175 degrees => eclipsed
- \newman{1,2,3,4,5,6} \newman{1,2,3} \newman{,,,4,5,6}\par% with atoms
- \newman[,.75,draw=blue,fill=blue!20]{}% scaled and customized with TikZ
-\end{lstlisting}
-\newman{}\par
-\newman[175]{}\par
-\newman{1,2,3,4,5,6} \newman{1,2,3} \newman{,,,4,5,6}\par
-\newman[,.75,draw=blue,fill=blue!20]{}
-
-Another option allows you to customize the nodes within which the atoms are placed:
-\begin{lstlisting}
- \newman[][<tikz nodes>]{<1>,<2>,<3>,<4>,<5>,<6>}
- % example:
- \newman[][draw=red,fill=red!20,inner sep=2pt,rounded corners]{1,2,3,4,5,6}
-\end{lstlisting}
-\newman[][draw=red,fill=red!20,inner sep=2pt,rounded corners]{1,2,3,4,5,6}
-
-If you want to display the "front" atoms differently from the "back" atoms, you can use a third option:
-\begin{lstlisting}
- \newman[][<tikz front nodes>][<tikz back nodes>]{<1>,<2>,<3>,<4>,<5>,<6>}
-\end{lstlisting}
-Examples:
-\begin{lstlisting}
- \newman[][draw=red,fill=red!20,inner sep=2pt,rounded corners][draw=blue,fill=blue!20,inner sep=2pt,rounded corners]{1,2,3,4,5,6}
-\end{lstlisting}
-\newman[][draw=red,fill=red!20,inner sep=2pt,rounded corners][draw=blue,fill=blue!20,inner sep=2pt,rounded corners]{1,2,3,4,5,6}
-\begin{lstlisting}
- \newman[170][draw=red,fill=red!20,inner sep=2pt,rounded corners][draw=blue,fill=blue!20,inner sep=2pt,rounded corners]{1,2,3,4,5,6}
-\end{lstlisting}
-\newman[170][draw=red,fill=red!20,inner sep=2pt,rounded corners][draw=blue,fill=blue!20,inner sep=2pt,rounded corners]{1,2,3,4,5,6}
-
-\section{p-Orbitals}\label{sec:orbitale}
-`\CMname' provides commands to visualize p-orbitals.
-\begin{lstlisting}
- \porb[<size factor>,<color>,<angle>]
- \phorb[<size factor>,<color>,<angle>]
- \setorbheight{<length>}
-\end{lstlisting}
-This displays a horizontal orbital or one rotated by \lstinline=<angle>=: \lstinline=\porb \qquad \porb[,,30]= \quad\porb \qquad\porb[,,30]
-
-\lstinline=\phorb= only displays one half orbital: \lstinline=\phorb[,red,90]= \phorb[,red,90]
-
-The size of the orbitals depends on an internal length that can be set with \lstinline=\setorbheight{<length>}=. It's default value is \lstinline=1em=.
-\begin{lstlisting}
- \porb\par
- \setorbheight{2em}\porb
-\end{lstlisting}
-{\porb\par\setorbheight{2em}\porb}
-
-The size of an orbital can also be changed directly using the optional argument \lstinline=<size factor>=.
