summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/beamer/examples
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/beamer/examples')
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-conference-talk/beamerexample-conference-talk.pdfbin0 -> 223323 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-conference-talk/beamerexample-conference-talk.tex744
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic1.jpgbin0 -> 82 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic2.jpgbin0 -> 82 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic3.jpgbin0 -> 82 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic4.jpgbin0 -> 82 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic5.jpgbin0 -> 82 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic6.jpgbin0 -> 82 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-beamer-version.pdfbin0 -> 412371 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-beamer-version.tex13
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-beamer-version.tex~4
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-body.tex587
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-logo.pdfbin0 -> 32823 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic1.jpgbin0 -> 36833 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic2.jpgbin0 -> 4290 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic3.jpgbin0 -> 40020 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic4.jpgbin0 -> 27790 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic5.jpgbin0 -> 49011 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic6.jpgbin0 -> 27779 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-print-version.pdfbin0 -> 244023 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-print-version.tex14
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-style.tex233
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-computer-mask.jpgbin6170 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-computer.jpgbin11664 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-computerred.jpgbin14237 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-g4-mask.jpgbin5778 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-g4.jpgbin11710 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-g4red.jpgbin12175 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-ram-mask.jpgbin2107 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-ram.jpgbin15874 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo-mask.jpgbin1736 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo.jpgbin5549 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo-mask.jpgbin11284 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo.jpgbin14479 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.pdfbin901614 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.tex941
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.pdfbin78957 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.tex11
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.pdfbin45112 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.tex10
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.tex95
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.pdfbin130811 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.tex130
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.pdfbin74297 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.tex45
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.pdfbin592869 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.tex1021
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.pdfbin151641 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.tex69
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/lyx-based-presentation/beamerexample-lyx.lyx3880
50 files changed, 5475 insertions, 2322 deletions
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-conference-talk/beamerexample-conference-talk.pdf b/Master/texmf-dist/doc/latex/beamer/examples/a-conference-talk/beamerexample-conference-talk.pdf
new file mode 100644
index 00000000000..449567937b9
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-conference-talk/beamerexample-conference-talk.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-conference-talk/beamerexample-conference-talk.tex b/Master/texmf-dist/doc/latex/beamer/examples/a-conference-talk/beamerexample-conference-talk.tex
new file mode 100644
index 00000000000..f5faef720e9
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-conference-talk/beamerexample-conference-talk.tex
@@ -0,0 +1,744 @@
+% Copyright 2007 by Till Tantau
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License and/or
+% 2. under the GNU Public License.
+%
+% See the file doc/licenses/LICENSE for more details.
+
+
+
+\documentclass{beamer}
+
+%
+% DO NOT USE THIS FILE AS A TEMPLATE FOR YOUR OWN TALKS¡!!
+%
+% Use a file in the directory solutions instead.
+% They are much better suited.
+%
+
+
+% Setup appearance:
+
+\usetheme{Darmstadt}
+\usefonttheme[onlylarge]{structurebold}
+\setbeamerfont*{frametitle}{size=\normalsize,series=\bfseries}
+\setbeamertemplate{navigation symbols}{}
+
+
+% Standard packages
+
+\usepackage[english]{babel}
+\usepackage[latin1]{inputenc}
+\usepackage{times}
+\usepackage[T1]{fontenc}
+
+
+% Setup TikZ
+
+\usepackage{tikz}
+\usetikzlibrary{arrows}
+\tikzstyle{block}=[draw opacity=0.7,line width=1.4cm]
+
+
+% Author, Title, etc.
+
+\title[Block Partitioning and Perfect Phylogenies]
+{%
+ On the Complexity of SNP Block Partitioning Under the Perfect
+ Phylogeny Model%
+}
+
+\author[Gramm, Hartman, Nierhoff, Sharan, Tantau]
+{
+ Jens~Gramm\inst{1} \and
+ Tzvika~Hartman\inst{2} \and
+ Till~Nierhoff\inst{3} \and
+ Roded~Sharan\inst{4} \and
+ \textcolor{green!50!black}{Till~Tantau}\inst{5}
+}
+
+\institute[Tübingen and others]
+{
+ \inst{1}%
+ Universität Tübingen, Germany
+ \and
+ \vskip-2mm
+ \inst{2}%
+ Bar-Ilan University, Ramat-Gan, Israel
+ \and
+ \vskip-2mm
+ \inst{3}%
+ International Computer Science Institute, Berkeley, USA
+ \and
+ \vskip-2mm
+ \inst{4}%
+ Tel-Aviv University, Israel
+ \and
+ \vskip-2mm
+ \inst{5}%
+ Universität zu Lübeck, Germany
+}
+
+\date[WABI 2006]
+{Workshop on Algorithms in Bioinformatics, 2006}
+
+
+
+% The main document
+
+\begin{document}
+
+\begin{frame}
+ \titlepage
+\end{frame}
+
+\begin{frame}{Outline}
+ \tableofcontents
+\end{frame}
+
+
+\section{Introduction}
+
+\subsection{The Model and the Problem}
+
+\begin{frame}{What is haplotyping and why is it important?}
+ You hopefully know this after the previous three talks\dots
+\end{frame}
+
+\begin{frame}[t]{General formalization of haplotyping.}
+ \begin{block}{Inputs}
+ \begin{itemize}
+ \item A \alert{genotype matrix} $G$.
+ \item The \alert{rows} of the matrix are \alert{taxa / individuals}.
+ \item The \alert{columns} of the matrix are \alert{SNP sites /
+ characters}.
+ \end{itemize}
+ \end{block}
+ \begin{block}{Outputs}
+ \begin{itemize}
+ \item A \alert{haplotype matrix} $H$.
+ \item Pairs of rows in $H$ \alert{explain} the rows of $G$.
+ \item The haplotypes in $H$ are \alert{biologically plausible}.
+ \end{itemize}
+ \end{block}
+\end{frame}
+
+
+\begin{frame}[t]{Our formalization of haplotyping.}
+ \begin{block}{Inputs}
+ \begin{itemize}
+ \item A genotype matrix $G$.
+ \item The rows of the matrix are individuals / taxa.
+ \item The columns of the matrix are SNP sites / characters.
+ \item<alert@1->
+ The problem is directed: one haplotype is known.
+ \item<alert@1->
+ The input is biallelic: there are only two homozygous
+ states (0 and 1) and one heterozygous state (2).
+ \end{itemize}
+ \end{block}
+ \begin{block}{Outputs}
+ \begin{itemize}
+ \item A haplotype matrix $H$.
+ \item Pairs of rows in $H$ explain the rows of $G$.
+ \item<alert@1> The haplotypes in $H$ form a perfect phylogeny.
+ \end{itemize}
+ \end{block}
+\end{frame}
+
+
+\begin{frame}{We can do perfect phylogeny haplotyping efficiently, but
+ \dots}
+ \begin{enumerate}
+ \item \alert{Data may be missing.}
+ \begin{itemize}
+ \item This makes the problem NP-complete \dots
+ \item \dots even for very restricted cases.
+ \end{itemize}
+ \textcolor{green!50!black}{Solutions:}
+ \begin{itemize}
+ \item Additional assumption like the rich data hypothesis.
+ \end{itemize}
+ \item \alert{No perfect phylogeny is possible.}
+ \begin{itemize}
+ \item This can be caused by chromosomal crossing-over effects.
+ \item This can be caused by incorrect data.
+ \item This can be caused by multiple mutations at the same sites.
+ \end{itemize}
+ \textcolor{green!50!black}{Solutions:}
+ \begin{itemize}
+ \item Look for phylogenetic networks.
+ \item Correct data.
+ \item<alert@1->
+ Find blocks where a perfect phylogeny is possible.
+ \end{itemize}
+ \end{enumerate}
+\end{frame}
+
+
+\subsection{The Integrated Approach}
+
+\begin{frame}{How blocks help in perfect phylogeny haplotyping.}
+ \begin{enumerate}
+ \item Partition the site set into overlapping contiguous blocks.
+ \item Compute a perfect phylogeny for each block and combine them.
+ \item Use dynamic programming for finding the partition.
+ \end{enumerate}
+
+ \begin{tikzpicture}
+ \useasboundingbox (0,-1) rectangle (10,2);
+
+ \draw[line width=2mm,dash pattern=on 1mm off 1mm]
+ (0,1) -- (9.99,1) node[midway,above] {Genotype matrix}
+ (0,0.6666) -- (9.99,0.6666)
+ (0,0.3333) -- (9.99,0.3333)
+ (0,0) -- (9.99,0) node[midway,below] {\only<1>{no perfect phylogeny}};
+
+ \begin{scope}[xshift=-.5mm]
+ \only<2->
+ {
+ \draw[red,block] (0,.5) -- (3,.5)
+ node[midway,below] {perfect phylogeny};
+ }
+
+ \only<3->
+ {
+ \draw[green!50!black,block] (2.5,.5) -- (7,.5)
+ node[pos=0.6,below] {perfect phylogeny};
+ }
+
+ \only<4->
+ {
+ \draw[blue,block] (6.5,.5) -- (10,.5)
+ node[pos=0.6,below] {perfect phylogeny};
+ }
+ \end{scope}
+ \end{tikzpicture}
+\end{frame}
+
+\begin{frame}{Objective of the integrated approach.}
+ \begin{enumerate}
+ \item Partition the site set into \alert{noncontiguous} blocks.
+ \item Compute a perfect phylogeny for each block and combine them.
+ \item<alert@1-> Compute partition while computing perfect
+ phylogenies.
+ \end{enumerate}
+
+ \begin{tikzpicture}
+ \useasboundingbox (0,-1) rectangle (10,2);
+
+ \draw[line width=2mm,dash pattern=on 1mm off 1mm]
+ (0,1) -- (9.99,1) node[midway,above] {Genotype matrix}
+ (0,0.6666) -- (9.99,0.6666)
+ (0,0.3333) -- (9.99,0.3333)
+ (0,0) -- (9.99,0) node[midway,below] {\only<1>{no perfect phylogeny}};
+
+ \only<2->
+ {
+ \begin{scope}[xshift=-0.5mm]
+ \draw[red,block] (0,.5) -- (3,.5)
+ node[midway,below] {perfect phylogeny}
+ (8,.5) -- (9,.5);
+
+ \draw[green!50!black,block]
+ (3,.5) -- (6,.5)
+ node[pos=0.6,below] {perfect phylogeny}
+ (6.4,.5) -- (8,.5)
+ (9,.5) -- (10,.5);
+
+ \draw[blue,block] (6,.5) -- (6.4,.5)
+ node[midway,below=5mm] {perfect phylogeny};
+ \end{scope}
+ }
+ \end{tikzpicture}
+\end{frame}
+
+
+\begin{frame}{The formal computational problem.}
+ We are interested in the computational complexity of \\
+ \alert{the function \alert{$\chi_{\operatorname{PP}}$}}:
+ \begin{itemize}
+ \item It gets genotype matrices as input.
+ \item It maps them to a number $k$.
+ \item This number is minimal such that the sites can be
+ covered by $k$ sets, each admitting a perfect phylogeny.
+ \\
+ (We call this a \alert{pp-partition}.)
+ \end{itemize}
+\end{frame}
+
+
+\section{Bad News: Hardness Results}
+
+\subsection{Hardness of PP-Partitioning of Haplotype Matrices}
+
+\begin{frame}{Finding pp-partitions of haplotype matrices.}
+ We start with a special case:
+ \begin{itemize}
+ \item The inputs $M$ are \alert{already haplotype matrices}.
+ \item The inputs $M$ \alert{do not allow a perfect phylogeny}.
+ \item What is $\chi_{\operatorname{PP}}(M)$?
+ \end{itemize}
+ \begin{example}
+ \begin{columns}
+ \column{.3\textwidth}
+ $M\colon$
+ \footnotesize
+ \begin{tabular}{cccc}
+ 0 & 0 & 0 & 1 \\
+ 0 & 1 & 0 & 0 \\
+ 1 & 0 & 0 & 0 \\
+ 0 & 1 & 0 & 0 \\
+ 1 & 0 & 0 & 0 \\
+ 0 & 1 & 0 & 1 \\
+ 1 & 1 & 0 & 0 \\
+ 0 & 0 & 1 & 0 \\
+ 1 & 0 & 1 & 0
+ \end{tabular}%
+ \only<2>
+ {%
+ \begin{tikzpicture}
+ \useasboundingbox (2.9,0);
+
+ \draw [red, opacity=0.7,line width=1cm] (1.7 ,1.9) -- (1.7 ,-1.7);
+ \draw [blue,opacity=0.7,line width=5mm] (0.85,1.9) -- (0.85,-1.7)
+ (2.55,1.9) -- (2.55,-1.7);
+ \end{tikzpicture}
+ }
+ \column{.6\textwidth}
+ \begin{overprint}
+ \onslide<1>
+ No perfect phylogeny is possible.
+
+ \onslide<2>
+ \textcolor{blue!70!bg}{Perfect phylogeny}
+
+ \textcolor{red!70!bg}{Perfect phylogeny}
+
+ $\chi_{\operatorname{PP}}(M) = 2$.
+
+ \end{overprint}
+ \end{columns}
+ \end{example}
+\end{frame}
+
+\begin{frame}{Bad news about pp-partitions of haplotype matrices.}
+ \begin{theorem}
+ Finding \alert{optimal pp-partition of haplotype matrices}\\
+ is equivalent to finding \alert{optimal graph colorings}.
+ \end{theorem}
+
+ \begin{proof}[Proof sketch for first direction]
+ \begin{enumerate}
+ \item Let $G$ be a graph.
+ \item Build a matrix with a column for each vertex of $G$.
+ \item For each edge of $G$ add four rows inducing\\the
+ submatrix $\left(
+ \begin{smallmatrix}
+ 0 & 0 \\
+ 0 & 1 \\
+ 1 & 0 \\
+ 1 & 1
+ \end{smallmatrix}\right)$.
+ \item The submatrix enforces that the columns lie in different
+ perfect phylogenies. \qedhere
+ \end{enumerate}
+ \end{proof}
+\end{frame}
+
+\begin{frame}{Implications for pp-partitions of haplotype matrices.}
+ \begin{corollary}
+ If $\chi_{\operatorname{PP}}(M) = 2$ for a haplotype matrix $M$,
+ we can find an optimal pp-partition in polynomial time.
+ \end{corollary}
+
+ \begin{corollary}
+ Computing $\chi_{\operatorname{PP}}$ for haplotype matrices is
+ \begin{itemize}
+ \item $\operatorname{NP}$-hard,
+ \item not fixed-parameter tractable, unless
+ $\operatorname{P}=\operatorname{NP}$,
+ \item very hard to approximate.
+ \end{itemize}
+ \end{corollary}
+\end{frame}
+
+
+\subsection{Hardness of PP-Partitioning of Genotype Matrices}
+
+
+\begin{frame}{Finding pp-partitions of genotype matrices.}
+ Now comes the general case:
+ \begin{itemize}
+ \item The inputs $M$ are \alert{genotype matrices}.
+ \item The inputs $M$ \alert{do not allow a perfect phylogeny}.
+ \item What is $\chi_{\operatorname{PP}}(M)$?
+ \end{itemize}
+ \begin{example}
+ \begin{columns}
+ \column{.3\textwidth}
+ $M\colon$
+ \footnotesize
+ \begin{tabular}{cccc}
+ 2 & 2 & 2 & 2 \\
+ 1 & 0 & 0 & 0 \\
+ 0 & 0 & 0 & 1 \\
+ 0 & 0 & 1 & 0 \\
+ 0 & 2 & 2 & 0 \\
+ 1 & 1 & 0 & 0
+ \end{tabular}%
+ \only<2>
+ {%
+ \begin{tikzpicture}
+ \useasboundingbox (2.9,0);
+
+ \draw [red, opacity=0.7,line width=1cm] (1.7 ,1.3) -- (1.7 ,-1.1);
+ \draw [blue,opacity=0.7,line width=5mm] (0.85,1.3) -- (0.85,-1.1)
+ (2.55,1.3) -- (2.55,-1.1);
+ \end{tikzpicture}
+ }
+ \column{.6\textwidth}
+ \begin{overprint}
+ \onslide<1>
+ No perfect phylogeny is possible.
+
+ \onslide<2>
+ \textcolor{blue!70!bg}{Perfect phylogeny}
+
+ \textcolor{red!70!bg}{Perfect phylogeny}
+
+ $\chi_{\operatorname{PP}}(M) = 2$.
+
+ \end{overprint}
+ \end{columns}
+ \end{example}
+\end{frame}
+
+
+\begin{frame}{Bad news about pp-partitions of haplotype matrices.}
+ \begin{theorem}
+ Finding \alert{optimal pp-partition of genotype matrices}
+ is at least as hard as finding \alert{optimal colorings of
+ 3-uniform hypergraphs}.
+ \end{theorem}
+
+ \begin{proof}[Proof sketch]
+ \begin{enumerate}
+ \item Let $G$ be a 3-uniform hypergraph.
+ \item Build a matrix with a column for each vertex of $G$.
+ \item For each hyperedge of $G$ add four rows inducing\\ the submatrix
+ $\left(
+ \begin{smallmatrix}
+ 2 & 2 & 2 \\
+ 1 & 0 & 0 \\
+ 0 & 1 & 0 \\
+ 0 & 0 & 1
+ \end{smallmatrix}\right)
+ $.
+ \item The submatrix enforces that the three columns do not all lie
+ in the same perfect phylogeny. \qedhere
+ \end{enumerate}
+ \end{proof}
+\end{frame}
+
+\begin{frame}{Implications for pp-partitions of genotype matrices.}
+ \begin{corollary}
+ Even if we know $\chi_{\operatorname{PP}}(M) = 2$ for a genotype matrix $M$,\\
+ finding a pp-partition of any fixed size is still
+ \begin{itemize}
+ \item $\operatorname{NP}$-hard,
+ \item not fixed-parameter tractable, unless
+ $\operatorname{P}=\operatorname{NP}$,
+ \item very hard to approximate.
+ \end{itemize}
+ \end{corollary}
+\end{frame}
+
+
+\section{Good News: Tractability Results}
+
+\subsection{Perfect Path Phylogenies}
+
+\begin{frame}{Automatic optimal pp-partitioning is hopeless, but\dots}
+ \begin{itemize}
+ \item The hardness results are \alert{worst-case} results for\\
+ \alert{highly artificial inputs}.
+ \item \alert{Real biological data} might have special properties
+ that make the problem \alert{tractable}.
+ \item One such property is that perfect phylogenies are often
+ perfect \alert{path} phylogenies:
+
+ In HapMap data, in 70\% of the blocks where a perfect phylogeny
+ is possible a perfect path phylogeny is also possible.
+ \end{itemize}
+\end{frame}
+
+
+\begin{frame}{Example of a perfect path phylogeny.}
+ \begin{columns}[t]
+ \column{.3\textwidth}
+ \begin{exampleblock}{Genotype matrix}
+ $G\colon$
+ \begin{tabular}{ccc}
+ A & B & C \\\hline
+ 2 & 2 & 2 \\
+ 0 & 2 & 0 \\
+ 2 & 0 & 0 \\
+ 0 & 2 & 2
+ \end{tabular}
+ \end{exampleblock}
+
+ \column{.3\textwidth}
+ \begin{exampleblock}{Haplotype matrix}
+ $H\colon$
+ \begin{tabular}{ccc}
+ A & B & C \\\hline
+ 1 & 0 & 0 \\
+ 0 & 1 & 1 \\
+ 0 & 0 & 0 \\
+ 0 & 1 & 0 \\
+ 0 & 0 & 0 \\
+ 1 & 0 & 0 \\
+ 0 & 0 & 0 \\
+ 0 & 1 & 1
+ \end{tabular}
+ \end{exampleblock}
+
+ \column{.4\textwidth}
+ \begin{exampleblock}{Perfect path phylogeny}
+ \begin{center}
+ \begin{tikzpicture}[auto,thick]
+ \tikzstyle{node}=%
+ [%
+ minimum size=10pt,%
+ inner sep=0pt,%
+ outer sep=0pt,%
+ ball color=example text.fg,%
+ circle%
+ ]
+
+ \node [node] {} [->]
+ child {node [node] {} edge from parent node[swap]{A}}
+ child {node [node] {}
+ child {node [node] {} edge from parent node{C}}
+ edge from parent node{B}
+ };
+ \end{tikzpicture}
+ \end{center}
+ \end{exampleblock}
+ \end{columns}
+\end{frame}
+
+
+\begin{frame}{The modified formal computational problem.}
+ We are interested in the computational complexity of \\
+ the function $\chi_{\alert{\operatorname{PPP}}}$:
+ \begin{itemize}
+ \item It gets genotype matrices as input.
+ \item It maps them to a number $k$.
+ \item This number is minimal such that the sites can be
+ covered by $k$ sets, each admitting a perfect \alert{path} phylogeny.
+ \\
+ (We call this a ppp-partition.)
+ \end{itemize}
+\end{frame}
+
+
+
+\subsection{Tractability of PPP-Partitioning of Genotype Matrices}
+
+\begin{frame}{Good news about ppp-partitions of genotype matrices.}
+ \begin{theorem}
+ \alert{Optimal ppp-partitions of genotype matrices} can be
+ computed in \alert{polynomial time}.
+ \end{theorem}
+ \begin{block}{Algorithm}
+ \begin{enumerate}
+ \item Build the following partial order:
+ \begin{itemize}
+ \item Can one column be above the other in a phylogeny?
+ \item Can the columns be the two children of the root of a
+ perfect path phylogeny?
+ \end{itemize}
+ \item Cover the partial order with as few compatible chain pairs
+ as possible.
+
+ For this, a maximal matching in a special graph needs to be
+ computed.
+ \end{enumerate}
+ \end{block}
+ \hyperlink{algorithm<1>}{\beamergotobutton{The algorithm in action}}
+ \hypertarget{return}{}
+\end{frame}
+
+\section*{Summary}
+
+\begin{frame}
+ \frametitle<presentation>{Summary}
+
+ \begin{itemize}
+ \item
+ Finding optimal pp-partitions is \alert{intractable}.
+ \item
+ It is even intractable to find a pp-partition when \alert{just two
+ noncontiguous blocks are known to suffice}.
+ \item
+ For perfect \alert{path} phylogenies, optimal partitions can be
+ computed \alert{in polynomial time}.
+ \end{itemize}
+\end{frame}
+
+
+\appendix
+
+\section*{Appendix}
+
+\begin{frame}[label=algorithm]{The algorithm in action.}{Computation of
+ the partial order.}
+ \begin{columns}[t]
+ \column{.4\textwidth}
+ \begin{exampleblock}{Genotype matrix}
+ $G\colon$
+ \begin{tabular}{ccccc}
+ A & B & C & D & E \\\hline
+ 2 & 2 & 2 & 2 & 2 \\
+ 0 & 1 & 2 & 1 & 0 \\
+ 1 & 0 & 0 & 1 & 2 \\
+ 0 & 2 & 2 & 0 & 0
+ \end{tabular}
+ \end{exampleblock}
+ \column{.6\textwidth}
+ \begin{exampleblock}{Partial order}
+ \begin{tikzpicture}[node distance=15mm]
+ \tikzstyle{every node}=
+ [%
+ fill=green!50!black!20,%
+ draw=green!50!black,%
+ minimum size=7mm,%
+ circle,%
+ thick%
+ ]
+
+ \node (A) {A};
+ \node (B) [right of=A] {B};
+ \node (C) [below of=B] {C};
+ \node (D) [above of=A] {D};
+ \node (E) [below of=A] {E};
+
+ \path [thick,shorten >=1pt,-stealth'] (A) edge (E)
+ (B) edge (C)
+ (D) edge (A)
+ edge[bend right] (E);
+
+ \uncover<2>{
+ \path [-,blue,thick](A) edge (B)
+ edge (C)
+ (B) edge (E)
+ (C) edge (E);}
+ \end{tikzpicture}
+
+ Partial order: \tikz[baseline] \draw[thick,-stealth'] (0pt,.5ex)
+ -- (5mm,.5ex);
+
+ \uncover<2>{\textcolor{blue}{Compatible as children of root:
+ \tikz[baseline] \draw[thick] (0pt,.5ex) -- (5mm,.5ex);}}
+ \end{exampleblock}
+ \end{columns}
+\end{frame}
+
+\begin{frame}{The algorithm in action.}{The matching in the special graph.}
+ \begin{columns}[t]
+ \column{.3\textwidth}
+ \begin{exampleblock}{Partial order}
+ \begin{tikzpicture}[node distance=15mm]
+ \tikzstyle{every node}=%
+ [%
+ fill=green!50!black!20,%
+ draw=green!50!black,%
+ minimum size=8mm,%
+ circle,%
+ thick%
+ ]
+
+ \node (A) {$A$};
+ \node (B) [right of=A] {$B$};
+ \node (C) [below of=B] {$C$};
+ \node (D) [above of=A] {$D$};
+ \node (E) [below of=A] {$E$};
+
+ \path [thick,shorten >=1pt,-stealth'] (A) edge (E)
+ (B) edge (C)
+ (D) edge (A)
+ edge[bend right] (E);
+
+ \path [-,blue,thick](A) edge (B)
+ edge (C)
+ (B) edge (E)
+ (C) edge (E);
+
+ \only<3->
+ {
+ \path[very thick,shorten >=1pt,-stealth',red] (D) edge (A) (B) edge (C);
+ \path [-,red,very thick](E) edge (B);
+ }
+ \end{tikzpicture}
+ \end{exampleblock}
+ \column{.7\textwidth}
+ \begin{exampleblock}{Matching graph}
+ \begin{tikzpicture}[node distance=15mm]
+ \tikzstyle{every node}=%
+ [%
+ fill=green!50!black!20,%
+ draw=green!50!black,%
+ minimum size=8mm,%
+ circle,%
+ thick,%
+ inner sep=0pt%
+ ]
+
+ \node (A) {$A$};
+ \node (B) [right of=A] {$B$};
+ \node (C) [below of=B] {$C$};
+ \node (D) [above of=A] {$D$};
+ \node (E) [below of=A] {$E$};
+
+ \begin{scope}[xshift=4.75cm]
+ \node (A') {$A'$};
+ \node (B') [right of=A'] {$B'$};
+ \node (C') [below of=B'] {$C'$};
+ \node (D') [above of=A'] {$D'$};
+ \node (E') [below of=A'] {$E'$};
+ \end{scope}
+
+ \path [thick] (A) edge (E')
+ (B) edge (C')
+ (D) edge (A')
+ edge (E');
+
+ \path [blue,thick](A') edge (B')
+ edge (C')
+ (B') edge (E')
+ (C') edge (E');
+
+ \only<2->
+ {
+ \path[very thick,red] (D) edge (A')
+ (B) edge (C')
+ (B') edge (E');
+ }
+ \end{tikzpicture}
+ \end{exampleblock}
+ \end{columns}
+
+ \medskip
+ \uncover<2->{A \alert{maximal matching} in the matching graph
+ \uncover<3>{induces\\ \alert{perfect path phylogenies}.}}
+
+ \hfill\hyperlink{return}{\beamerreturnbutton{Return}}
+\end{frame}
+
+\end{document}
+
+
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic1.jpg b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic1.jpg
new file mode 100644
index 00000000000..cc27292132f
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic1.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic2.jpg b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic2.jpg
new file mode 100644
index 00000000000..cc27292132f
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic2.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic3.jpg b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic3.jpg
new file mode 100644
index 00000000000..cc27292132f
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic3.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic4.jpg b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic4.jpg
new file mode 100644
index 00000000000..cc27292132f
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic4.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic5.jpg b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic5.jpg
new file mode 100644
index 00000000000..cc27292132f
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic5.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic6.jpg b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic6.jpg
new file mode 100644
index 00000000000..cc27292132f
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/._beamerexample-lecture-pic6.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-beamer-version.pdf b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-beamer-version.pdf
new file mode 100644
index 00000000000..2dade4ae2d7
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-beamer-version.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-beamer-version.tex b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-beamer-version.tex
new file mode 100644
index 00000000000..dbda07c3ab7
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-beamer-version.tex
@@ -0,0 +1,13 @@
+% Copyright 2007 by Till Tantau
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License and/or
+% 2. under the GNU Public License.
+%
+% See the file doc/licenses/LICENSE for more details.
+
+\documentclass[german,10pt]{beamer}
+
+\input{beamerexample-lecture-style.tex}
+\input{beamerexample-lecture-body.tex}
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-beamer-version.tex~ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-beamer-version.tex~
new file mode 100644
index 00000000000..8d24a941e04
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-beamer-version.tex~
@@ -0,0 +1,4 @@
+\documentclass[german,10pt]{beamer}
+
+\input{beamerexample-lecture-style.tex}
+\input{beamerexample-lecture-body.tex}
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-body.tex b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-body.tex
new file mode 100644
index 00000000000..5d472951be4
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-body.tex
@@ -0,0 +1,587 @@
+% Copyright 2007 by Till Tantau
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License and/or
+% 2. under the GNU Public License.
+%
+% See the file doc/licenses/LICENSE for more details.
+
+%
+% DO NOT USE THIS FILE AS A TEMPLATE FOR YOUR OWN TALKS¡!!
+%
+% Use a file in the directory solutions instead.
+% They are much better suited.
+%
+
+
+\lecture[1]{Syntax versus Semantik}{lecture-text}
+
+\subtitle{Text und seine Bedeutung}
+
+\date{27. Oktober 2006}
+
+
+\begin{document}
+
+\begin{frame}
+ \maketitle
+\end{frame}
+
+
+\section*{Ziele und Inhalt}
+
+\begin{frame}{Die Lernziele der heutigen Vorlesung und der Übungen.}
+ \begin{enumerate}
+ \item Die Begriffe Syntax und Semantik erklären können
+ \item Syntaktische und semantische Elemente natürlicher Sprachen und
+ von Programmiersprachen benennen können
+ \item Die Begriffe Alphabet und Wort kennen
+ \item Objekte als Worte kodieren können
+ \end{enumerate}
+\end{frame}
+
+\begin{frame}\frametitle<presentation>{Gliederung}
+ \tableofcontents
+\end{frame}
+
+
+\section{Was ist Syntax?}
+
+\begin{frame}{Die zwei Hauptbegriffe der heutigen Vorlesung.}
+ \begin{block}{Grobe Definition (Syntax)}
+ Unter einer \alert{Syntax} verstehen wir \alert{Regeln}, nach denen
+ Texte \alert{strukturiert} werden dürfen.
+ \end{block}
+ \begin{block}{Grobe Definition (Semantik)}
+ Unter einer \alert{Semantik} verstehen wir die Zuordnung von
+ \alert{Bedeutung} zu Text.
+ \end{block}
+\end{frame}
+
+
+\subsection[Syntax \protect\\ natürlicher Sprachen]{Syntax natürlicher Sprachen}
+
+\begin{frame}{Beobachtungen zu einem ägyptischen Text.}
+ \includegraphicscopyright[width=6cm]{beamerexample-lecture-pic3.jpg}
+ {Copyright by Guillaume Blanchard, GNU Free Documentation License, Low Resultion}
+
+ \begin{block}{Beobachtungen}
+ \begin{itemize}
+ \item Wir haben keine Ahnung, was der Text bedeutet.
+ \item Es gibt aber \alert{Regeln}, die offenbar eingehalten wurden,
+ wie »Hieroglyphen stehen in Zeilen«.
+ \item Solche Regeln sind \alert{syntaktische Regeln} -- man kann sie
+ überprüfen, ohne den Inhalt zu verstehen.
+ \end{itemize}
+ \end{block}
+\end{frame}
+
+
+\begin{frame}{Beobachtungen zu einem kyrillischen Text.}
+
+ \includegraphicscopyright[width=6.75cm]{beamerexample-lecture-pic4.jpg}
+ {Copyright by Cristian Chirita, GNU Free Documentation License, Low Resultion}
+
+ \begin{block}{Beobachtungen}
+ \begin{itemize}
+ \item Wir haben keine Ahnung, was der Text bedeutet.
+ \item Es gibt aber \alert{Regeln}, die offenbar eingehalten wurden.
+ \item Wir kennen mehr Regeln als bei den Hieroglyphen.
+ \end{itemize}
+ \end{block}
+
+ \begin{block}{Zur Diskussion}
+ Welche syntaktischen Regeln fallen Ihnen ein, die bei dem Text
+ eingehalten wurden?
+ \end{block}
+\end{frame}
+
+
+
+\begin{frame}{Beobachtungen zu einem deutschen Text.}
+ \begin{quotation}
+ Informatiker lieben Logiker.
+ \end{quotation}
+
+ \bigskip
+ \begin{block}{Beobachtungen}
+ \begin{itemize}
+ \item Auch hier werden viele syntaktische Regeln eingehalten.
+ \item Es fällt uns aber \alert{schwerer}, diese zu erkennen.
+ \item Der Grund ist, dass wir \alert{sofort über die Bedeutung
+ nachdenken}.
+ \end{itemize}
+ \end{block}
+\end{frame}
+
+\begin{frame}{Zur Syntax von natürlichen Sprachen.}
+ \begin{itemize}
+ \item
+ Die \alert{Syntax} einer natürlichen Sprache ist die Menge an
+ \alert{Regeln}, nach denen Sätze gebildet werden dürfen.
+ \item
+ Die \alert{Bedeutung} oder der \alert{Sinn} der gebildeten Sätze
+ ist dabei unerheblich.
+ \item
+ Jede Sprache hat ihre eigene Syntax; die Syntax verschiedener
+ Sprachen ähneln sich aber oft.
+ \item
+ Es ist nicht immer klar, ob eine Regel noch zur Syntax gehört
+ oder ob es schon um den Sinn geht.
+
+ \ExampleInline{Substantive werden groß geschrieben.}
+ \end{itemize}
+\end{frame}
+
+\subsection{Syntax von Programmiersprachen}
+
+\begin{frame}[fragile]{Beobachtungen zu einem Programmtext.}
+
+\begin{verbatim}
+\def\pgfpointadd#1#2{%
+ \pgf@process{#1}%
+ \pgf@xa=\pgf@x%
+ \pgf@ya=\pgf@y%
+ \pgf@process{#2}%
+ \advance\pgf@x by\pgf@xa%
+ \advance\pgf@y by\pgf@ya}
+\end{verbatim}
+ \begin{block}{Beobachtungen}
+ \begin{itemize}
+ \item Der Programmtext sieht sehr kryptisch aus.
+ \item Trotzdem gibt es offenbar wieder Regeln.
+ \item So scheint einem Doppelkreuz eine Ziffer zu folgen und
+ Zeilen muss man offenbar mit Prozentzeichen beenden.
+ \end{itemize}
+ \end{block}
+\end{frame}
+
+
+\begin{frame}[fragile]{Beobachtungen zu einem weiteren Programmtext.}
+
+\begin{verbatim}
+for (int i = 0; i < 100; i++)
+ a[i] = a[i];
+\end{verbatim}
+ \begin{block}{Beobachtungen}
+ \begin{itemize}
+ \item Wieder gibt es Regeln, die eingehalten werden.
+ \item Wieder fällt es uns \alert{schwerer}, diese zu erkennen, da
+ wir \alert{sofort über den Sinn nachdenken}.
+ \end{itemize}
+ \end{block}
+\end{frame}
+
+
+\begin{frame}{Zur Syntax von Programmiersprachen}
+ \begin{itemize}
+ \item Die \alert{Syntax} einer Programmiersprache ist die
+ \alert{Menge von Regeln}, nach der Programmtexte gebildet werden
+ dürfen.
+ \item Die \alert{Bedeutung} oder der \alert{Sinn} der Programmtexte
+ ist dabei egal.
+ \item
+ Jede Programmiersprache hat ihre eigene Syntax; die Syntax
+ verschiedener Sprachen ähneln sich aber oft.
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{5-Minuten-Aufgabe}
+ Welche der folgenden Regeln sind Syntax-Regeln?
+ \begin{enumerate}
+ \item Bezeichner dürfen nicht mit einer Ziffer anfangen.
+ \item Programme müssen in endlicher Zeit ein Ergebnis produzieren.
+ \item Öffnende und schließende geschweifte Klammern müssen
+ »balanciert« sein.
+ \item Methoden von Null-Objekten dürfen nicht aufgerufen werden.
+ \item Variablen müssen vor ihrer ersten Benutzung deklariert werden.
+ \end{enumerate}
+\end{frame}
+
+
+\subsection[Syntax\protect\\ logischer Sprachen]{Syntax logischer Sprachen}
+
+\begin{frame}{Beobachtungen zu einer logischen Formel.}
+ \begin{quotation}
+ $p \to q \land \neg q$
+ \end{quotation}
+
+ \bigskip
+ \begin{block}{Beobachtungen}
+ \begin{itemize}
+ \item Auch logische Formeln haben eine syntaktische Struktur.
+ \item So wäre es \alert{syntaktisch falsch}, statt einem Pfeil zwei
+ Pfeile zu benutzen.
+ \item Es wäre aber \alert{syntaktisch richtig}, statt einem
+ Negationszeichen zwei Negationszeichen zu verwenden.
+ \end{itemize}
+ \end{block}
+\end{frame}
+
+\begin{frame}{Zur Syntax von logischen Sprachen}
+ \begin{itemize}
+ \item Die \alert{Syntax} einer logischen Sprache ist die
+ \alert{Menge von Regeln}, nach der Formeln gebildet werden
+ dürfen.
+ \item Die \alert{Bedeutung} oder der \alert{Sinn} der Formeln
+ ist dabei egal.
+ \item
+ Jede logische Sprache hat ihre eigene Syntax; die Syntax
+ verschiedener Sprachen ähneln sich aber oft.
+ \end{itemize}
+\end{frame}
+
+
+
+\section{Was ist Semantik?}
+
+\subsection[Semantik\protect\\ natürlicher Sprachen]{Semantik natürlicher Sprachen}
+
+\begin{frame}{Was bedeutet ein Satz?}
+
+ \begin{quotation}
+ Der Hörsaal ist groß.
+ \end{quotation}
+
+ \bigskip
+ \begin{itemize}
+ \item Dieser Satz hat eine \alert{Bedeutung}.