-\begin{lstlisting}
- \porb\par
- \porb[2]\par
- \porb[.5]
-\end{lstlisting}
-{\porb\par\porb[2]\par\porb[.5]}
-
-There are shortcuts for the $x$-, $y$- and $z$-orbitals:
-\begin{lstlisting}
- \pzorb \qquad \pyorb \qquad \pxorb
-\end{lstlisting}
-\pzorb \qquad \pyorb \qquad \pxorb
-
-Since the orbitals are drawn in a tikzpicture with the option \lstinline=overlay=, they are set all at the same spot, if you don't shift them:
-\begin{lstlisting}
- \hspace{2cm}\pxorb\pyorb\pzorb
- \tikz[overlay]{
- \draw[->](0,0)--(1,0)node[right]{$y$};
- \draw[dashed](0,0)--(-1,0);
- \draw[->](0,0)--(0,1)node[above]{$z$};
- \draw[dashed](0,0)--(0,-1);
- \draw[->](0,0)--(-.707,-.707)node[below left]{$x$};
- \draw[dashed](0,0)--(.707,.707);
+\CMname provides the command\changed{newman}
+\begin{framed}
+ \cmd{newman\oa{<keyval>}\da{<angle>}\ma{<1>,<2>,<3>,<4>,<5>,<6>}}
+\end{framed}
+that allows you to create newman projections (uses \TikZ). With \code{<angle>} the back atoms are rotated counter clockwise with respect to the front atoms.\Key[0][newman]{angle}{<angle>}\Key[1][newman]{scale}{<factor>}\Key[][newman]{ring}{<tikz>}\Key[][newman]{atoms}{<tikz>}\Key[][newman]{back-atoms}{<tikz>}
+\begin{LTXexample}[pos=b]
+ \newman{} \newman(170){}
+ \newman{1,2,3,4,5,6} \newman{1,2,3} \newman{,,,4,5,6}
+\end{LTXexample}
+
+Several keys allow customization:
+\begin{itemize}
+ \item\code{angle = <angle>} default angle
+ \item\code{scale = <factor>} scale the whole projection
+ \item\code{ring = <tikz>} customize the ring with \TikZ keys
+ \item\code{atoms = <tikz>} customize the nodes within which the atoms are set
+ \item\code{back-atoms = <tikz>} explicitly customize the back atoms
+\end{itemize}
+\begin{LTXexample}[pos=b]
+ \chemsetup[newman]{angle=45} \newman{}
+ \newman[scale=.75,ring={draw=blue,fill=blue!20}]{}
+\end{LTXexample}
+\begin{LTXexample}
+ \chemsetup[newman]{atoms={draw=red,fill=red!20,inner sep=2pt,rounded corners}}
+ \newman{1,2,3,4,5,6}
+\end{LTXexample}
+\begin{LTXexample}[pos=b]
+ \chemsetup[newman]{
+ atoms = {draw=red,fill=red!20,inner sep=2pt,rounded corners},
+ back-atoms = {draw=blue,fill=blue!20,inner sep=2pt,rounded corners}
+ }
+ \newman{1,2,3,4,5,6} \newman(170){1,2,3,4,5,6}
+\end{LTXexample}
+
+\section{s, p, and Hybrid Orbitals}\label{sec:orbitale}
+In v1.1 there have been the commands \cmd{porb\oa{<options>}}\formercmd{porb\oa{<options>}}, \cmd{phorb\oa{<options>}}\formercmd{phorb\oa{<options>}}, \cmd{pxorb}\formercmd{pxorb}, \cmd{pyorb}\formercmd{pyorb} und \cmd{pzorb}\formercmd{pzorb}. By using the package option \code{version=1} they are provided again
+
+\CMname provides the following command to create orbitals:
+\begin{framed}
+ \cmd{orbital\oa{<keyval>}\ma{<type}}
+\end{framed}
+There are the following types available for \code{<type>}:
+\begin{itemize}
+ \item\code{s}
+ \item\code{p}
+ \item\code{sp}
+ \item\code{sp2}
+ \item\code{sp3}
+\end{itemize}
+\begin{LTXexample}[pos=b]
+ \orbital{s} \orbital{p} \orbital{sp} \orbital{sp2} \orbital{sp3}
+\end{LTXexample}
+
+Depending on the type you have different keys to modify the orbitals:\Key[+][orbital/<type>](orbital){phase}{\uline{+}/-}\Key[1][orbital/<type>](orbital){scale}{<factor>}\Key[black][orbital/<type>](orbital){color}{<color>}\Key[90][orbital/<type>](orbital){angle}{<angle>}\Key[false][orbital/<type>](orbital){half}{\uline{true}/false}
+\begin{itemize}
+ \item\code{phase = \uline{+}/-} changes the phase of the orbital (all types)
+ \item\code{scale = <factor>} changes the size of the orbital (all types)
+ \item\code{color = <color>} changes the color of the orbital (all types)
+ \item\code{angle = <angle>} rotates the orbitals with a p contribution counter clockwise (all types except \code{s})
+ \item\code{half = \uline{true}/false} displays only half an orbital (only \code{p})
+\end{itemize}
+\begin{LTXexample}[pos=b]
+ \orbital{s} \orbital[phase=-]{s}
+ \orbital{p} \orbital[phase=-]{p}
+ \orbital{sp3} \orbital[phase=-]{sp3}
+
+ \orbital[angle=0]{p} \orbital[color=red!50]{p} \orbital[angle=135,scale=1.5]{p} \orbital[half]{p}
+\end{LTXexample}
+
+Additionally there are two keys, with which the \TikZ behaviour can be changed.\Key[false][orbital]{overlay}{\uline{true}/false}\Key[1][orbital]{opacity}{<num>}
+\begin{itemize}
+ \item\code{overlay = \uline{true}/false} the orbital ``doesn't need space''; it is displayed with the \TikZ option \code{overlay}.