+ \item Eine \alert{Semantik} legt solche Bedeutungen fest.
+ \item Syntaktisch falschen Sätzen wird im Allgemeinen keine
+ Bedeutung zugewiesen.
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{Ein Satz, zwei Bedeutungen.}
+ \begin{quotation}
+ Steter Tropfen höhlt den Stein.
+ \end{quotation}
+
+ \bigskip
+ \begin{itemize}
+ \item Ein Satz kann \alert{mehrere Bedeutungen haben}, welche durch
+ \alert{unterschiedliche Semantiken} gegeben sind.
+ \item In der \alert{wortwörtlichen Semantik} sagt der Satz aus, dass
+ Steine ausgehöhlte werden, wenn man jahrelang Wasser auf
+ sie tropft.
+ \item In der \alert{übertragenen Semantik} sagt der Satz aus, dass
+ sich Beharrlichkeit auszahlt.
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{Die Semantik der Hieroglyphen}
+ \includegraphicscopyright[height=8cm]{beamerexample-lecture-pic5.jpg}
+ {Unknown Author, Public Domain, Low Resolution}
+\end{frame}
+
+
+\subsection{Semantik von Programmiersprachen}
+
+\begin{frame}[fragile]{Was bedeutet ein Programm?}
+\begin{verbatim}
+for (int i = 0; i < 100; i++)
+ a[i] = a[i];
+\end{verbatim}
+ \begin{itemize}
+ \item Auch dieser Programmtext »bedeutet etwas«, wir »meinen etwas«
+ mit diesem Text.
+ \item Die \alert{Semantik der Programmiersprache} legt fest,
+ was mit dem Programmtext gemeint ist.
+ \end{itemize}
+\end{frame}
+
+\begin{frame}[fragile]{Ein Programm, zwei Bedeutungen.}
+\begin{verbatim}
+for (int i = 0; i < 100; i++)
+ a[i] = a[i];
+\end{verbatim}
+ \begin{itemize}
+ \item Ein Programmtext kann \alert{mehrere Bedeutungen haben},
+ welche durch \alert{unterschiedliche Semantiken} gegeben sind.
+ \item In der \alert{operationalen Semantik} bedeutet der
+ Programmtext, dass die ersten einhundert Elemente eines Arrays
+ \verb!a! nacheinander ihren eigenen Wert zugewiesen bekommen.
+ \item In der \alert{denotationellen Semantik} bedeutet der
+ Programmtext, dass nichts passiert.
+ \end{itemize}
+\end{frame}
+
+
+\subsection[Semantik\protect\\ logischer Sprachen]{Semantik logischer Sprachen}
+
+
+
+
+\section{Grundlage der Syntax: Text}
+
+\begin{frame}{Eine mathematische Sicht auf Text.}
+ \begin{itemize}
+ \item Viele (aber nicht alle!) syntaktische Systeme bauen auf
+ \alert{Text} auf.
+ \item Auch solche Systeme, die nicht auf Text aufbauen, lassen sich
+ trotzdem durch Text beschreiben.
+ \item Es ist deshalb nützlich, auf Text \text{Methoden der
+ Mathematik} anwenden zu können.
+ \item Im Folgenden wird deshalb die \alert{mathematische Sicht} auf
+ Text eingeführt, die \alert{in der gesamten Theoretischen
+ Informatik} genutzt wird.
+ \end{itemize}
+\end{frame}
+
+
+\subsection{Alphabete}
+
+\begin{frame}{Formale Alphabete}
+ \begin{definition}[Alphabet]
+ Ein \alert{Alphabet} ist eine nicht-leere, endliche Menge von
+ \alert{Symbolen} (auch \alert{Buchstaben} genannt).
+ \end{definition}
+
+ \begin{itemize}
+ \item Alphabete werden häufig mit griechischen Großbuchstaben
+ bezeichnet, also $\Gamma$ oder~$\Sigma$. Manchmal auch mit
+ lateinischen Großbuchstaben, also $N$ oder~$T$.
+ \item Ein Symbol oder »Buchstabe« kann auch ein komplexes oder
+ komisches »Ding« sein wie ein Pointer oder ein Leerzeichen.
+ \end{itemize}
+
+ \begin{examples}
+ \begin{itemize}
+ \item Die Groß- und Kleinbuchstaben
+ \item Die Menge $\{0,1\}$ (bei Informatikern beliebt)
+ \item Die Menge $\{A,C,G,T\}$ (bei Biologen beliebt)
+ \item Die Zeichenmenge des UNICODE.
+ \end{itemize}
+ \end{examples}
+\end{frame}
+
+
+\subsection{Worte}
+
+
+\begin{frame}{Formale Worte}
+ \begin{definition}[Wort]
+ Ein \alert{Wort} ist eine (endliche) Folge von Symbolen.
+ \end{definition}
+ \begin{itemize}
+ \item »Worte« sind im Prinzip dasselbe wie
+ Strings. Insbesondere können in Worten Leerzeichen als Symbole
+ auftauchen.
+ \item Die Menge aller Worte über einem Alphabet $\Sigma$ hat einen
+ besonderen Namen: $\Sigma^*$.
+ \item
+ Deshalb schreibt man oft: »Sei $w \in \Sigma^*$, \dots«
+ \item Es gibt auch ein \alert{leeres Wort}, abgekürzt
+ $\epsilon$ oder $\lambda$, das dem String
+ \texttt{\char`\"\char`\"} entspricht.
+ \end{itemize}
+
+ \begin{examples}
+ \begin{itemize}
+ \item \texttt{Hallo}
+ \item \texttt{TATAAAATATTA}
+ \item $\epsilon$
+ \item \texttt{Hallo Welt.}
+ \end{itemize}
+ \end{examples}
+\end{frame}
+
+
+\begin{frame}{5-Minuten-Aufgabe}
+ Die folgenden Aufgaben sind nach Schwierigkeit sortiert. Lösen Sie
+ \alert{eine} der Aufgaben.
+ \begin{enumerate}
+ \item
+ Schreiben Sie alle Worte der Länge höchstens $2$ über dem Alphabet
+ $\Sigma = \{0,1,*\}$ auf.
+ \item
+ Wie viele Worte der Länge $n$ über dem Alphabet $\Sigma =
+ \{0,1,*\}$ gibt es?
+ \item
+ Wie viele Worte der Länge höchstens $n$ über einem Alphabet mit
+ $q$ Buchstaben gibt es?
+ \end{enumerate}
+\end{frame}
+
+
+\subsection{Sprachen}
+
+\begin{frame}{Formale Sprachen}{Definition}
+ \begin{itemize}
+ \item Natürlichen Sprachen sind komplexe Dinge, bestehend aus
+ Wörtern, ihrer Ausprache, einer Grammatik, Ausnahmen, Dialekten,
+ und vielem mehr.
+ \item Bei \alert{formalen Sprachen} vereinfacht man radikal.
+ \item Formale Sprachen müssen weder sinnvoll noch interessant sein.
+ \end{itemize}
+
+ \begin{definition}[Formale Sprache]
+ Eine \alert{formale Sprache} ist eine (oft unendliche!) Menge von
+ Worten für ein festes Alphabet.
+ \end{definition}
+
+ \begin{itemize}
+ \item Statt \frqq formale Sprache\flqq\ sagt man einfach \frqq Sprache\flqq.
+ \item Als Menge von Worten ist eine Sprache eine Teilmenge von
+ $\Sigma^*$.
+ \item
+ Deshalb schreibt man oft: \frqq Sei $L \subseteq \Sigma^*$,
+ \dots\flqq
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{Formale Sprachen}{Einfache Beispiele}
+ \begin{examples}
+ \begin{itemize}
+ \item Die Menge $\{AAA, AAC, AAT\}$ (endliche Sprache).
+ \item Die Menge aller Java-Programmtexte (unendliche Sprache).
+ \item Die Menge aller Basensequenzen, die \texttt{TATA} enthalten
+ (unendliche Sprache).
+ \end{itemize}
+ \end{examples}
+\end{frame}
+
+\begin{frame}{Formale Sprachen in der Medieninformatik}
+ \begin{itemize}
+ \item Ein Renderer produziert 3D-Bilder.
+ \item Dazu erhält er eine \alert{Szenerie} als Eingabe.
+ \item Diese Szenerie ist als \alert{Text}, also als ein \alert{Wort} gegeben.
+ \item Eine \alert{Syntax} beschreibt die (formale) Sprache, die alle
+ \alert{syntaktisch korrekten Szenerien} enthält.
+ \item Eine \alert{Semantik} beschreibt, was diese Beschreibungen bedeuten.
+ \end{itemize}
+\end{frame}
+
+\begin{frame}[fragile]{Formale Sprachen in der Medieninformatik}{Das
+ »Wort«, das eine Szenerie beschreibt\dots}
+\only<presentation>{\scriptsize}
+\begin{verbatim*}
+global_settings { assumed_gamma 1.0 }
+
+camera {
+ location <10.0, 10, -10.0>
+ direction 1.5*z
+ right x*image_width/image_height
+ look_at <0.0, 0.0, 0.0>
+}
+
+sky_sphere { pigment { color rgb <0.6,0.7,1.0> } }
+
+light_source {
+ <0, 0, 0> // light's position (translated below)
+ color rgb <1, 1, 1> // light's color
+ translate <-30, 30, -30>
+ shadowless
+}
+
+#declare i = 0;
+#declare Steps = 30;
+#declare Kugel = sphere{<0,0,0>,0.5 pigment{color rgb<1,0,0>}};
+
+#while(i<Steps)
+ object{Kugel translate<3,0,0> rotate <0,i * 360 / Steps, 0> }
+ #declare i = i + 1;
+#end
+\end{verbatim*}
+\end{frame}
+
+
+\begin{frame}{Formale Sprachen in der Medieninformatik}{\dots\ und was es bedeutet.}
+ \includegraphicscopyright[width=9.5cm]{beamerexample-lecture-pic2.jpg}
+ {Copyright Matthias Kabel, GNU Free Documentation License, Low Resolution}
+\end{frame}
+
+\begin{frame}{Formale Sprachen in der Medieninformatik}{Komplexeres Beispielbild, das ein Renderer produziert.}
+ \includegraphicscopyright[width=9.5cm]{beamerexample-lecture-pic1.jpg}
+ {Copyright Giorgio Krenkel and Alex Sandri, GNU Free Documentation License, Low Resolution}
+\end{frame}
+
+
+\begin{frame}{Formale Sprachen in der Bioinformatik}
+ \begin{itemize}
+ \item In der Bioinformatik untersucht man unter anderem Proteine.
+ \item Dazu erhält man \alert{Molekülbeschreibungen} als Eingabe.
+ \item Eine solche ist auch ein \alert{Wort}.
+ \item Eine \alert{Syntax} beschreibt die (formale) Sprache, die alle
+ \alert{syntaktisch korrekten Molkülbeschreibungen} enthält.
+ \item Eine \alert{Semantik} beschreibt, was diese Beschreibungen bedeuten.
+ \end{itemize}
+\end{frame}
+
+
+\begin{frame}[fragile]{Formale Sprachen in der Bioinformatik}
+ {Das »Wort«, das ein Protein beschreibt\dots}
+\only<presentation>{\tiny}
+\only<article>{\footnotesize}
+\begin{verbatim}
+HEADER HYDROLASE 25-JUL-03 1UJ1
+TITLE CRYSTAL STRUCTURE OF SARS CORONAVIRUS MAIN PROTEINASE
+TITLE 2 (3CLPRO)
+COMPND MOL_ID: 1;
+COMPND 2 MOLECULE: 3C-LIKE PROTEINASE;
+COMPND 3 CHAIN: A, B;
+COMPND 4 SYNONYM: MAIN PROTEINASE, 3CLPRO;
+COMPND 5 EC: 3.4.24.-;
+COMPND 6 ENGINEERED: YES
+SOURCE MOL_ID: 1;
+SOURCE 2 ORGANISM_SCIENTIFIC: SARS CORONAVIRUS;
+SOURCE 3 ORGANISM_COMMON: VIRUSES;
+SOURCE 4 STRAIN: SARS;
+...
+REVDAT 1 18-NOV-03 1UJ1 0
+JRNL AUTH H.YANG,M.YANG,Y.DING,Y.LIU,Z.LOU,Z.ZHOU,L.SUN,L.MO,
+JRNL AUTH 2 S.YE,H.PANG,G.F.GAO,K.ANAND,M.BARTLAM,R.HILGENFELD,
+JRNL AUTH 3 Z.RAO
+JRNL TITL THE CRYSTAL STRUCTURES OF SEVERE ACUTE RESPIRATORY
+JRNL TITL 2 SYNDROME VIRUS MAIN PROTEASE AND ITS COMPLEX WITH
+JRNL TITL 3 AN INHIBITOR
+JRNL REF PROC.NAT.ACAD.SCI.USA V. 100 13190 2003
+JRNL REFN ASTM PNASA6 US ISSN 0027-8424
+....
+ATOM 1 N PHE A 3 63.478 -27.806 23.971 1.00 44.82 N
+ATOM 2 CA PHE A 3 64.607 -26.997 24.516 1.00 42.13 C
+ATOM 3 C PHE A 3 64.674 -25.701 23.723 1.00 41.61 C
+ATOM 4 O PHE A 3 65.331 -25.633 22.673 1.00 40.73 O
+ATOM 5 CB PHE A 3 65.912 -27.763 24.358 1.00 44.33 C
+ATOM 6 CG PHE A 3 67.065 -27.162 25.108 1.00 44.20 C
+ATOM 7 CD1 PHE A 3 67.083 -27.172 26.496 1.00 43.35 C
+ATOM 8 CD2 PHE A 3 68.135 -26.595 24.422 1.00 43.49 C
+ATOM 9 CE1 PHE A 3 68.140 -26.631 27.187 1.00 43.21 C
+ATOM 10 CE2 PHE A 3 69.210 -26.046 25.108 1.00 42.91 C
+ATOM 11 CZ PHE A 3 69.216 -26.062 26.493 1.00 43.22 C
+ATOM 12 N ARG A 4 64.007 -24.666 24.228 1.00 34.90 N
+ATOM 13 CA ARG A 4 63.951 -23.376 23.543 1.00 37.71 C
+...
+\end{verbatim}
+\end{frame}
+
+\begin{frame}[fragile]{Formale Sprachen in der Bioinformatik}
+ {\dots\ und das Protein, das beschrieben wird.}
+
+ \includegraphicscopyright[width=9.5cm]{beamerexample-lecture-pic6.jpg}
+ {Copyright Till Tantau, Low Resultion}
+\end{frame}
+
+
+\section<article>{Zusammenfassung}
+\section<presentation>*{Zusammenfassung}
+
+\begin{frame}{Zusammenfassung}
+ \begin{enumerate}
+ \item Ein \alert{Wort} ist eine Folge von Symbolen aus einem
+ \alert{Alphabet}.
+ \item Eine \alert{Syntax} besteht aus Regeln, nach denen
+ Worte (Texte) gebaut werden dürfen.
+ \item Eine \alert{Semantik} legt fest, was Worte \alert{bedeuten}.
+ \item Eine \alert{formale Sprache} ist eine Menge von Worten
+ über einem Alphabet.
+ \end{enumerate}
+\end{frame}
+
+\end{document}
+
+
+
+
+
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-logo.pdf b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-logo.pdf
new file mode 100644
index 00000000000..d870b1203d2
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-logo.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic1.jpg b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic1.jpg
new file mode 100644
index 00000000000..7fbce74d3e3
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic1.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic2.jpg b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic2.jpg
new file mode 100644
index 00000000000..958a7f288b5
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic2.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic3.jpg b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic3.jpg
new file mode 100644
index 00000000000..67c4bce95c1
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic3.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic4.jpg b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic4.jpg
new file mode 100644
index 00000000000..fd6c9c1b22e
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic4.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic5.jpg b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic5.jpg
new file mode 100644
index 00000000000..0a18dc5a735
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic5.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic6.jpg b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic6.jpg
new file mode 100644
index 00000000000..fb451d9195b
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-pic6.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-print-version.pdf b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-print-version.pdf
new file mode 100644
index 00000000000..f553a319c56
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-print-version.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-print-version.tex b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-print-version.tex
new file mode 100644
index 00000000000..ee5a65c8d28
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-print-version.tex
@@ -0,0 +1,14 @@
+% Copyright 2007 by Till Tantau
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License and/or
+% 2. under the GNU Public License.
+%
+% See the file doc/licenses/LICENSE for more details.
+
+\documentclass[german,a4paper,9pt]{extarticle}
+\usepackage{beamerarticle}
+\input{beamerexample-lecture-style.tex}
+\input{beamerexample-lecture-body.tex}
+
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-style.tex b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-style.tex
new file mode 100644
index 00000000000..b71e7a9d0ad
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/a-lecture/beamerexample-lecture-style.tex
@@ -0,0 +1,233 @@
+% Copyright 2007 by Till Tantau
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License and/or
+% 2. under the GNU Public License.
+%
+% See the file doc/licenses/LICENSE for more details.