+ \item\code{opacity = <num>} the orbital becomes transparent; \code{<value>} can have values between \code{1} (fully opaque) to \code{0} (invisible).
+\end{itemize}
+\begin{LTXexample}[pos=b]
+ \vspace{1cm}\hspace{1cm}
+ \chemsetup[orbital]{
+ overlay,
+ p/color = black!70
+ }
+ \setbondoffset{0pt}
+ \chemfig{?\orbital{p}-[,1.3]{\orbital[phase=-]{p}}-[:30,1.1]\orbital{p}-[:150,.9]{\orbital[phase=-]{p}}-[4,1.3]\orbital{p}-[:-150,1.1]{\orbital[phase=-]{p}}?}
+ \vspace{1cm}
+\end{LTXexample}
+\begin{LTXexample}[pos=b]
+ \vspace{2cm}\hspace{2cm}
+ \setbondoffset{0pt}
+ \chemsetup[orbital]{
+ overlay ,
+ opacity = .75 ,
+ p/scale = 1.6 ,
+ s/color = blue!50 ,
+ s/scale = 1.6
}
-\end{lstlisting}
-\hspace{2cm}\pxorb\pyorb\pzorb\tikz[overlay]{\draw[->](0,0)--(1,0)node[right]{$y$};\draw[->](0,0)--(0,1)node[above]{$z$};\draw[->](0,0)--(-.707,-.707)node[below left]{$x$};\draw[dashed](0,0)--(-1,0);\draw[dashed](0,0)--(0,-1);\draw[dashed](0,0)--(.707,.707);}
-\vspace{2cm}
-
-The orbitals also can be used together with `chemfig':
-\begin{lstlisting}
- \setorbheight{2em}\setbondoffset{0pt}
- \chemfig{?\pzorb-[,1.3]\pzorb-[:30,1.1]\pzorb-[:150,.9]\pzorb-[4,1.3]\pzorb-[:-150,1.1]\pzorb?}\qquad
- \chemfig{?\pzorb-[,1.3]{\porb[,,-90]}-[:30,1.1]\pzorb-[:150,.9]{\porb[,,-90]}-[4,1.3]\pzorb-[:-150,1.1]{\porb[,,-90]}?}
-\end{lstlisting}
-\vspace{1cm}
-{\setorbheight{2em}\setbondoffset{0pt}
-\chemfig{?\pzorb-[,1.3]\pzorb-[:30,1.1]\pzorb-[:150,.9]\pzorb-[4,1.3]\pzorb-[:-150,1.1]\pzorb?}\qquad
-\chemfig{?\pzorb-[,1.3]{\porb[,,-90]}-[:30,1.1]\pzorb-[:150,.9]{\porb[,,-90]}-[4,1.3]\pzorb-[:-150,1.1]{\porb[,,-90]}?}}
-
-\section{List of Commands}\label{sec:befehlsreferenz}
-\begin{tabular}{>{\raggedright}p{.35\textwidth}|>{\raggedright}p{.55\textwidth}}\toprule
- \lstinline=\el=, \lstinline=\prt=, \lstinline=\ntr=, \lstinline=\HtO=, \lstinline=\water=, \lstinline=\Hpl=, \lstinline=\Hyd=, \lstinline=\Nu=, \lstinline=\El=, \lstinline=\transitionstatesymbol=, \lstinline=\R= & section \ref{sec:teilchen}: Particles, Ions and a Symbol\tabularnewline\midrule
- \lstinline=\cip=, \lstinline=\Rcip=, \lstinline=\Scip=, \lstinline=\Dfi=, \lstinline=\Lfi=, \lstinline=\E=, \lstinline=\Z=, \lstinline=\cis=, \lstinline=\trans=, \lstinline=\Rconf=, \lstinline=\Sconf=, \lstinline=\ortho=, \lstinline=\meta=, \lstinline=\para=, \lstinline=\insitu=, \lstinline=\abinitio= & section \ref{sec:stereo}: Stereo Descriptors, Nomenclature, Latin Phrases\tabularnewline\midrule
- \lstinline=\pH=, \lstinline=\pOH=, \lstinline=\pKa=, \lstinline=\pKb= & section \ref{sec:saeure_base}: Acid/Base \tabularnewline\midrule
- \lstinline=\delm=, \lstinline=\delp=, \lstinline=\mch=, \lstinline=\pch=, \lstinline=\ox=, \lstinline=\scrm=, \lstinline=\scrp= & section \ref{sec:ladungen}: Oxidation Numbers and (real) Charges\tabularnewline\midrule
- \lstinline=\mech= & section \ref{sec:mechanismen}: Reaction Mechanisms \tabularnewline\midrule
- \lstinline=\redox=, \lstinline=\OX= & section \ref{sec:redoxreaktionen}: Redox Reactions \tabularnewline\midrule
- \lstinline=\Enthalpy=, \lstinline=\Entropy=, \lstinline=\Gibbs=, \lstinline=\setnewstate=, \lstinline=\renewstate=, \lstinline=\State=, \lstinline=\setstatesubscript= & section \ref{sec:standardstate}: (Standard) State, Thermodynamics \tabularnewline\midrule