+
+
+% Common packages
+
+\usepackage[german]{babel}
+\usepackage[latin1]{inputenc}
+\usepackage{times}
+\mode<article>
+{
+ \usepackage{times}
+ \usepackage{mathptmx}
+ \usepackage[left=1.5cm,right=6cm,top=1.5cm,bottom=3cm]{geometry}
+}
+
+\usepackage{hyperref}
+\usepackage[T1]{fontenc}
+\usepackage{tikz}
+\usepackage{colortbl}
+\usepackage{yfonts}
+\usepackage{colortbl}
+\usepackage{translator} % comment this, if not available
+
+
+% Common settings for all lectures in this course
+
+\def\lecturename{Logik für Informatiker}
+
+\title{\insertlecture}
+
+\author{Till Tantau}
+
+\institute
+{
+ Institut für Theoretische Informatik\\
+ Universität zu Lübeck
+}
+
+\subject{Vorlesung \lecturename}
+
+
+
+
+% Beamer version theme settings
+
+\useoutertheme[height=0pt,width=2cm,right]{sidebar}
+\usecolortheme{rose,sidebartab}
+\useinnertheme{circles}
+\usefonttheme[only large]{structurebold}
+
+\setbeamercolor{sidebar right}{bg=black!15}
+\setbeamercolor{structure}{fg=blue}
+\setbeamercolor{author}{parent=structure}
+
+\setbeamerfont{title}{series=\normalfont,size=\LARGE}
+\setbeamerfont{title in sidebar}{series=\bfseries}
+\setbeamerfont{author in sidebar}{series=\bfseries}
+\setbeamerfont*{item}{series=}
+\setbeamerfont{frametitle}{size=}
+\setbeamerfont{block title}{size=\small}
+\setbeamerfont{subtitle}{size=\normalsize,series=\normalfont}
+
+\setbeamertemplate{navigation symbols}{}
+\setbeamertemplate{bibliography item}[book]
+\setbeamertemplate{sidebar right}
+{
+ {\usebeamerfont{title in sidebar}%
+ \vskip1.5em%
+ \hskip3pt%
+ \usebeamercolor[fg]{title in sidebar}%
+ \insertshorttitle[width=2cm-6pt,center,respectlinebreaks]\par%
+ \vskip1.25em%
+ }%
+ {%
+ \hskip3pt%
+ \usebeamercolor[fg]{author in sidebar}%
+ \usebeamerfont{author in sidebar}%
+ \insertshortauthor[width=2cm-2pt,center,respectlinebreaks]\par%
+ \vskip1.25em%
+ }%
+ \hbox to2cm{\hss\insertlogo\hss}
+ \vskip1.25em%
+ \insertverticalnavigation{2cm}%
+ \vfill
+ \hbox to 2cm{\hfill\usebeamerfont{subsection in
+ sidebar}\strut\usebeamercolor[fg]{subsection in
+ sidebar}\insertshortlecture.\insertframenumber\hskip5pt}%
+ \vskip3pt%
+}%
+
+\setbeamertemplate{title page}
+{
+ \vbox{}
+ \vskip1em
+ {\huge Kapitel \insertshortlecture\par}
+ {\usebeamercolor[fg]{title}\usebeamerfont{title}\inserttitle\par}%
+ \ifx\insertsubtitle\@empty%
+ \else%
+ \vskip0.25em%
+ {\usebeamerfont{subtitle}\usebeamercolor[fg]{subtitle}\insertsubtitle\par}%
+ \fi%
+ \vskip1em\par
+ Vorlesung \emph{\lecturename}\ vom \insertdate\par
+ \vskip0pt plus1filll
+ \leftskip=0pt plus1fill\insertauthor\par
+ \insertinstitute\vskip1em
+}
+
+\logo{\includegraphics[width=2cm]{beamerexample-lecture-logo.pdf}}
+
+
+
+% Article version layout settings
+
+\mode<article>
+
+\makeatletter
+\def\@listI{\leftmargin\leftmargini
+ \parsep 0pt
+ \topsep 5\p@ \@plus3\p@ \@minus5\p@
+ \itemsep0pt}
+\let\@listi=\@listI
+
+
+\setbeamertemplate{frametitle}{\paragraph*{\insertframetitle\
+ \ \small\insertframesubtitle}\ \par
+}
+\setbeamertemplate{frame end}{%
+ \marginpar{\scriptsize\hbox to 1cm{\sffamily%
+ \hfill\strut\insertshortlecture.\insertframenumber}\hrule height .2pt}}
+\setlength{\marginparwidth}{1cm}
+\setlength{\marginparsep}{4.5cm}
+
+\def\@maketitle{\makechapter}
+
+\def\makechapter{
+ \newpage
+ \null
+ \vskip 2em%
+ {%
+ \parindent=0pt
+ \raggedright
+ \sffamily
+ \vskip8pt
+ {\fontsize{36pt}{36pt}\selectfont Kapitel \insertshortlecture \par\vskip2pt}
+ {\fontsize{24pt}{28pt}\selectfont \color{blue!50!black} \insertlecture\par\vskip4pt}
+ {\Large\selectfont \color{blue!50!black} \insertsubtitle\par}
+ \vskip10pt
+
+ \normalsize\selectfont Druckfassung der
+ Vorlesung \emph{\lecturename} vom \@date\par\vskip1.5em
+ \hfill Till Tantau, Institut für Theoretische Informatik, Universität zu Lübeck
+ }
+ \par
+ \vskip 1.5em%
+}
+
+\let\origstartsection=\@startsection
+\def\@startsection#1#2#3#4#5#6{%
+ \origstartsection{#1}{#2}{#3}{#4}{#5}{#6\normalfont\sffamily\color{blue!50!black}\selectfont}}
+
+\makeatother
+
+\mode
+<all>
+
+
+
+
+% Typesetting Listings
+
+\usepackage{listings}
+\lstset{language=Java}
+
+\alt<presentation>
+{\lstset{%
+ basicstyle=\footnotesize\ttfamily,
+ commentstyle=\slshape\color{green!50!black},
+ keywordstyle=\bfseries\color{blue!50!black},
+ identifierstyle=\color{blue},
+ stringstyle=\color{orange},
+ escapechar=\#,
+ emphstyle=\color{red}}
+}
+{
+ \lstset{%
+ basicstyle=\ttfamily,
+ keywordstyle=\bfseries,
+ commentstyle=\itshape,
+ escapechar=\#,
+ emphstyle=\bfseries\color{red}
+ }
+}
+
+
+
+% Common theorem-like environments
+
+\theoremstyle{definition}
+\newtheorem{exercise}[theorem]{\translate{Exercise}}
+
+
+
+
+% New useful definitions:
+
+\newbox\mytempbox
+\newdimen\mytempdimen
+
+\newcommand\includegraphicscopyright[3][]{%
+ \leavevmode\vbox{\vskip3pt\raggedright\setbox\mytempbox=\hbox{\includegraphics[#1]{#2}}%
+ \mytempdimen=\wd\mytempbox\box\mytempbox\par\vskip1pt%
+ \fontsize{3}{3.5}\selectfont{\color{black!25}{\vbox{\hsize=\mytempdimen#3}}}\vskip3pt%
+}}
+
+\newenvironment{colortabular}[1]{\medskip\rowcolors[]{1}{blue!20}{blue!10}\tabular{#1}\rowcolor{blue!40}}{\endtabular\medskip}
+
+\def\equad{\leavevmode\hbox{}\quad}
+
+\newenvironment{greencolortabular}[1]
+{\medskip\rowcolors[]{1}{green!50!black!20}{green!50!black!10}%
+ \tabular{#1}\rowcolor{green!50!black!40}}%
+{\endtabular\medskip}
+
+
+
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer-mask.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer-mask.jpg
deleted file mode 100644
index b459c8fa099..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer-mask.jpg
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer.jpg
deleted file mode 100644
index f48e2ae106f..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer.jpg
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-computerred.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-computerred.jpg
deleted file mode 100644
index 4e691bd2c58..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamer-computerred.jpg
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4-mask.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4-mask.jpg
deleted file mode 100644
index fe82742d707..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4-mask.jpg
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4.jpg
deleted file mode 100644
index cea4d4c2177..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4.jpg
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4red.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4red.jpg
deleted file mode 100644
index 77be392fa11..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4red.jpg
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram-mask.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram-mask.jpg
deleted file mode 100644
index 56556cfa7d9..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram-mask.jpg
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram.jpg
deleted file mode 100644
index a8768667840..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram.jpg
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo-mask.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo-mask.jpg
deleted file mode 100644
index 693877d65b7..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo-mask.jpg
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo.jpg
deleted file mode 100644
index 84d4fd4f228..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo.jpg
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo-mask.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo-mask.jpg
deleted file mode 100644
index a1ce12cdff0..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo-mask.jpg
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo.jpg
deleted file mode 100644
index 29dc62f5a9f..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo.jpg
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.pdf
deleted file mode 100644
index e766318d174..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.tex
deleted file mode 100644
index eaa7e9b642c..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.tex
+++ /dev/null
@@ -1,941 +0,0 @@
-% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample1.tex,v 1.47 2004/11/04 15:43:51 tantau Exp $
-
-\documentclass{beamer}
-%\documentclass{article}
-%\usepackage[envcountsect]{beamerarticle}
-
-% Do NOT take this file as a template for your own talks. Use a file
-% in the directory solutions instead. They are much better suited.
-
-% Try the class options [notes], [notes=only], [trans], [handout],
-% [red], [compress], [draft] and see what happens!
-
-% Copyright 2003 by Till Tantau <tantau@users.sourceforge.net>.
-%
-% This program can be redistributed and/or modified under the terms
-% of the LaTeX Project Public License Distributed from CTAN
-% archives in directory macros/latex/base/lppl.txt.
-
-% For a green structure color use:
-%\colorlet{structure}{green!50!black}
-
-\mode<article> % only for the article version
-{
- \usepackage{fullpage}
- \usepackage{hyperref}
-}
-
-
-\mode<presentation>
-{
- \setbeamertemplate{background canvas}[vertical shading][bottom=red!10,top=blue!10]
-
- \usetheme{Warsaw}
- \usefonttheme[onlysmall]{structurebold}
-}
-
-%\setbeamercolor{math text}{fg=green!50!black}
-%\setbeamercolor{normal text in math text}{parent=math text}
-
-\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps,pgfshade}
-\usepackage{amsmath,amssymb}
-\usepackage[latin1]{inputenc}
-\usepackage{colortbl}
-\usepackage[english]{babel}
-
-%\usepackage{lmodern}
-%\usepackage[T1]{fontenc}
-
-\usepackage{times}
-
-\setbeamercovered{dynamic}
-
-%
-% The following defintions are peculiar to this particular
-% presetation. They have nothing to do with the beamer class
-%
-
-\newcommand{\Lang}[1]{\operatorname{\text{\textsc{#1}}}}
-
-\newcommand{\Class}[1]{\operatorname{\mathchoice
- {\text{\normalfont\small #1}}
- {\text{\normalfont\small #1}}
- {\text{\normalfont#1}}
- {\text{\normalfont#1}}}}
-
-\newcommand{\DOF}{\Class{DOF}}
-\newcommand{\NOF}{\Class{NOF}}
-\newcommand{\DOFpoly}{\Class{DOF}_{\operatorname{poly}}}
-\newcommand{\NOFpoly}{\Class{NOF}_{\operatorname{poly}}}
-
-
-\newcommand{\Nat}{\mathbb{N}}
-\newcommand{\Set}[1]{\{#1\}}
-
-\pgfdeclaremask{computer}{beamer-computer-mask}
-\pgfdeclaremask{apple}{beamer-g4-mask}
-\pgfdeclaremask{ram}{beamer-ram-mask}
-
-\pgfdeclareimage[interpolate=true,mask=computer,%
- width=1.8361cm,height=2cm]{computerimage}{beamer-computer}
-\pgfdeclareimage[interpolate=true,mask=computer,%
- width=1.8361cm,height=2cm]{computerworkingimage}{beamer-computerred}
-\pgfdeclareimage[interpolate=true,mask=apple,%
- width=1.625cm,height=2cm]{apple}{beamer-g4}
-\pgfdeclareimage[interpolate=true,mask=apple,%
- width=1.625cm,height=2cm]{appleworking}{beamer-g4red}
-\pgfdeclareimage[interpolate=true,mask=ram,%
- width=3.811cm,height=1cm]{ram}{beamer-ram}
-
-\newcommand{\tape}[9]{%
- \pgfputat{#1}{%
- \pgfsetlinewidth{0.8pt}%
- \pgfrect[stroke]{\pgfxy(0,0)}{\pgfxy(4,0.5)}%
- \pgfsetlinewidth{0.4pt}%
- \pgfline{\pgfxy(0.5,0)}{\pgfxy(0.5,0.5)}%
- \pgfline{\pgfxy(1.0,0)}{\pgfxy(1.0,0.5)}%
- \pgfline{\pgfxy(1.5,0)}{\pgfxy(1.5,0.5)}%
- \pgfline{\pgfxy(2.0,0)}{\pgfxy(2.0,0.5)}%
- \pgfline{\pgfxy(2.5,0)}{\pgfxy(2.5,0.5)}%
- \pgfline{\pgfxy(3.0,0)}{\pgfxy(3.0,0.5)}%
- \pgfline{\pgfxy(3.5,0)}{\pgfxy(3.5,0.5)}%
- %
- \pgfputat{\pgfxy(0.25,0.25)}{\pgfbox[center,center]{#2}}%
- \pgfputat{\pgfxy(0.75,0.25)}{\pgfbox[center,center]{#3}}%
- \pgfputat{\pgfxy(1.25,0.25)}{\pgfbox[center,center]{#4}}%
- \pgfputat{\pgfxy(1.75,0.25)}{\pgfbox[center,center]{#5}}%
- \pgfputat{\pgfxy(2.25,0.25)}{\pgfbox[center,center]{#6}}%
- \pgfputat{\pgfxy(2.75,0.25)}{\pgfbox[center,center]{#7}}%
- \pgfputat{\pgfxy(3.25,0.25)}{\pgfbox[center,center]{#8}}%
- \pgfputat{\pgfxy(3.75,0.25)}{\pgfbox[center,center]{#9}}%
- %
- \pgfputat{\pgfxy(0,0.7)}{\pgfbox[left,base]{\structure{tape}}}%
- }%
- %
- \pgfnodecircle{n1}[virtual]{\pgfrelative{#1}{\pgfxy(0.25,0)}}{2pt}%
- \pgfnodecircle{n2}[virtual]{\pgfrelative{#1}{\pgfxy(0.75,0)}}{2pt}%
- \pgfnodecircle{n3}[virtual]{\pgfrelative{#1}{\pgfxy(1.25,0)}}{2pt}%
- \pgfnodecircle{n4}[virtual]{\pgfrelative{#1}{\pgfxy(1.75,0)}}{2pt}%
- \pgfnodecircle{n5}[virtual]{\pgfrelative{#1}{\pgfxy(2.25,0)}}{2pt}%
- \pgfnodecircle{n6}[virtual]{\pgfrelative{#1}{\pgfxy(2.75,0)}}{2pt}%
- \pgfnodecircle{n7}[virtual]{\pgfrelative{#1}{\pgfxy(3.25,0)}}{2pt}%
- \pgfnodecircle{n8}[virtual]{\pgfrelative{#1}{\pgfxy(3.75,0)}}{2pt}%
-}
-
-\newcommand{\putmachine}[2]{%
- \pgfputat{#1}{\pgfbox[center,center]{\pgfuseimage{computerimage}}}%
- \pgfputat{\pgfrelative{#1}{\pgfxy(0,-1.4)}}{\pgfbox[center,base]{\structure{#2}}}%
- \pgfnodecircle{machine}[virtual]{\pgfrelative{#1}{\pgfxy(0,1)}}{2pt}%
-}
-\newcommand{\putmachineworking}[2]{%
- \pgfputat{#1}{\pgfbox[center,center]{\pgfuseimage{computerworkingimage}}}%
- \pgfputat{\pgfrelative{#1}{\pgfxy(0,-1.4)}}{\pgfbox[center,base]{\structure{#2}}}%
- \pgfnodecircle{machine}[virtual]{\pgfrelative{#1}{\pgfxy(0,1)}}{2pt}%
-}
-
-\newcommand{\putmachinea}[2]{%
- \pgfputat{#1}{\pgfbox[center,center]{\pgfuseimage{apple}}}%
- \pgfputat{\pgfrelative{#1}{\pgfxy(0,-1.4)}}{\pgfbox[center,base]{\structure{#2}}}%
- \pgfnodecircle{machine}[virtual]{\pgfrelative{#1}{\pgfxy(0,1)}}{2pt}%
-}
-\newcommand{\putmachineworkinga}[2]{%
- \pgfputat{#1}{\pgfbox[center,center]{\pgfuseimage{appleworking}}}%
- \pgfputat{\pgfrelative{#1}{\pgfxy(0,-1.4)}}{\pgfbox[center,base]{\structure{#2}}}%
- \pgfnodecircle{machine}[virtual]{\pgfrelative{#1}{\pgfxy(0,1)}}{2pt}%
-}
-
-\newcommand{\selectpos}[1]{%
- \pgfsetlinewidth{0.6pt}%
- \color{structure}%
- \pgfsetendarrow{\pgfarrowto}%
- \pgfnodeconncurve{machine}{n#1}{90}{-90}{.5cm}{.5cm}%
-}
-
-%
-% The following info should normally be given in you main file:
-%
-
-\title[Computation with Absolutely No~Space~Overhead]{Computation~with Absolutely~No~Space~Overhead}
-\author[Hemaspaandra, Mukherji, Tantau]{%
- Lane~Hemaspaandra\inst{1} \and
- Proshanto~Mukherji\inst{1} \and
- Till~Tantau\inst{2}}
-\institute[Universities of Rochester and Berlin]{
- \inst{1}%
- Department of Computer Science\\
- University of Rochester
- \and
- \inst{2}%
- Fakultät für Elektrotechnik und Informatik\\
- Technical University of Berlin}
-\date[DLT 2003]{Developments in Language Theory Conference, 2003}
-\subject{Theoretical Computer Science}
-
-\pgfdeclaremask{tu}{beamer-tu-logo-mask}
-\pgfdeclaremask{ur}{beamer-ur-logo-mask}
-\pgfdeclareimage[mask=tu,width=0.6cm]{tu-logo}{beamer-tu-logo}
-\pgfdeclareimage[mask=ur,width=1cm]{ur-logo}{beamer-ur-logo}
-
-\logo{\vbox{\hbox to 1cm{\hfil\pgfuseimage{tu-logo}}\vskip0.1cm\hbox{\pgfuseimage{ur-logo}}}}
-
-
-\begin{document}
-
-\frame{\titlepage}
-
-\section<presentation>*{Outline}
-
-\begin{frame}
- \frametitle{Outline}
- \tableofcontents[part=1,pausesections]
-\end{frame}
-
-\AtBeginSubsection[]
-{
- \begin{frame}<beamer>
- \frametitle{Outline}
- \tableofcontents[current,currentsubsection]
- \end{frame}
-}
-
-\part<presentation>{Main Talk}
-
-\section[Models]{The Model of Overhead-Free Computation}
-
-\subsection[Standard Model]{The Standard Model of Linear Space}
-
-\begin{frame}
- \frametitle{The Standard Model of Linear Space}
-
- \begin{columns}
-
- \column{4.5cm}
- \note[item]<1>{Point out that \$ is a marker symbol.}
- \begin{pgfpicture}{-0.5cm}{1cm}{4cm}{7cm}
- \only<1| trans:1>{
- \putmachine{\pgfxy(1.75,3)}{Turing machine}
- \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{0}{0}
- \selectpos{1}}
- \only<2| handout:0| trans:2>{
- \putmachineworking{\pgfxy(1.75,3)}{Turing machine}
- \tape{\pgfxy(0,5)}{\$}{0}{1}{0}{0}{1}{0}{0}
- \selectpos{2}}
- \only<3| handout:0| trans:3>{
- \putmachineworking{\pgfxy(1.75,3)}{Turing machine}
- \tape{\pgfxy(0,5)}{\$}{0}{1}{0}{0}{1}{0}{0}
- \selectpos{8}}
- \only<4| handout:0| trans:4>{
- \putmachineworking{\pgfxy(1.75,3)}{Turing machine}
- \tape{\pgfxy(0,5)}{\$}{0}{1}{0}{0}{1}{0}{\$}
- \selectpos{7}}
- \only<5| handout:0| trans:0>{
- \putmachineworking{\pgfxy(1.75,3)}{Turing machine}
- \tape{\pgfxy(0,5)}{\$}{0}{1}{0}{0}{1}{0}{\$}
- \selectpos{2}}
- \only<6| handout:0| trans:0>{
- \putmachineworking{\pgfxy(1.75,3)}{Turing machine}
- \tape{\pgfxy(0,5)}{\$}{\$}{1}{0}{0}{1}{0}{\$}
- \selectpos{3}}
- \only<7| handout:0| trans:0>{
- \putmachineworking{\pgfxy(1.75,3)}{Turing machine}
- \tape{\pgfxy(0,5)}{\$}{\$}{1}{0}{0}{1}{0}{\$}
- \selectpos{7}}
- \only<8| handout:0| trans:0>{
- \putmachineworking{\pgfxy(1.75,3)}{Turing machine}
- \tape{\pgfxy(0,5)}{\$}{\$}{1}{0}{0}{1}{\$}{\$}
- \selectpos{6}}
- \only<9| handout:0| trans:0>{
- \putmachineworking{\pgfxy(1.75,3)}{Turing machine}
- \tape{\pgfxy(0,5)}{\$}{\$}{\$}{\$}{\$}{\$}{\$}{\$}
- \selectpos{5}}
- \only<10| handout:0| trans:5>{
- \putmachine{\pgfxy(1.75,3)}{Turing machine}
- \tape{\pgfxy(0,5)}{\$}{\$}{\$}{\$}{\$}{\$}{\$}{\$}
- \selectpos{5}}
- \end{pgfpicture}
-
- \column{6cm}
- \begin{block}{Characteristics}
- \begin{itemize}
- \item
- Input fills \alert{fixed-size tape}
- \item
- Input may be \alert{modified}
- \item
- Tape alphabet \alert{is larger than}\\ input alphabet
- \note[item]<1>{Stress the larger tape alphabet.}
- \end{itemize}
- \end{block}
- \end{columns}
-\end{frame}
-
-
-\begin{frame}
- \frametitle{Linear Space is a Powerful Model}
-
- \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{6cm}
- \pgfsetlinewidth{0.8pt}
- \pgfxyline(-5,0)(5,0)
-
- \pgfsetlinewidth{0.4pt}
-
- \pgfheaplabeledcentered{2cm}{2.5cm}{$\Class{CFL}$}
- \pgfheaplabeledcentered{3.5cm}{3cm}{\raise10pt\hbox{}$\Class{DLINSPACE}$}
- \pgfheaplabeledcentered{5cm}{4cm}{\raise13pt\hbox{}$\Class{NLINSPACE} = \Class{CSL}$}
- \pgfheaplabeledcentered{6cm}{5cm}{$\Class{PSPACE}$}
- \note[item]{Explain CSL.}
-
- \pgfsetdash{{3pt}{3pt}}{0pt}
- \pgfheaplabeled{\pgfxy(0,3.3)}{\pgfxy(-5,6)}{\pgfxy(5,6)}{}%
- \pgfputat{\pgfxy(-4.6,5.75)}{\pgfbox[left,base]{$\Class{PSPACE}\!\text{-hard}$}}%
- \end{pgfpicture}
- \note[item]{Point out the connections to formal language theory.}
-\end{frame}
-
-
-\subsection[Our Model]{Our Model of Absolutely No Space Overhead}
-
-\begin{frame}
- \frametitle{Our Model of ``Absolutely No Space Overhead''}
-
- \transdissolve<7>[duration=0.2]
-
- \begin{columns}
-
- \column{4.5cm}
- \begin{pgfpicture}{-0.5cm}{1cm}{4cm}{7cm}
- \only<1| trans:1>{%
- \putmachinea{\pgfxy(1.75,3)}{Turing machine}%
- \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{0}{0}%
- \selectpos{1}}%
- \only<2| handout:0| trans:2>{%
- \putmachineworkinga{\pgfxy(1.75,3)}{Turing machine}%
- \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{0}%
- \selectpos{2}}%
- \only<3| handout:0| trans:3>{%
- \putmachineworkinga{\pgfxy(1.75,3)}{Turing machine}%
- \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{0}%
- \selectpos{8}}%
- \only<4| handout:0| trans:0>{%
- \putmachineworkinga{\pgfxy(1.75,3)}{Turing machine}%
- \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{1}%
- \selectpos{7}}%
- \only<5| handout:0| trans:0>{%
- \putmachineworkinga{\pgfxy(1.75,3)}{Turing machine}%
- \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{1}%
- \selectpos{2}}%
- \only<6| handout:0| trans:0>{%
- \putmachineworkinga{\pgfxy(1.75,3)}{Turing machine}%
- \tape{\pgfxy(0,5)}{1}{1}{1}{0}{0}{1}{0}{1}%
- \selectpos{3}}%
- \only<7| handout:0| trans:4>{%
- \putmachinea{\pgfxy(1.75,3)}{Turing machine}%
- \pgfputat{\pgfxy(1.75,5.5)}{\pgfbox[center,center]{\pgfuseimage{ram}}}%
- \pgfnodecircle{n3}[virtual]{\pgfxy(1.25,5)}{2pt}%
- \selectpos{3}}%
- \end{pgfpicture}
-
- \column{6cm}
- \begin{overprint}
- \onslide<1-6| trans:1-3| handout:1>
- \begin{block}{Characteristics}
- \begin{itemize}
- \item
- Input fills \alert{fixed-size tape}
- \item
- Input may be \alert{modified}
- \item
- Tape alphabet \alert{equals}\\
- input alphabet
- \end{itemize}
- \end{block}
- \onslide<7-| trans:4| handout:2>
- \begin{alertblock}{Intuition}
- \begin{itemize}
- \item
- Tape is used like a\\ RAM module.
- \end{itemize}
- \end{alertblock}
- \end{overprint}
- \end{columns}
- \note[item]<6>{Point out that no markers are used.}
-\end{frame}
-
-
-\begin{frame}
- \frametitle{Definition of Overhead-Free Computations}
-
- \begin{Definition}
- A Turing machine is \alert{overhead-free} if
- \begin{enumerate}
- \item
- it has only a single tape,
- \item
- writes only on input cells,
- \item
- writes only symbols drawn from the input alphabet.
- \end{enumerate}
- \end{Definition}
-\end{frame}
-
-\begin{frame}
- \frametitle{Overhead-Free Computation Complexity Classes}
-
- \begin{Definition}
- A language $L \subseteq \Sigma^*$ is in
- \begin{description}
- \item[\alert<1| handout:0| trans:0>{$\DOF$}%
- {\note[item]<1>{Joke about German pronunciation}}]
- if $L$ is accepted by a deterministic overhead-free machine with
- input alphabet~$\Sigma$,
- \pause
- \item[\alert<2| handout:0| trans:0>{$\DOFpoly$}]
- if $L$ is accepted by a deterministic overhead-free machine with
- input alphabet~$\Sigma$ in polynomial time.
- \pause
- \item[\alert<3| handout:0| trans:0>{$\NOF$}]
- is the nondeterministic version of $\DOF$,
- \note[item]<3>{Stress meaning of D and N.}
- \pause
- \item[\alert<4| handout:0| trans:0>{$\NOFpoly$}]
- is the nondeterministic version of $\DOFpoly$.
- \end{description}
- \end{Definition}
-\end{frame}
-
-\begin{frame}
- \frametitle{Simple Relationships among\\ Overhead-Free Computation Classes}
-
- \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{6cm}
- \pgfsetlinewidth{0.8pt}
- \pgfxyline(-5,0)(5,0)
-
- \pgfsetlinewidth{0.4pt}
-
- \pgfheaplabeledcentered{1.75cm}{2cm}{$\DOFpoly$}
- \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOF$}
- \pgfheaplabeledcentered{2.5cm}{3.5cm}{$\NOFpoly$}
- \pgfheaplabeledcentered{5cm}{4cm}{$\NOF$}
-
- \pgfheaplabeledcentered{6cm}{5cm}{\raise10pt\hbox{}$\Class{NLINSPACE}$}
- \end{pgfpicture}
-\end{frame}
-
-
-\section[Power of the Model]{The Power of Overhead-Free Computation}
-
-
-\subsection{Palindromes}
-
-\begin{frame}
- \frametitle{Palindromes Can be Accepted in an Overhead-Free Way}
-
- \begin{columns}
-
- \column{4.5cm}
- \begin{pgfpicture}{-0.5cm}{1cm}{4cm}{7cm}
- \only<1| trans:1>{
- \putmachinea{\pgfxy(1.75,3)}{overhead-free machine}
- \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{0}{0}
- \selectpos{1}}
- \only<2| handout:0| trans:0>{
- \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
- \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{0}
- \selectpos{2}}
- \only<3| handout:0| trans:0>{
- \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
- \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{0}
- \selectpos{8}}
- \only<4| handout:0| trans:2>{
- \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
- \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{1}
- \selectpos{7}}
- \only<5| handout:0| trans:0>{
- \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
- \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{1}
- \selectpos{1}}
- \only<6| handout:0| trans:3>{
- \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
- \tape{\pgfxy(0,5)}{0}{1}{1}{0}{0}{1}{0}{1}
- \selectpos{2}}
- \only<7| handout:0| trans:0>{
- \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
- \tape{\pgfxy(0,5)}{0}{1}{1}{0}{0}{1}{0}{1}
- \selectpos{8}}
- \only<8| handout:0| trans:4>{
- \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
- \tape{\pgfxy(0,5)}{0}{1}{1}{0}{0}{1}{1}{0}
- \selectpos{7}}
- \only<9| handout:0| trans:0>{
- \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
- \tape{\pgfxy(0,5)}{0}{1}{1}{0}{0}{1}{1}{0}
- \selectpos{2}}
- \only<10| handout:0| trans:0>{
- \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
- \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{1}{0}
- \selectpos{3}}
- \only<11| handout:0| trans:0>{
- \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
- \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{1}{0}
- \selectpos{7}}
- \only<12| handout:0| trans:5>{
- \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
- \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{0}{0}
- \selectpos{6}}
- \only<13| handout:0| trans:0>{
- \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
- \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{0}{0}
- \selectpos{3}}
- \only<14| handout:0| trans:0>{
- \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
- \tape{\pgfxy(0,5)}{0}{0}{0}{1}{0}{1}{0}{0}
- \selectpos{4}}
- \only<15| handout:0| trans:0>{
- \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
- \tape{\pgfxy(0,5)}{0}{0}{0}{1}{0}{1}{0}{0}
- \selectpos{6}}
- \only<16| handout:0| trans:6>{
- \putmachinea{\pgfxy(1.75,3)}{overhead-free machine}
- \tape{\pgfxy(0,5)}{0}{0}{0}{1}{1}{0}{0}{0}
- \selectpos{5}}
- \end{pgfpicture}
-
- \column{6cm}
- \begin{block}{Algorithm}
- \alert<1| handout:0| trans:1>{Phase 1:\\
- Compare first and last bit}
-
- \quad \alert<2| handout:0| trans:2>{Place left end marker}
-
- \quad \alert<3| handout:0| trans:2>{Place right end marker}
- \vskip1em
-
- \alert<4| handout:0| trans:3->{Phase 2:\\
- Compare bits next to end markers}
-
- \quad \alert<5,9,13| handout:0| trans:0>{Find left end marker}
-
- \quad \alert<6,10,14| handout:0| trans:0>{Advance left end marker}
-
- \quad \alert<7,11,15| handout:0| trans:0>{Find right end marker}
-
- \quad \alert<8,12,16| handout:0| trans:0>{Advance right end marker}
-
- \end{block}
- \end{columns}
- \note<1>{Use 3 minutes.}
-\end{frame}
-
-\begin{frame}
- \frametitle{Relationships among Overhead-Free Computation Classes}
-
- \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{5cm}
- \pgfsetlinewidth{0.8pt}
- \pgfxyline(-5,0)(5,0)
-
- \pgfsetlinewidth{0.4pt}
-
- \pgfheaplabeledcentered{1.75cm}{2cm}{$\DOFpoly$}
- \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOF$}
- \pgfheaplabeledcentered{2.5cm}{3.5cm}{$\NOFpoly$}
- \pgfheaplabeledcentered{5cm}{4cm}{$\NOF$}
-
- \pgfputat{\pgfxy(0,0.25)}{\pgfbox[center,base]{\alert{Palindromes}}}
- \end{pgfpicture}
-\end{frame}
-
-
-\subsection{Linear Languages}
-
-\begin{frame}
- \frametitle{A Review of Linear Grammars}
-
- \begin{Definition}<1>
- A grammar is \alert{linear} if it is context-free and\\ there is
- only one nonterminal per right-hand side.
- \end{Definition}
-
- \begin{Example}<1>
- $G_1\colon S \to 00S0 \mid 1$ and $G_2\colon S \to 0S10 \mid 0$.
- \end{Example}
-
- \begin{Definition}<2->
- A grammar is \alert{deterministic} if\\ ``there is always only one
- rule that can be applied.''
- \note<2>{Just explain intution.}
- \end{Definition}
-
- \begin{Example}<2->
- $G_1\colon S \to 00S0 \mid 1$ is deterministic.
-
- $G_2\colon S \to 0S10 \mid 0$ is \alert{not} deterministic.
- \end{Example}
-\end{frame}
-
-
-\begin{frame}
- \frametitle{Deterministic Linear Languages\\ Can Be Accepted in an
- Overhead-Free Way}
-
- \begin{Theorem}
- Every deterministic linear language is in $\DOFpoly$.
- \end{Theorem}
-\end{frame}
-
-\begin{frame}[<+->]
- \frametitle{Metalinear Languages\\ Can Be Accepted in an
- Overhead-Free Way}
-
- \begin{Definition}
- A language is \alert{metalinear} if it is the concatenation\\ of
- linear languages.
- \end{Definition}
-
- \begin{Example}
- $\Lang{triple-palindrome} = \Set{uvw \mid \text{$u$, $v$, and $w$ are palindromes}}$.
- \end{Example}
-
- \begin{Theorem}
- Every metalinear language is in $\NOFpoly$.
- \end{Theorem}
-\end{frame}
-
-\begin{frame}
- \frametitle{Relationships among Overhead-Free Computation Classes}
-
- \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{5cm}
- \pgfsetlinewidth{0.8pt}
- \pgfxyline(-5,0)(5,0)
-
- \pgfsetlinewidth{0.4pt}
-
- \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOFpoly$}
- \pgfheaplabeledcentered{4.25cm}{4cm}{$\NOFpoly$}
- \pgfheaplabeledcentered{5cm}{5cm}{$\NOF$}
-
- \color{red}%
- \pgfheaplabeledcentered{1.75cm}{2cm}{\raise10pt\hbox{}deterministic}
- \pgfheaplabeledcentered{2.5cm}{3.5cm}{metalinear}
-
- \pgfputat{\pgfxy(0,0.6)}{\pgfbox[center,base]{linear}}
- \end{pgfpicture}
- \note[item]{Skip next subsection if more than 18 minutes have passed.}
-\end{frame}
-
-
-\subsection[Forbidden Subword]{Context-Free Languages with a Forbidden Subword}
-
-\begin{frame}
- \frametitle{Definition of Almost-Overhead-Free Computations}
-
- \begin{Definition}
- A Turing machine is \alert{almost-overhead-free} if
- \begin{enumerate}[<+-| alert@+>]
- \item it has only a single tape,
- \item writes only on input cells,
- \item writes only symbols drawn from the input alphabet\\
- plus one special symbol.
- \end{enumerate}
- \end{Definition}
-\end{frame}
-
-\begin{frame}
- \frametitle{Context-Free Languages with a Forbidden Subword\\ Can Be
- Accepted in an Overhead-Free Way}
-
- \begin{Theorem}
- Let $L$ be a context-free language with a forbidden word.\\
- Then $L \in \NOFpoly$.
- \end{Theorem}
-
- \begin{overprint}
- \onslide<1| handout:0| trans:0| article:0>
- \hfill\hyperlinkframestartnext{\beamerskipbutton{Skip proof}}
- \onslide<2| handout:1| trans:1>
- \begin{proof}
- Every context-free language can be accepted by a nondeterministic
- almost-overhead-free machine in polynomial time.
- \end{proof}
- \end{overprint}
-\end{frame}
-
-\begin{frame}
- \frametitle{Relationships among Overhead-Free Computation Classes}
-
- \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{5cm}
- \pgfsetlinewidth{0.8pt}
- \pgfxyline(-5,0)(5,0)
-
- \pgfsetlinewidth{0.4pt}
-
- \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOFpoly$}
- \pgfheaplabeledcentered{4.25cm}{4cm}{$\NOFpoly$}
- \pgfheaplabeledcentered{5cm}{5cm}{$\NOF$}
-
- \color{red}%
- \pgfheaplabeledcentered{2.5cm}{3.5cm}{CFL with}
-
- \pgfputat{\pgfxy(0,1.6)}{\pgfbox[center,base]{forbidden subwords}}
- \end{pgfpicture}
-\end{frame}
-
-
-
-\subsection[Complete Languages]{Languages Complete for Polynomial Space}
-
-\begin{frame}<1>[label=pspacecomplete]
- \frametitle{Overhead-Free Languages can be PSPACE-Complete}
-
- \begin{Theorem}
- $\DOF$ contains languages that are complete for
- $\Class{PSPACE}$.
- \end{Theorem}
-
- \only<1| article:0| trans:0| handout:0>
- {
- \vskip1em
-
- \hyperlink{pspacecomplete<2>}{\beamergotobutton{Proof details}}
- }
- \only<2>
- {% this is only shown in the appendix, where this frame is resumed.
- \begin{proof}
- \begin{enumerate}
- \item
- Let $A \in \Class{DLINSPACE}$ be $\Class{PSPACE}$-complete.\\
- Such languages are known to exist.
- \item
- Let $M$ be a linear space machine that accepts~$A \subseteq
- \Set{0,1}^*$ with tape alphabet~$\Gamma$.
- \item
- Let $h \colon \Gamma \to \Set{0,1}^*$ be an isometric, injective
- homomorphism.
- \item
- Then $h(L)$ is in $\Class{DOF}$ and it is
- $\Class{PSPACE}$-complete. \qedhere
- \end{enumerate}
- \end{proof}
-
- \only<beamer>{\hfill\hyperlink{pspacecomplete<1>}{\beamerreturnbutton{Return}}}
- }
-\end{frame}
-
-\begin{frame}
- \frametitle{Relationships among Overhead-Free Computation Classes}
-
- \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{6cm}
- \pgfsetlinewidth{0.8pt}
- \pgfxyline(-5,0)(5,0)
-
- \pgfsetlinewidth{0.4pt}
-
- \pgfheaplabeledcentered{1.75cm}{2cm}{$\DOFpoly$}
- \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOF$}
- \pgfheaplabeledcentered{2.5cm}{3.5cm}{$\NOFpoly$}
- \pgfheaplabeledcentered{5cm}{4cm}{$\NOF$}
-
- \pgfsetdash{{3pt}{3pt}}{0pt}
- \pgfheaplabeled{\pgfxy(0,2.9)}{\pgfxy(-5,6)}{\pgfxy(5,6)}{}%
- \pgfputat{\pgfxy(-4.6,5.75)}{\pgfbox[left,base]{$\Class{PSPACE}\!\text{-hard}$}}%
- \end{pgfpicture}
-\end{frame}
-
-
-\section[Limitations of the Model]{Limitations of Overhead-Free Computation}
-
-
-\subsection[Strict Inclusion]{Linear Space is Strictly More Powerful}
-
-\begin{frame}
- \frametitle{Some Context-Sensitive Languages\\
- Cannot be Accepted in an Overhead-Free Way}
-
- \begin{Theorem}
- $\DOF \subsetneq \Class{DLINSPACE}$.
- \end{Theorem}
-
- \begin{Theorem}
- $\NOF \subsetneq \Class{NLINSPACE}$.
- \end{Theorem}
-
- \vskip1em
- The proofs are based on old diagonalisations due to Feldman, Owings,
- and Seiferas.