- \lstinline=\NMR= & section \ref{sec:spektroskopie}: Spectroscopy \tabularnewline\midrule
- \lstinline=\begin{reaction}=, \lstinline=\begin{reaction*}=, \lstinline=\begin{reactions}=, \lstinline=\begin{reactions*}=, \lstinline=\newreaction=, \lstinline=\solid=, \lstinline=\liquid=, \lstinline=\gas=, \lstinline=\mhName=, \lstinline=\setmhName= & section \ref{sec:mhchem}: Commands for `mhchem'\tabularnewline\midrule
- \lstinline=\newman= & section \ref{sec:newman}: Newman Projections \tabularnewline\midrule
- \lstinline=\phorb=, \lstinline=\porb=, \lstinline=\pxorb=, \lstinline=\pyorb=, \lstinline=\pzorb=, \lstinline=\setorbheight= & section \ref{sec:orbitale}: p-Orbitals\tabularnewline\bottomrule
-\end{tabular}
+ \chemfig{\orbital{s}-[:-20]{\orbital[scale=2]{p}}{\orbital[half,angle=0]{p}}{\orbital[angle=170,half]{p}}{\orbital[angle=-150,half]{p}}(-[:-150]\orbital{s})-\orbital{s}}
+ \vspace{2cm}
+\end{LTXexample}
+
+\section{Key Overview}
+In the table below all keys provided by \CMname for customization are listed. All keys that belong to a module; can be set with \cmd{chemsetup\oa{<module>}\ma{<keyval>}} or \linebreak\cmd{chemsetup\ma{<module>/<keyval>}}.
+
+Some keys can be set without value. Then the \uline{underlined} value is used.
+\begin{fullwidth}
+\begin{longtable}{>{\ttfamily\hspace{5mm}}l>{\ttfamily}l>{\ttfamily}l>{\ttfamily}ll}
+ \toprule
+ \normalfont\bfseries key & \normalfont\bfseries module & \normalfont\bfseries values & \normalfont\bfseries default & \\
+ \midrule
+ \endhead
+ \bottomrule
+ \endfoot
+ \multicolumn{5}{l}{Paket-Optionen:} \\
+ bpchem & option & \uline{true}/false & false & page \pageref{key:option_bpchem} \\
+ circled & option & \uline{formal}/all/none & formal & page \pageref{key:option_circled} \\
+ circletype & option & \uline{chem}/math & chem & page \pageref{key:option_circletype} \\
+ EZ & option & \uline{chemmacros}/cool & chemmacros & page \pageref{key:option_EZ} \\
+ german & option & \uline{true}/false & false & page \pageref{key:option_german} \\
+ version & option & 1/2 & 2 & page \pageref{key:option_version} \\
+ xspace & option & \uline{true}/false & true & page \pageref{key:option_xspace} \\
+ \multicolumn{5}{l}{\cmd{pch}, \cmd{mch}, \cmd{fpch}, \cmd{fmch}:} \\
+ append & charges & \uline{true}/false & false & Seite \pageref{key:charges_append} \\
+ \multicolumn{5}{l}{\cmd{ox}:} \\
+ parse & ox & \uline{true}/false & true & page \pageref{key:ox_parse} \\
+ roman & ox & \uline{true}/false & true & page \pageref{key:ox_roman} \\
+ pos & ox & top/super/side & top & page \pageref{key:ox_pos} \\
+ explicit-sign & ox & \uline{true}/false & false & page \pageref{key:ox_explicit-sign} \\
+ decimal-marker & ox & comma/point & point & page \pageref{key:ox_decimal-marker} \\
+ \multicolumn{5}{l}{\cmd{OX}, \cmd{redox}:} \\
+ dist & redox & <dim> & .6em & page \pageref{key:redox_dist} \\
+ sep & redox & <dim> & .2em & page \pageref{key:redox_sep} \\
+ \multicolumn{5}{l}{\cmd{Enthalpy}, \cmd{Entropy}, \cmd{Gibbs}:} \\
+ exponent & & <anything> & \cmd{standardstate} & page \pageref{key:thermo_exponent} \\