-\end{frame}
-
-\begin{frame}
- \frametitle{Relationships among Overhead-Free Computation Classes}
-
- \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{6cm}
- \pgfsetlinewidth{0.8pt}
- \pgfxyline(-5,0)(5,0)
-
- \pgfsetlinewidth{0.4pt}
-
- \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOF$}
- \pgfheaplabeledcentered{5cm}{4cm}{$\NOF$}
-
- \pgfheaplabeledcentered{4.3cm}{4.5cm}{\raise8pt\hbox{}$\Class{DLINSPACE}$}
- \pgfheaplabeledcentered{6cm}{5cm}{\raise10pt\hbox{}$\Class{NLINSPACE}$}
-
- \pgfsetdash{{3pt}{3pt}}{0pt}
- \pgfheaplabeled{\pgfxy(0,2.9)}{\pgfxy(-5,6)}{\pgfxy(5,6)}{}%
- \pgfputat{\pgfxy(-4.6,5.75)}{\pgfbox[left,base]{$\Class{PSPACE}$-hard}}%
- \end{pgfpicture}
-\end{frame}
-
-\begin{frame}
- \frametitle{Candidates for Languages that\\
- Cannot be Accepted in an Overhead-Free Way}
-
- \begin{overprint}
- \onslide<all:1>
- \begin{block}{Conjecture}
- \strut
- $\Lang{double-palindromes} \notin \Class{DOF}$.
- \end{block}
-
- \onslide<all:2>
- \begin{alertblock}{Theorem\vphantom{j}}
- \strut
- $\Lang{double-palindromes} \in \Class{DOF}$.
- \end{alertblock}
- \end{overprint}
-
- \begin{block}{Conjecture}
- $\Set{ww \mid w\in \Set{0,1}^*} \notin \Class{NOF}$.
- \end{block}
-
- \vskip1em
- \uncover<1>{Proving the first conjecture would show $\Class{DOF} \subsetneq
- \Class{NOF}$.}
-\end{frame}
-
-
-\section*{Summary}
-
-\subsection<presentation>*{Summary}
-
-\begin{frame}
- \frametitle<presentation>{Summary}
-
- \begin{block}{}
- \begin{itemize}
- \item
- Overhead-free computation is a more faithful\\
- \alert{model of fixed-size memory}.
- \item
- Overhead-free computation is \alert{less powerful} than linear space.
- \item
- \alert{Many} context-free languages can be accepted\\
- by overhead-free machines.
- \item
- We conjecture that \alert{all} context-free languages are in
- $\NOFpoly$.
- \item
- Our results can be seen as new results on the power of\\
- \alert{linear bounded automata with fixed alphabet} size.
- \end{itemize}
- \end{block}
-
- \note[item]{Point out result concerning all context-free languages.}
- \note[item]{Relationship to restart automata.}
-\end{frame}
-
-
-
-\subsection<presentation>*{Further Reading}
-
-\begin{frame}
- \frametitle<presentation>{For Further Reading}
-
- \beamertemplatebookbibitems
-
- \begin{thebibliography}{10}
-
- \bibitem{sal:b:formal-languages}
- A.~Salomaa.
- \newblock {\em Formal Languages}.
- \newblock Academic Press, 1973.
- \pause
-
- \beamertemplatearticlebibitems
- \bibitem{dij:j:smoothsort}
- E.~Dijkstra.
- \newblock Smoothsort, an alternative for sorting in situ.
- \newblock {\em Science of Computer Programming}, 1(3):223--233,
- 1982.
- \pause
-
- \bibitem{FeldmanO1973}
- E.~Feldman and J.~Owings, Jr.
- \newblock A class of universal linear bounded automata.
- \newblock {\em Information Sciences}, 6:187--190, 1973.
- \pause
-
- \bibitem{JancarMPV1995}
- P.~Jan{\v c}ar, F.~Mr{\'a}z, M.~Pl{\'a}tek, and J.~Vogel.
- \newblock Restarting automata.
- \newblock {\em FCT Conference 1995}, LNCS 985, pages
- 282--292. 1995.
- \end{thebibliography}
-\end{frame}
-
-
-%
-% The following appendix material is not shown in the normal course of
-% the presentation
-%
-
-\appendix
-
-\AtBeginSubsection{}
-
-
-\section{\appendixname}
-
-\frame{\frametitle{Appendix Outline}\tableofcontents}
-
-
-\subsection{Complete Languages}
-
-\againframe<beamer| beamer:2>{pspacecomplete}
-
-
-\subsection{Improvements for Context-Free Languages}
-
-\begin{frame}
- \frametitle{Improvements}
-
- \begin{theorem}
- \begin{enumerate}
- \item
- $\Class{DCFL} \subseteq \DOFpoly$.
- \item
- $\Class{CFL} \subseteq \NOFpoly$.
- \end{enumerate}
- \end{theorem}
-\end{frame}
-
-
-\subsection{Abbreviations}
-
-\begin{frame}
- \frametitle{Explanation of Different Abbreviations}
-
- \begin{table}
- \rowcolors[]{1}{structure!25!averagebackgroundcolor}{structure!10!averagebackgroundcolor}
- \begin{tabular}{ll}
- \structure{$\DOF$} & \structure{D}eterministic \structure{O}verhead-\structure{F}ree.\\
- \structure{$\NOF$} & \structure{N}ondeterministic \structure{O}verhead-\structure{F}ree.\\
- \structure{$\DOFpoly$} & \structure{D}eterministic
- \structure{O}verhead-\structure{F}ree, \structure{poly}nomial time.\\
- \structure{$\DOFpoly$} & \structure{N}ondeterministic \structure{O}verhead-\structure{F}ree, \structure{poly}nomial time.
- \end{tabular}
- \caption{Explanation of what different abbreviations mean.}
- \end{table}
-\end{frame}
-
-\end{document}
-
-
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.pdf
deleted file mode 100644
index 3d5099be798..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.tex
deleted file mode 100644
index a94cc306cac..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.tex
+++ /dev/null
@@ -1,11 +0,0 @@
-% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample2.article.tex,v 1.4 2004/10/07 20:53:07 tantau Exp $
-
-\documentclass[11pt]{article}
-\usepackage{beamerarticle}
-
-\input{beamerexample2.tex}
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "beamerexample2.article"
-%%% End:
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.pdf
deleted file mode 100644
index 2121e2eceae..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.tex
deleted file mode 100644
index 96a868c6da7..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.tex
+++ /dev/null
@@ -1,10 +0,0 @@
-% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample2.beamer.tex,v 1.3 2004/10/07 20:53:07 tantau Exp $
-
-\documentclass[ignorenonframetext]{beamer}
-
-\input{beamerexample2.tex}
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "beamerexample2.beamer"
-%%% End:
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.tex
deleted file mode 100644
index ffcb103d965..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.tex
+++ /dev/null
@@ -1,95 +0,0 @@
-% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample2.tex,v 1.8 2004/10/11 16:10:11 tantau Exp $
-
-% This file is included by beamerexample2.article.tex and
-% beamerexample2.beamer.tex
-
-% Copyright 2003 by Till Tantau <tantau@cs.tu-berlin.de>.
-%
-% This program can be redistributed and/or modified under the terms
-% of the LaTeX Project Public License Distributed from CTAN
-% archives in directory macros/latex/base/lppl.txt.
-
-%
-% The purpose of this example is to demonstrate the usage of the
-% nameslide command
-%
-
-\mode<article>
-{
- \usepackage{fullpage}
- \usepackage{pgf}
- \usepackage{hyperref}
- \setjobnamebeamerversion{beamerexample2.beamer}
-}
-
-\mode<presentation>
-{
- \usetheme{Dresden}
-
- \setbeamercovered{transparent}
-}
-
-\usepackage[latin1]{inputenc}
-\usepackage[english]{babel}
-
-
-\title{Second Beamer Example}
-\author{Till~Tantau}
-\subject{Presentation Programs}
-
-\institute[TU Berlin]{
- Fakultät für Elektrotechnik und Informatik\\
- Technical University of Berlin}
-
-
-\begin{document}
-
-\frame{\maketitle}
-
-\section{The first section}
-
-This is the first section of the article version. In the
-presentation, there is a frame containing an overlay. The exact two
-slides of this overlay are shown in Figures~\ref{figure-example1}
-and~\ref{figure-example2}.
-
-\begin{figure}[ht]
- \begin{center}
- \includeslide{exampleframe<1>}
- \end{center}
- \caption{The first slide. Note the partly covered second item.}
- \label{figure-example1}
-\end{figure}
-
-\begin{figure}[ht]
- \begin{center}
- \includeslide{exampleframe<2>}
- \end{center}
- \caption{The second slide. Now the second item is also shown.}
- \label{figure-example2}
-\end{figure}
-
-We can also include the frame in the article version ``just like
-this'':
-
-\frame[label=exampleframe]{
- \frametitle{This is a frame with two overlays.}
-
- \begin{itemize}
- \item The first item$\dots$
- \pause
- \item $\dots$ and the second one.
- \end{itemize}
-}
-
-We could have suppressed the frame in the article version by adding
-the overlay specification \verb!<presentation>!.
-
-\end{document}
-
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "beamerexample2.article"
-%%% End:
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.pdf
deleted file mode 100644
index abbea370d9c..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.tex
deleted file mode 100644
index 3e79726310d..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.tex
+++ /dev/null
@@ -1,130 +0,0 @@
-% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample3.tex,v 1.8 2004/10/07 20:53:07 tantau Exp $
-
-\documentclass{beamer}
-
-% Copyright 2003 by Till Tantau <tantau@cs.tu-berlin.de>.
-%
-% This program can be redistributed and/or modified under the terms
-% of the LaTeX Project Public License Distributed from CTAN
-% archives in directory macros/latex/base/lppl.txt.
-
-%
-% The purpose of this example is to show how \part can be used to
-% organize a lecture.
-%
-
-\usetheme{Warsaw}
-\usepackage[english]{babel}
-\usepackage[latin1]{inputenc}
-
-\setbeamercovered{transparent}
-
-
-%
-% The following info should normally be given in you main file:
-%
-
-
-\title{Beamer Example on Parts}
-\author{Till~Tantau}
-\institute{
- Fakultät für Elektrotechnik und Informatik\\
- Technical University of Berlin}
-
-
-\begin{document}
-
-
-\frame{\titlepage}
-
-
-\section*{Outlines}
-
-\subsection{Part I: Review of Previous Lecture}
-
-\frame{
- \nameslide{outline}
- \frametitle{Outline of Part I}
- \tableofcontents[pausesections,part=1]
-}
-
-
-\subsection{Part II: Today's Lecture}
-
-\frame{
- \frametitle{Outline of Part II}
- \tableofcontents[pausesections,part=2]
- \note{At most 1 minute for the outline.}
-}
-
-
-
-\part{Review of Previous Lecture}
-
-\frame{\partpage}
-
-
-\section[Previous Lecture]{Summary of the Previous Lecture}
-
-
-\subsection{Topics}
-
-\frame{
- \frametitle{This frame shows the topics treated in the last
- lecture.}
-
- \begin{itemize}
- \item This
- \pause
- \item and that.
- \end{itemize}
-}
-
-
-\subsection{Learning Objectives}
-
-\frame{
- \frametitle{This frame shows the last lecture's learning objectives.}
-
- \begin{itemize}
- \item An objective.
- \pause
- \item And another one.
- \end{itemize}
-}
-
-
-
-\part{Today's Lecture}
-
-\frame{\partpage}
-
-
-\section[Models]{The Model of Overhead-Free Computation}
-
-\frame<beamer>{\tableofcontents[current]}
-
-
-\subsection[Standard Model]{The Standard Model of Linear Space}
-
-\frame
-{
- \frametitle{A frame.}
-}
-
-
-\section[Limitations]{Limitations of Overhead-Free Computation}
-
-\frame<beamer>{\tableofcontents[current]}
-
-
-\subsection[Linear Space]{Linear Space versus Overhead-Free Computation}
-
-\frame
-{
- \frametitle{A frame.}
-}
-
-\end{document}
-
-
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.pdf
deleted file mode 100644
index 75b331a7c4e..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.tex
deleted file mode 100644
index 7864d58473b..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.tex
+++ /dev/null
@@ -1,45 +0,0 @@
-% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample4.tex,v 1.4 2004/10/07 20:53:07 tantau Exp $
-
-\documentclass[cjk]{beamer}
-
-% Copyright 2003 by Till Tantau <tantau@users.sourceforge.net>.
-%
-% This program can be redistributed and/or modified under the terms
-% of the LaTeX Project Public License Distributed from CTAN
-% archives in directory macros/latex/base/lppl.txt.
-%
-% Many thanks to Huang Yushuo for helping me with this file
-% (I don't speak Chinese...)
-
-\usepackage{CJK}
-\usetheme{Warsaw}
-
-\begin{document}
- \begin{CJK}{GB}{kai}
-
- \title[Óà Beamer ÖÆ×÷µÄ»ÃµÆƬ]{
- Example Presentation Created\\
- with the Beamer Package\\
- (Óà Beamer ÖÆ×÷µÄ»ÃµÆƬ)}
- \author{×÷Õß Till Tantau}
- \date{\today}
-
- \frame{\titlepage}
-
- \section*{Outline}
- \frame{\tableofcontents}
-
- \section{Introduction (¼ò½é)}
- \subsection{Overview of the Beamer Class (Beamer ÀàµÄ¸ÅÒª)}
- \frame{
- \frametitle{Features of the Beamer Class (Beamer ÀàµÄÌصã)}
-
- \begin{itemize}
- \item<1-> Normal LaTeX class (±ê×¼µÄ LaTeX Àà).
- \item<2-> Easy overlays (Öع¹¼òµ¥).
- \item<3-> No external programs needed (ÎÞÐè¶îÍâµÄ³ÌÐò).
- \end{itemize}
- }
- \end{CJK}
-\end{document}
-
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.pdf
deleted file mode 100644
index 06d7196ad2e..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.tex
deleted file mode 100644
index 23ef834d70e..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.tex
+++ /dev/null
@@ -1,1021 +0,0 @@
-% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample5.tex,v 1.22 2004/10/08 14:02:33 tantau Exp $
-
-\documentclass[11pt]{beamer}
-
-\usetheme{Darmstadt}
-
-\usepackage{times}
-\usefonttheme{structurebold}
-
-\usepackage[english]{babel}
-\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps}
-\usepackage{amsmath,amssymb}
-\usepackage[latin1]{inputenc}
-
-\setbeamercovered{dynamic}
-
-\newcommand{\Lang}[1]{\operatorname{\text{\textsc{#1}}}}
-
-\newcommand{\Class}[1]{\operatorname{\mathchoice
- {\text{\sf \small #1}}
- {\text{\sf \small #1}}
- {\text{\sf #1}}
- {\text{\sf #1}}}}
-
-\newcommand{\NumSAT} {\text{\small\#SAT}}
-\newcommand{\NumA} {\#_{\!A}}
-
-\newcommand{\barA} {\,\bar{\!A}}
-
-\newcommand{\Nat}{\mathbb{N}}
-\newcommand{\Set}[1]{\{#1\}}
-
-\pgfdeclaremask{tu}{beamer-tu-logo-mask}
-\pgfdeclaremask{computer}{beamer-computer-mask}
-\pgfdeclareimage[interpolate=true,mask=computer,height=2cm]{computerimage}{beamer-computer}
-\pgfdeclareimage[interpolate=true,mask=computer,height=2cm]{computerworkingimage}{beamer-computerred}
-\pgfdeclareimage[mask=tu,height=.5cm]{logo}{beamer-tu-logo}
-
-\logo{\pgfuseimage{logo}}
-
-\title{Weak Cardinality Theorems for First-Order Logic}
-\author{Till Tantau}
-\institute[Technische Universit\"at Berlin]{%
- Fakultät für Elektrotechnik und Informatik\\
- Technische Universit\"at Berlin}
-\date{Fundamentals of Computation Theory 2003}
-
-\colorlet{redshaded}{red!25!bg}
-\colorlet{shaded}{black!25!bg}
-\colorlet{shadedshaded}{black!10!bg}
-\colorlet{blackshaded}{black!40!bg}
-
-\colorlet{darkred}{red!80!black}
-\colorlet{darkblue}{blue!80!black}
-\colorlet{darkgreen}{green!80!black}
-
-\def\radius{0.96cm}
-\def\innerradius{0.85cm}
-
-\def\softness{0.4}
-\definecolor{softred}{rgb}{1,\softness,\softness}
-\definecolor{softgreen}{rgb}{\softness,1,\softness}
-\definecolor{softblue}{rgb}{\softness,\softness,1}
-
-\definecolor{softrg}{rgb}{1,1,\softness}
-\definecolor{softrb}{rgb}{1,\softness,1}
-\definecolor{softgb}{rgb}{\softness,1,1}
-
-\newcommand{\Bandshaded}[2]{
- \color{shadedshaded}
- \pgfmoveto{\pgfxy(-0.5,0)}
- \pgflineto{\pgfxy(-0.6,0.1)}
- \pgflineto{\pgfxy(-0.4,0.2)}
- \pgflineto{\pgfxy(-0.6,0.3)}
- \pgflineto{\pgfxy(-0.4,0.4)}
- \pgflineto{\pgfxy(-0.5,0.5)}
- \pgflineto{\pgfxy(4,0.5)}
- \pgflineto{\pgfxy(4.1,0.4)}
- \pgflineto{\pgfxy(3.9,0.3)}
- \pgflineto{\pgfxy(4.1,0.2)}
- \pgflineto{\pgfxy(3.9,0.1)}
- \pgflineto{\pgfxy(4,0)}
- \pgfclosepath
- \pgffill
-
- \color{black}
- \pgfputat{\pgfxy(0,0.7)}{\pgfbox[left,base]{#1}}
- \pgfputat{\pgfxy(0,-0.1)}{\pgfbox[left,top]{#2}}
-}
-
-\newcommand{\Band}[2]{
- \color{shaded}
- \pgfmoveto{\pgfxy(-0.5,0)}
- \pgflineto{\pgfxy(-0.6,0.1)}
- \pgflineto{\pgfxy(-0.4,0.2)}
- \pgflineto{\pgfxy(-0.6,0.3)}
- \pgflineto{\pgfxy(-0.4,0.4)}
- \pgflineto{\pgfxy(-0.5,0.5)}
- \pgflineto{\pgfxy(4,0.5)}
- \pgflineto{\pgfxy(4.1,0.4)}
- \pgflineto{\pgfxy(3.9,0.3)}
- \pgflineto{\pgfxy(4.1,0.2)}
- \pgflineto{\pgfxy(3.9,0.1)}
- \pgflineto{\pgfxy(4,0)}
- \pgfclosepath
- \pgffill
-
- \color{black}
- \pgfputat{\pgfxy(0,0.7)}{\pgfbox[left,base]{#1}}
- \pgfputat{\pgfxy(0,-0.1)}{\pgfbox[left,top]{#2}}
-}
-
-\newcommand{\BaenderNormal}
-{%
- \pgfsetlinewidth{0.4pt}
- \color{black}
- \pgfputat{\pgfxy(0,5)}{\Band{input tapes}{}}
- \pgfputat{\pgfxy(0.35,4.6)}{\pgfbox[center,base]{$\vdots$}}
- \pgfputat{\pgfxy(0,4)}{\Band{}{}}
-
- \pgfxyline(0,5)(0,5.5)
- \pgfxyline(1.2,5)(1.2,5.5)
- \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$w_1$}}
-
- \pgfxyline(0,4)(0,4.5)
- \pgfxyline(1.8,4)(1.8,4.5)
- \pgfputat{\pgfxy(0.25,4.25)}{\pgfbox[left,center]{$w_n$}}
- \ignorespaces}
-
-\newcommand{\BaenderZweiNormal}
-{%
- \pgfsetlinewidth{0.4pt}
- \color{black}
- \pgfputat{\pgfxy(0,5)}{\Band{Zwei Eingabebänder}{}}
- \pgfputat{\pgfxy(0,4.25)}{\Band{}{}}
-
- \pgfxyline(0,5)(0,5.5)
- \pgfxyline(1.2,5)(1.2,5.5)
- \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$u$}}
-
- \pgfxyline(0,4.25)(0,4.75)
- \pgfxyline(1.8,4.25)(1.8,4.75)
- \pgfputat{\pgfxy(0.25,4.5)}{\pgfbox[left,center]{$v$}}
- \ignorespaces}
-
-\newcommand{\BaenderHell}
-{%
- \pgfsetlinewidth{0.4pt}
- \color{black}
- \pgfputat{\pgfxy(0,5)}{\Bandshaded{input tapes}{}}
- \color{shaded}
- \pgfputat{\pgfxy(0.35,4.6)}{\pgfbox[center,base]{$\vdots$}}
- \pgfputat{\pgfxy(0,4)}{\Bandshaded{}{}}
-
- \color{blackshaded}
- \pgfxyline(0,5)(0,5.5)
- \pgfxyline(1.2,5)(1.2,5.5)
- \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$w_1$}}
-
- \pgfxyline(0,4)(0,4.5)
- \pgfxyline(1.8,4)(1.8,4.5)
- \pgfputat{\pgfxy(0.25,4.25)}{\pgfbox[left,center]{$w_n$}}
- \ignorespaces}
-
-\newcommand{\BaenderZweiHell}
-{%
- \pgfsetlinewidth{0.4pt}
- \color{black}
- \pgfputat{\pgfxy(0,5)}{\Bandshaded{Zwei Eingabebänder}{}}%
- \color{blackshaded}
- \pgfputat{\pgfxy(0,4.25)}{\Bandshaded{}{}}
- \pgfputat{\pgfxy(0.25,4.5)}{\pgfbox[left,center]{$v$}}
- \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$u$}}%
-
- \pgfxyline(0,5)(0,5.5)
- \pgfxyline(1.2,5)(1.2,5.5)
-
- \pgfxyline(0,4.25)(0,4.75)
- \pgfxyline(1.8,4.25)(1.8,4.75)
- \ignorespaces}
-
-\newcommand{\Slot}[1]{%
- \begin{pgftranslate}{\pgfpoint{#1}{0pt}}%
- \pgfsetlinewidth{0.6pt}%
- \color{structure}%
- \pgfmoveto{\pgfxy(-0.1,5.5)}%
- \pgfbezier{\pgfxy(-0.1,5.55)}{\pgfxy(-0.05,5.6)}{\pgfxy(0,5.6)}%
- \pgfbezier{\pgfxy(0.05,5.6)}{\pgfxy(0.1,5.55)}{\pgfxy(0.1,5.5)}%
- \pgflineto{\pgfxy(0.1,4.0)}%
- \pgfbezier{\pgfxy(0.1,3.95)}{\pgfxy(0.05,3.9)}{\pgfxy(0,3.9)}%
- \pgfbezier{\pgfxy(-0.05,3.9)}{\pgfxy(-0.1,3.95)}{\pgfxy(-0.1,4.0)}%
- \pgfclosepath%
- \pgfstroke%
- \end{pgftranslate}\ignorespaces}
-
-\newcommand{\SlotZwei}[1]{%
- \begin{pgftranslate}{\pgfpoint{#1}{0pt}}%
- \pgfsetlinewidth{0.6pt}%
- \color{structure}%
- \pgfmoveto{\pgfxy(-0.1,5.5)}%
- \pgfbezier{\pgfxy(-0.1,5.55)}{\pgfxy(-0.05,5.6)}{\pgfxy(0,5.6)}%
- \pgfbezier{\pgfxy(0.05,5.6)}{\pgfxy(0.1,5.55)}{\pgfxy(0.1,5.5)}%
- \pgflineto{\pgfxy(0.1,4.25)}%
- \pgfbezier{\pgfxy(0.1,4.25)}{\pgfxy(0.05,4.15)}{\pgfxy(0,4.15)}%
- \pgfbezier{\pgfxy(-0.05,4.15)}{\pgfxy(-0.1,4.2)}{\pgfxy(-0.1,4.25)}%
- \pgfclosepath%
- \pgfstroke%
- \end{pgftranslate}\ignorespaces}
-
-\newcommand{\ClipSlot}[1]{%
- \pgfrect[clip]{\pgfrelative{\pgfxy(-0.1,0)}{\pgfpoint{#1}{4cm}}}{\pgfxy(0.2,1.5)}\ignorespaces}
-
-\newcommand{\ClipSlotZwei}[1]{%
- \pgfrect[clip]{\pgfrelative{\pgfxy(-0.1,0)}{\pgfpoint{#1}{4.25cm}}}{\pgfxy(0.2,1.25)}\ignorespaces}
-
-
-\AtBeginSection[]{\frame{\frametitle{Outline}\tableofcontents[current]}}
-
-\begin{document}
-
-\frame{\titlepage}
-
-%\section*{Outline}
-\part{Main Part}
-\frame{\frametitle{Outline}\tableofcontents[part=1]}
-
-\section{History}
-
-\subsection{Enumerability in Recursion and Automata Theory}
-
-\frame
-{
- \frametitle{Motivation of Enumerability}
-
- \begin{block}{Problem}
- Many functions are not computable or not efficiently computable.
- \end{block}
- \vskip-1em
- \begin{overprint}
- \onslide<1-2>
- \begin{example}
- \begin{overprint}
- \onslide<1>
- \vskip0.5em
- \begin{itemize}
- \item
- $\NumSAT$:\\
- How many satisfying assignments does a formula have?
- \end{itemize}
-
- \onslide<2>
- \vskip0.5em
- For difficult languages~$A$:
- \begin{itemize}
- \item
- Cardinality function $\NumA^n$:\\
- \alert{How many} input words are in~$A$?
- \item
- Characteristic function $\chi_A^n$:\\
- \alert{Which} input words are in~$A$?
- \end{itemize}
- \begin{pgfpicture}{-9cm}{0.75cm}{-9cm}{2cm}
-
- \pgfnodebox{words}[virtual]{\pgfxy(0,3.5)}{$(w_1, \alert{w_2},
- w_3, w_4, \alert{w_5})$}{2pt}{5pt}
-
- \color{red}
- \pgfputat{\pgfxy(0.75,4.5)}{\pgfbox[center,base]{in $A$}}
- \pgfxyline(0.75,4.4)(-0.6,3.7)
- \pgfxyline(0.75,4.4)(1.2,3.7)
- \color{black}
-
- \pgfnodebox{number}[virtual]{\pgfxy(-1,1)}{2}{2pt}{2pt}
- \pgfnodebox{string}[virtual]{\pgfxy(1,1)}{0\alert{1}00\alert{1}}{2pt}{2pt}
-
- \pgfsetstartarrow{\pgfarrowbar}
- \pgfsetendarrow{\pgfarrowto}
-
- \pgfnodeconnline{words}{string}%{-60}{120}{1cm}{1cm}
- \pgfnodeconnline{words}{number}%{-120}{60}{1cm}{1cm}
-
- \pgfputat{\pgfxy(-0.9,2.3)}{\pgfbox[center,base]{$\NumA^5$}}
- \pgfputat{\pgfxy(0.9,2.3)}{\pgfbox[center,base]{$\chi_A^5$}}
- \end{pgfpicture}
- \end{overprint}
- \end{example}
-
- \onslide<3>
- \begin{block}{Solutions}
- Difficult functions can be
- \begin{itemize}
- \item
- computed using probabilistic algorithms,
- \item
- computed efficiently on average,
- \item
- approximated, or
- \item<alert@1->
- enumerated.
- \end{itemize}
- \end{block}
- \end{overprint}
-}
-
-\frame
-{
- \frametitle{Enumerators Output Sets of Possible Function Values}
- \begin{columns}
- \begin{column}{4.5cm}
- \begin{pgfpicture}{-0.5cm}{0cm}{4cm}{6cm}
-
- \pgfputat{\pgfxy(0,0.5)}{\Band{}{output tape}}
-
- \BaenderHell
-
- \color{black}
-
- \only<1-4,6->{\pgfputat{\pgfxy(1.75,2.5)}{\pgfbox[center,center]{\pgfuseimage{computerimage}}}}
- \only<5>{\pgfputat{\pgfxy(1.75,2.5)}{\pgfbox[center,center]{\pgfuseimage{computerworkingimage}}}}
-
- \begin{pgfscope}
- \only<1>{\ClipSlot{0cm}}
- \only<2>{\ClipSlot{0.6cm}}
- \only<3>{\ClipSlot{1.2cm}}
- \only<4->{\ClipSlot{1.8cm}}
- \BaenderNormal
- \end{pgfscope}
-
- \only<1>{\Slot{0cm}}
- \only<2>{\Slot{0.6cm}}
- \only<3>{\Slot{1.2cm}}
- \only<4->{\Slot{1.8cm}}
-
- \only<6->{
- \pgfxyline(0,0.5)(0,1)
- \pgfxyline(1,0.5)(1,1)
- \pgfputat{\pgfxy(0.5,0.75)}{\pgfbox[center,center]{$u_1$}}}
- \only<7->{
- \pgfxyline(2,0.5)(2,1)
- \pgfputat{\pgfxy(1.5,0.75)}{\pgfbox[center,center]{\alert<9>{$u_2$}}}}
- \only<8->{
- \pgfxyline(3,0.5)(3,1)
- \pgfputat{\pgfxy(2.5,0.75)}{\pgfbox[center,center]{$u_3$}}}
-
- \pgfsetlinewidth{0.6pt}
- \color{structure}
- \pgfsetendarrow{\pgfarrowto}
-
- \pgfsetlinewidth{0.6pt}
- \color{structure}
- \pgfsetendarrow{\pgfarrowto}
- \only<-5>{\pgfxycurve(1.75,1.5)(1.75,1)(0,1.5)(0,1.05)}
- \only<6>{\pgfxycurve(1.75,1.5)(1.75,1)(1,1.5)(1,1.05)}
- \only<7>{\pgfxycurve(1.75,1.5)(1.75,1)(2,1.5)(2,1.05)}
- \only<8->{\pgfxycurve(1.75,1.5)(1.75,1)(3,1.5)(3,1.05)}
-
- \only<1>{\pgfxycurve(1.75,3.5)(1.75,3.75)(0,3.5)(0,3.85)}
- \only<2>{\pgfxycurve(1.75,3.5)(1.75,3.75)(0.6,3.5)(0.6,3.85)}
- \only<3>{\pgfxycurve(1.75,3.5)(1.75,3.75)(1.2,3.5)(1.2,3.85)}
- \only<4->{\pgfxycurve(1.75,3.5)(1.75,3.75)(1.8,3.5)(1.8,3.85)}
- \end{pgfpicture}
- \end{column}
- \begin{column}{6.5cm}
- \begin{definition}[1987, 1989, 1994, 2001]
- An \alert{$m$-enumerator} for a function~$f$
- \begin{enumerate}
- \item<alert@1-4>
- reads $n$ input words $w_1$, \dots, $w_n$,
- \item<alert@5>
- does a computation,
- \item<alert@6-8>
- outputs at most $m$ values,
- \item<alert@9>
- one of which is $f(w_1,\dots,w_n)$.
- \end{enumerate}
- \end{definition}
- \end{column}
- \end{columns}
-}
-
-\subsection{Known Weak Cardinality Theorem}
-
-\frame
-{
- \frametitle{How Well Can the Cardinality Function Be Enumerated?}
-
- \begin{block}{Observation}
- For fixed~$n$, the cardinality function $\NumA^n$
- \begin{itemize}
- \item
- can be \alert{$1$}-enumerated by Turing machines only for \alert{recursive}~$A$,~but\hskip-0.5cm\hbox{}
- \item
- can be \alert{$(n+1)$}-enumerated for \alert{every} language~$A$.
- \end{itemize}
- \end{block}
-
- \begin{alertblock}{Question}<2->
- What about $2$-, $3$-, $4$-, \dots, $n$-enumerability?
- \end{alertblock}
-}
-
-\newtheorem{card}{Cardinality Theorem}[theorem]
-\newtheorem{weakcard}{Weak Cardinality Theorems}[theorem]
-
-\frame
-{
- \frametitle{How Well Can the Cardinality Function\\ Be Enumerated
- by Turing Machines?}
-
- \begin{card}[Kummer, 1992]
- If $\NumA^n$ is $n$-enumerable by a Turing machine, then $A$ is
- recursive.
- \end{card}
-
- \begin{weakcard}[\uncover<2->{\alert<1-2>{1987},} \uncover<3->{\alert<3>{1989},}
- \uncover<4->{\alert<4>{1992}}]<2->
- \begin{enumerate}
- \item<2-| alert@2>
- If $\chi_A^n$ is $n$-enumerable by a Turing machine, then $A$ is
- recursive.
- \item<3-| alert@3>
- If $\NumA^2$ is $2$-enumerable by a Turing machine, then $A$ is
- recursive.
- \item<4-| alert@4>
- If $\NumA^n$ is $n$-enumerable by a Turing machine that never
- enumerates both $0$ and~$n$, then $A$ is recursive.
- \end{enumerate}
- \end{weakcard}
-}
-
-
-\frame
-{
- \frametitle{How Well Can the Cardinality Function\\ Be Enumerated
- by Finite Automata?}
-
- \begin{alertblock}{Conjecture}
- If $\NumA^n$ is $n$-enumerable by a \alert{finite automaton}, then $A$ is
- \alert{regular}.
- \end{alertblock}
-
- \begin{weakcard}[2001, 2002]
- \begin{enumerate}
- \item
- If $\chi_A^n$ is $n$-enumerable by a \alert{finite automaton}, then $A$ is
- \alert{regular}.
- \item
- If $\NumA^2$ is $2$-enumerable by a \alert{finite automaton}, then $A$ is
- \alert{regular}.
- \item
- If $\NumA^n$ is $n$-enumerable by a \alert{finite automaton} that never
- enumerates both $0$ and~$n$, then $A$ is \alert{regular}.
- \end{enumerate}
- \end{weakcard}
-}
-
-
-\subsection{Why Do Cardinality Theorems Hold Only for Certain Models?}
-
-\frame
-{
- \frametitle{Cardinality Theorems Do Not Hold for All Models}
-
- \begin{pgfpicture}{-2.5cm}{0.3cm}{0.5cm}{6.5cm}
- \pgfsetlinewidth{0.6pt}
-
- \pgfsetendarrow{\pgfarrowto}
- \pgfxyline(0,0.5)(0,6.5)
- \pgfclearendarrow
-
- \pgfputat{\pgfxy(-0.2,5.75)}{\pgfbox[right,base]{Turing machines}}
-
- \only<2>{
- \pgfputat{\pgfxy(-0.2,3.75)}{\pgfbox[right,base]{\alert{resource-bounded}}}
- \pgfputat{\pgfxy(-0.2,3.25)}{\pgfbox[right,base]{\alert{machines}}}
- \pgfcircle[fill]{\pgfxy(0,3.6)}{2pt}
- \pgfputat{\pgfxy(0.4,3.5)}{\pgfbox[left,base]{Weak cardinality
- theorems do \alert{not} hold.}}}
-
- \pgfputat{\pgfxy(-0.2,1.5)}{\pgfbox[right,base]{finite}}
- \pgfputat{\pgfxy(-0.2,1)}{\pgfbox[right,base]{automata}}
-
- \pgfcircle[fill]{\pgfxy(0,5.85)}{2pt}
- \pgfcircle[fill]{\pgfxy(0,1.35)}{2pt}
-
- \pgfputat{\pgfxy(0.4,5.75)}{\pgfbox[left,base]{Weak cardinality
- theorems hold.}}
- \pgfputat{\pgfxy(0.4,1.25)}{\pgfbox[left,base]{Weak cardinality
- theorems hold.}}
- \end{pgfpicture}
-}
-
-\frame
-{
- \frametitle{Why?}
-
- \begin{block}{First Explanation}<1>
- The weak cardinality theorems hold both for recursion and automata
- theory \alert{by coincidence}.
- \end{block}
-
- \begin{block}{Second Explanation}<1-2>
- The weak cardinality theorems hold both for
- recursion and automata theory, \alert{because they are
- instantiations of\\ single, unifying theorems}.
- \end{block}
-
- \vskip1em
- \visible<2->{
- The second explanation is correct.\\
- The theorems can (almost) be unified using first-order logic.
- }
-}
-
-
-
-\section[Unification by Logic]{Unification by First-Order Logic}
-
-\subsection{Elementary Definitions}
-
-\frame
-{
- \frametitle{What Are Elementary Definitions?}
-
- \begin{definition}
- A relation~$R$ is \alert{elementarily definable in a
- logical structure~$\mathcal S$} if
- \begin{enumerate}
- \item
- there exists a first-order formula~$\phi$,
- \item
- that is true exactly for the elements of~$R$.
- \end{enumerate}
- \end{definition}
-
- \begin{example}
- The set of even numbers is elementarily definable in $(\Nat, +)$
- via the formula $\phi(x) \equiv \exists z \centerdot z+z=x$.
- \end{example}
-
- \begin{example}
- The set of powers of 2 is not elementarily definable in $(\Nat, +)$.
- \end{example}
-}
-
-
-\frame
-{
- \frametitle{Characterisation of Classes by Elementary Definitions}
-
- \begin{theorem}[B\"uchi, 1960]
- There exists a logical structure~$(\Nat, +, \mathrm e_2)$
- such that a set $A \subseteq \Nat$ is\\ \alert{regular} iff it is
- \alert{elementarily definable in~$(\Nat, +, \mathrm e_2)$}.