+ delta & & <anything>/false & & page \pageref{key:thermo_delta} \\
+ subscript & & left/right & & page \pageref{key:thermo_subscript} \\
+ unit & & <unit> & & page \pageref{key:thermo_unit} \\
+ \multicolumn{5}{l}{\cmd{setnewstate}, \cmd{renewstate}:} \\
+ exponent & & <anything> & \cmd{standardstate} & page \pageref{key:newstate_exponent} \\
+ delta & & <anything>/false & & page \pageref{key:newstate_delta} \\
+ subscript & & <anything> & & page \pageref{key:newstate_subscript} \\
+ subscript-left & & true/false & & page \pageref{key:newstate_subscript-left} \\
+ \multicolumn{5}{l}{\cmd{State}:} \\
+ exponent & & <anything> & \cmd{standardstate} & page \pageref{key:state_exponent} \\
+ delta & & <anything>/false & & page \pageref{key:state_delta} \\
+ subscript-left & & true/false & & page \pageref{key:state_subscript-left} \\
+ \multicolumn{5}{l}{\cmd{NMR}:} \\
+ unit & nmr & <unit> & \cmd{mega}\cmd{hertz} & page \pageref{key:nmr_unit} \\
+ nucleus & nmr & \{<num>,<atom symbol>\} & \{1,H\} & page \pageref{key:nmr_nucleus} \\
+ \multicolumn{5}{l}{\cmd{newreaction}:} \\
+ star & & \uline{true}/false & false & page \pageref{key:star} \\
+ arg & & \uline{true}/false & false & page \pageref{key:arg} \\
+ \multicolumn{5}{l}{\cmd{mhName}:} \\
+ align & mhName & <alignment> & \cmd{centering} & page \pageref{key:mhName_align} \\
+ fontattr & mhName & <commands> & & page \pageref{key:mhName_fontattr} \\
+ fontsize & mhName & <fontsize> & \cmd{tiny} & page \pageref{key:mhName_fontsize} \\
+ width & mhName & <dim> & & page \pageref{key:mhName_width} \\
+ \multicolumn{5}{l}{\cmd{newman}:} \\
+ angle & newman & <angle> & 0 & page \pageref{key:newman_angle} \\
+ scale & newman & <factor> & 1 & page \pageref{key:newman_scale} \\
+ ring & newman & <tikz> & & page \pageref{key:newman_ring} \\
+ atoms & newman & <tikz> & & page \pageref{key:newman_atoms} \\
+ back-atoms & newman & <tikz> & & page \pageref{key:newman_back-atoms} \\
+ \multicolumn{5}{l}{\cmd{orbital} \ttfamily <type> = s/p/sp/sp2/sp3:} \\
+ phase & orbital/<type> & \uline{+}/- & + & page \pageref{key:orbital_phase} \\
+ scale & orbital/<type> & <factor> & 1 & page \pageref{key:orbital_scale} \\
+ color & orbital/<type> & <color> & black & page \pageref{key:orbital_color} \\
+ angle & orbital/<type> & <angle> & 90 & page \pageref{key:orbital_angle} \\
+ half & orbital/p & \uline{true}/false & false & page \pageref{key:orbital_half} \\
+ overlay & orbital & \uline{true}/false & false & page \pageref{key:orbital_overlay} \\
+ opacity & ornital & <num> & 1 & page \pageref{key:orbital_opacity}
+\end{longtable}
+\end{fullwidth}
+
+\section{Suggestions and Bug Reports}
+Feedback on \CMname is highly appreciated and welcome! If you have suggestions for macros, missing features \etc, please don't hesitate to cantact me. If you recognize any errors, be it chemical ones, wrong documentation and the like, I'd be grateful about a short email to \href{mailto:contact@mychemistry.eu}{contact@mychemistry.eu}. If you find any bugs, it would be best, if you'd send me a minimal example, with which I can reproduce the bug.
+
+Many thanks to all the people, who already provided me with feedback!
\end{document} \ No newline at end of file