- \end{theorem}
-
- \begin{theorem}
- There exists a logical structure~$\mathcal R$ such that a set $A
- \subseteq \Nat$ is \alert{recursively enumerable} iff it is \alert{positively
- elementarily definable in~$\mathcal R$}.\hskip-0.5cm\hbox{}
- \end{theorem}
-}
-
-
-
-\frame
-{
- \frametitle{Characterisation of Classes by Elementary Definitions}
-
- \begin{pgfpicture}{-5.4cm}{0.3cm}{5.4cm}{6.5cm}
- \pgfsetlinewidth{0.6pt}
-
- \pgfsetendarrow{\pgfarrowto}
- \pgfxyline(0,0.3)(0,6.5)
- \pgfclearendarrow
-
- \only<2->{
- \pgfputat{\pgfxy(-0.3,0.5)}{\pgfbox[right,base]{Presburger arithmetic}}
- \pgfcircle[fill]{\pgfxy(0,0.6)}{2pt}
- \pgfputat{\pgfxy(0.3,0.5)}{\pgfbox[left,base]{$(\Nat, +)$}}
- }
- \pgfputat{\pgfxy(-0.3,1.5)}{\pgfbox[right,base]{regular sets}}
- \pgfcircle[fill]{\pgfxy(0,1.6)}{2pt}
- \pgfputat{\pgfxy(0.3,1.5)}{\pgfbox[left,base]{$(\Nat, +, \mathrm e_2)$}}
-
- \pgfputat{\pgfxy(-0.3,2.5)}{\pgfbox[right,base]{\alert{resource-bounded classes}}}
- \pgfcircle[fill]{\pgfxy(0,2.6)}{2pt}
- \pgfputat{\pgfxy(0.3,2.5)}{\pgfbox[left,base]{\alert{none}}}
-
- \pgfputat{\pgfxy(-0.3,3.5)}{\pgfbox[right,base]{recursively enumerable sets}}
- \pgfcircle[fill]{\pgfxy(0,3.6)}{2pt}
- \pgfputat{\pgfxy(0.3,3.5)}{\pgfbox[left,base]{positively in $\mathcal R$}}
-
- \only<2->{
- \pgfputat{\pgfxy(-0.3,4.5)}{\pgfbox[right,base]{arithmetic hierarchy}}
- \pgfcircle[fill]{\pgfxy(0,4.6)}{2pt}
- \pgfputat{\pgfxy(0.3,4.5)}{\pgfbox[left,base]{$(\Nat, +, \cdot)$}}
-
- \pgfputat{\pgfxy(-0.3,5.5)}{\pgfbox[right,base]{ordinal number arithmetic}}
- \pgfcircle[fill]{\pgfxy(0,5.6)}{2pt}
- \pgfputat{\pgfxy(0.3,5.5)}{\pgfbox[left,base]{$(\mathrm{On}, +, \cdot)$}}}
- \end{pgfpicture}
-}
-
-
-\subsection{Enumerability for First-Order Logic}
-
-\frame
-{
- \frametitle{Elementary Enumerability is a Generalisation of\\ Elementary Definability}
-
- \begin{columns}
- \begin{column}{3.25cm}
- \begin{pgfpicture}{-0.25cm}{0cm}{3cm}{4cm}
-
- \color{shaded}
- \pgfmoveto{\pgfxy(0,1.3)}
- \pgfcurveto{\pgfxy(0.5,2.3)}{\pgfxy(2,1.5)}{\pgfxy(2.5,2.3)}
- \pgflineto{\pgfxy(2.5,1.7)}
- \pgfcurveto{\pgfxy(2,0.7)}{\pgfxy(1,1.7)}{\pgfxy(0,0.5)}
- \pgfclosepath
- \pgffill
-
- \pgfsetlinewidth{0.8pt}
- \color{black}
- \pgfmoveto{\pgfxy(0,1)}
- \pgflineto{\pgfxy(0.25,1.15)}
- \pgflineto{\pgfxy(0.5,1.5)}
- \pgflineto{\pgfxy(1,1.7)}
- \pgflineto{\pgfxy(1.5,1.5)}
- \pgflineto{\pgfxy(2,1.4)}
- \pgflineto{\pgfxy(2.25,1.5)}
- \pgflineto{\pgfxy(2.5,2)}
- \pgfstroke
-
- \pgfsetlinewidth{0.4pt}
- \pgfsetendarrow{\pgfarrowto}
- \pgfxyline(0,0)(2.5,0)
- \pgfxyline(0,0)(0,3)
- \pgfputat{\pgfxy(0.5,1.9)}{\pgfbox[center,base]{$R$}}
- \pgfputat{\pgfxy(2.6,0)}{\pgfbox[left,center]{$x$}}
- \pgfputat{\pgfxy(0,3.2)}{\pgfbox[center,base]{$f(x)$}}
- \pgfputat{\pgfxy(2.55,2)}{\pgfbox[left,center]{$f$}}
- \end{pgfpicture}
- \end{column}
- \begin{column}{7.5cm}
- \begin{definition}
- A function~$f$ is\\
- \alert{elementarily $m$-enumerable in a structure~$\mathcal S$} if
- \begin{enumerate}
- \item
- its graph is contained in an\\
- \alert{elementarily definable} relation~$R$,
- \item
- which is \alert{$m$-bounded}, i.\kern1pt e., for each~$x$
- there are at most~$m$ different~$y$ with $(x,y) \in R$.
- \end{enumerate}
- \end{definition}
- \end{column}
- \end{columns}
-}
-
-\frame
-{
- \frametitle{The Original Notions of Enumerability are Instantiations}
-
- \begin{theorem}
- A function is $m$-enumerable by a \alert{finite automaton} iff\\
- it is elementarily $m$-enumerable in \alert{$(\Nat, +, \mathrm e_2)$}.
- \end{theorem}
-
- \begin{theorem}
- A function is $m$-enumerable by a \alert{Turing machine} iff\\
- it is positively elementarily $m$-enumerable in \alert{$\mathcal R$}.
- \end{theorem}
-}
-
-%\subsection{Cross Product Theorem for First-Order Logic}
-
-\subsection{Weak Cardinality Theorems for First-Order Logic}
-
-\frame
-{
- \frametitle{The First Weak Cardinality Theorem}
-
- \begin{theorem}
- Let $\mathcal S$ be a logical structure with universe~$U$ and let
- $A \subseteq U$. If
-
- \begin{enumerate}
- \item
- $\mathcal S$ is well-orderable and
- \item
- \alert{$\chi_A^n$} is elementarily \alert{$n$}-enumerable in~$\mathcal S$,
- \end{enumerate}
-
- then \alert{$A$ is elementarily definable} in~$\mathcal S$.
- \end{theorem}
- \begin{overprint}
- \onslide<2>
- \begin{corollary}
- If $\chi_A^n$ is $n$-enumerable by a finite automaton, then
- $A$ is regular.
- \end{corollary}
-
- \onslide<3>
- \begin{corollary}[with more effort]
- If $\chi_A^n$ is $n$-enumerable by a Turing machine, then $A$
- is recursive.
- \end{corollary}
- \end{overprint}
-}
-
-\frame
-{
- \frametitle{The Second Weak Cardinality Theorem}
-
- \begin{theorem}
- Let $\mathcal S$ be a logical structure with universe~$U$ and let
- $A \subseteq U$. If
-
- \begin{enumerate}
- \item
- $\mathcal S$ is well-orderable,
- \item
- every finite relation on~$U$ is elementarily definable
- in~$\mathcal S$, and
- \item
- \alert{$\NumA^2$} is elementarily \alert{$2$}-enumerable in~$\mathcal S$,
- \end{enumerate}
-
- then \alert{$A$ is elementarily definable} in~$\mathcal S$.
- \end{theorem}
-% \begin{overlayarea}{\textwidth}{2cm}
-% \only<2>{
-% \begin{corollary}
-% If $\NumA^2$ is $2$-enumerable by a finite automaton, then
-% $A$ is regular.
-% \end{corollary}}%
-% \only<3>{
-% \begin{block}{Corollary}
-% If $\NumA^2$ is $2$-enumerable by a Turing machine, then $A$
-% is recursive in the halting problem.
-% \end{block}
-% }
-% \end{overlayarea}
-}
-
-\frame
-{
- \frametitle{The Third Weak Cardinality Theorem}
-
- \begin{theorem}
- Let $\mathcal S$ be a logical structure with universe~$U$ and let
- $A \subseteq U$. If
-
- \begin{enumerate}
- \item
- $\mathcal S$ is well-orderable,
- \item
- every finite relation on~$U$ is elementarily definable
- in~$\mathcal S$, and
- \item
- \alert{$\NumA^n$} is elementarily \alert{$n$}-enumerable in~$\mathcal S$ via a
- relation that \alert{never `enumerates' both $0$ and~$n$},
- \end{enumerate}
-
- then \alert{$A$ is elementarily definable} in~$\mathcal S$.
- \end{theorem}
-% \begin{overlayarea}{\textwidth}{2cm}
-% \only<2>{
-% \begin{corollary}
-% If $\NumA^n$ is $n$-enumerable by a finite automaton that
-% never enumerates both $0$ and~$n$, then $A$ is regular.
-% \end{corollary}}%
-% \only<3>{
-% \begin{block}{Corollary}
-% If $\NumA^n$ is $n$-enumerable by a Turing machine that never
-% enumerates both $0$ and~$n$, then $A$ is recursive in the
-% halting problem.
-% \end{block}
-% }
-% \end{overlayarea}
-}
-
-
-
-\frame
-{
- \frametitle{Relationships Between Cardinality Theorems (CT)}
-
- \begin{pgfpicture}{0cm}{0cm}{10cm}{5cm}
- \only<2>{%
- \color{alert}
- \pgfnodebox{autX}[virtual]{\pgfxy(2.2,4)}{CT}{2pt}{2pt}
- \color{black}}%
- \pgfnodebox{autA}[virtual]{\pgfxy(1,3)}{1st Weak CT}{2pt}{2pt}
- \pgfnodebox{autB}[virtual]{\pgfxy(1,2)}{2nd Weak CT}{2pt}{2pt}
- \pgfnodebox{autC}[virtual]{\pgfxy(1,1)}{3rd Weak CT}{2pt}{2pt}
-
- \only<2>{%
- \color{alert}
- \pgfnodebox{logX}[virtual]{\pgfxy(6.2,4.5)}{CT}{2pt}{2pt}%
- \color{black}}%
- \pgfnodebox{logA}[virtual]{\pgfxy(5,3.5)}{1st Weak CT}{2pt}{2pt}
- \pgfnodebox{logB}[virtual]{\pgfxy(5,2.5)}{2nd Weak CT}{2pt}{2pt}
- \pgfnodebox{logC}[virtual]{\pgfxy(5,1.5)}{3rd Weak CT}{2pt}{2pt}
-
- \pgfnodebox{recX}[virtual]{\pgfxy(10.2,4)}{CT}{2pt}{2pt}
- \pgfnodebox{recA}[virtual]{\pgfxy(9,3)}{1st Weak CT}{2pt}{2pt}
- \pgfnodebox{recB}[virtual]{\pgfxy(9,2)}{2nd Weak CT}{2pt}{2pt}
- \pgfnodebox{recC}[virtual]{\pgfxy(9,1)}{3rd Weak CT}{2pt}{2pt}
-
- \pgfputat{\pgfxy(1,4.5)}{\pgfbox[center,base]{\structure{automata theory}}}
- \pgfputat{\pgfxy(5,5)}{\pgfbox[center,base]{\structure{first-order logic}}}
- \pgfputat{\pgfxy(9,4.5)}{\pgfbox[center,base]{\structure{recursion
- theory}}}
-
- {%
- \color{structure}%
- \pgfxyline(3,0)(3,5)
- \pgfxyline(7,0)(7,5)
- }%
- \pgfsetendarrow{\pgfarrowto}
- \pgfnodeconnline{logA}{autA}
- \pgfnodeconnline{logA}{recA}
- \pgfnodeconnline{logB}{autB}
- \pgfnodeconnline{logC}{autC}
-
- \pgfnodeconncurve{recX}{recA}{-60}{5}{10pt}{10pt}
- \pgfnodeconncurve{recX}{recB}{-55}{5}{10pt}{20pt}
- \pgfnodeconncurve{recX}{recC}{-50}{5}{10pt}{30pt}
-
- \only<2>{%
- \alert{
- \pgfnodeconnline{logX}{autX}
- \pgfnodeconncurve{logX}{logA}{-60}{0}{10pt}{10pt}
- \pgfnodeconncurve{logX}{logB}{-55}{0}{10pt}{20pt}
- \pgfnodeconncurve{logX}{logC}{-50}{0}{10pt}{30pt}
- \pgfnodeconncurve{autX}{autA}{-60}{11}{10pt}{10pt}
- \pgfnodeconncurve{autX}{autB}{-55}{11}{10pt}{20pt}
- \pgfnodeconncurve{autX}{autC}{-50}{11}{10pt}{30pt}
- }
- }
-
- \pgfsetdash{{3pt}{3pt}}{0pt}
- \pgfnodeconnline{logB}{recB}
- \pgfnodeconnline{logC}{recC}
-
- \only<2>{%
- \alert{\pgfnodeconnline{logX}{recX}}}
- \end{pgfpicture}
-}
-
-
-\section{Applications}
-
-\subsection{A Separability Result for First-Order Logic}
-
-%\frame
-%{
-% \begin{columns}
-% \begin{column}{2.4cm}
-% \begin{pgfpicture}{-1.2cm}{-1.2cm}{1cm}{1cm}
-% \color{shaded}
-% \pgfrect[fill]{\pgfxy(-1.4,-1)}{\pgfxy(2.8,2)}
-
-% \color{white}
-% \pgfcircle[fill]{\pgfxy(-0.6,0)}{0.5cm}
-% \pgfcircle[fill]{\pgfxy(0.6,0)}{0.5cm}
-% \only<2->{%
-% \color{softred}
-% \pgfcircle[fill]{\pgfxy(-0.6,0)}{0.6cm}}%
-% %
-% \color{black}
-% \pgfcircle[stroke]{\pgfxy(-0.6,0)}{0.5cm}
-% \pgfcircle[stroke]{\pgfxy(0.6,0)}{0.5cm}
-
-% \pgfputat{\pgfxy(-0.6,0)}{\pgfbox[center,center]{$A^{(n)}$}}
-% \pgfputat{\pgfxy(0.6,0)}{\pgfbox[center,center]{$\barA{}^{(n)}$}}
-% \end{pgfpicture}
-% \end{column}
-% \begin{column}{8cm}
-% \begin{block}{Notation}
-% Let $A^{(n)}$ contain all $n$ tuples of\\
-% distinct elements of~$A$.
-% \end{block}
-
-% \begin{block}{Theorem}
-% Let $\mathcal S$ be a well-orderable logical structure in which
-% all finite relations are elementarily definable.\\[0.5em]
-% If $A^{(n)}$ and $\barA{}^{(n)}$ are \alert<2>{elementarily separable}
-% in~$\mathcal S$, then~so~are~$A$~and~$\barA$.
-% \end{block}
-
-% \uncover<3>{
-% \begin{alertblock}{Note}
-% The theorem is no longer true if $\barA$ is replaced by an
-% arbitrary set~$B$.
-% \end{alertblock}
-% }
-% \end{column}
-% \end{columns}
-%}
-
-
-\frame
-{
- \begin{columns}
- \begin{column}{4cm}
- \begin{pgfpicture}{-2cm}{-1.75cm}{2cm}{2.25cm}
- \color{shaded}
- \pgfrect[fill]{\pgfxy(-2,-1.75)}{\pgfxy(4,4)}
- %\pgfcircle[fill]{\pgforigin}{2cm}
-
- \only<1>{%
- \color{white}%
- \pgfcircle[fill]{\pgfpolar{90}{1cm}}{\innerradius}
- \pgfcircle[fill]{\pgfpolar{210}{1cm}}{\innerradius}
- \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\innerradius}}%
- \only<2->{%
- \color{softred}
- \pgfcircle[fill]{\pgfpolar{90}{1cm}}{\radius}
- \color{softgreen}
- \pgfcircle[fill]{\pgfpolar{210}{1cm}}{\radius}
- \color{softblue}
- \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\radius}}%
- %
- \only<2->{%
- \begin{pgftranslate}{\pgfpolar{90}{1cm}}
- \pgfzerocircle{\radius}
- \pgfclip
-
- \begin{pgftranslate}{\pgfpolar{-90}{1cm}}
- \color{softrb}
- \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\radius}
- \color{softrg}
- \pgfcircle[fill]{\pgfpolar{210}{1cm}}{\radius}
- \end{pgftranslate}
- \end{pgftranslate}
-
- \begin{pgftranslate}{\pgfpolar{210}{1cm}}
- \pgfzerocircle{\radius}
- \pgfclip
-
- \begin{pgftranslate}{\pgfpolar{30}{1cm}}
- \color{softgb}
- \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\radius}
- \end{pgftranslate}
- \end{pgftranslate}}%
- %
- \color{black}
- \pgfcircle[stroke]{\pgfpolar{90}{1cm}}{\innerradius}
- \pgfcircle[stroke]{\pgfpolar{210}{1cm}}{\innerradius}
- \pgfcircle[stroke]{\pgfpolar{330}{1cm}}{\innerradius}
-
- \pgfputat{\pgfrelative{\pgfpolar{90}{1cm}}%
- {\pgfpoint{0pt}{-.5ex}}}%
- {\pgfbox[center,base]{$A\times \barA$}}
- \pgfputat{\pgfrelative{\pgfpolar{210}{1cm}}%
- {\pgfpoint{0pt}{-.5ex}}}%
- {\pgfbox[center,base]{$A\times A$}}
- \pgfputat{\pgfrelative{\pgfpolar{330}{1cm}}%
- {\pgfpoint{0pt}{-.5ex}}}%
- {\pgfbox[center,base]{$\barA\times \barA$}}
-
- \end{pgfpicture}
- \end{column}
- \begin{column}{6.8cm}
- \begin{theorem}
- Let $\mathcal S$ be a well-orderable logical structure in which
- all finite relations are elementarily definable.\\[0.5em]
- If there exist elementarily definable supersets of
- {\color<2>{darkgreen}$A \times A$},
- {\color<2>{darkred}$A \times \barA$}, and
- {\color<2>{darkblue}$\barA \times \barA$} whose
- intersection is empty,\\
- then $A$ is elementarily definable in~$\mathcal S$.
- \end{theorem}
- \begin{alertblock}{Note}<3>
- The theorem is no longer true\\
- if we add $\barA \times A$ to the list.
- \end{alertblock}%
- \end{column}
- \end{columns}
-}
-
-
-\section*{Summary}
-
-\frame
-{
- \frametitle{Summary}
-
- \begin{block}{Summary}
- \begin{itemize}
- \item
- The weak cardinality theorems for first-order logic \alert{unify}\\
- the weak cardinality theorems of automata and recursion theory.
- \item
- The logical approach yields
- weak cardinality theorems for\\ \alert{other computational models}.
- \item
- Cardinality theorems are \alert{separability theorems} in disguise.
- \end{itemize}
- \end{block}{}
-
- \begin{block}{Open Problems}
- \begin{itemize}
- \item
- Does a cardinality theorem for first-order logic hold?
- \item
- What about non-well-orderable structures like $(\mathbb R, +,
- \cdot)$?
- \end{itemize}
- \end{block}
-}
-
-\end{document}
-
-
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.pdf
deleted file mode 100644
index 93a25983497..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.tex
deleted file mode 100644
index f77a6a1af4e..00000000000
--- a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.tex
+++ /dev/null
@@ -1,69 +0,0 @@
-% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample6.tex,v 1.5 2004/10/07 20:53:07 tantau Exp $
-
-\documentclass[serif]{beamer}
-
-% Copyright 2003 by Till Tantau <tantau@cs.tu-berlin.de>.
-%
-% This program can be redistributed and/or modified under the terms
-% of the LaTeX Project Public License Distributed from CTAN
-% archives in directory macros/latex/base/lppl.txt.
-
-%
-% The purpose of this example is to show how \part can be used to
-% organize a lecture.
-%
-
-\usepackage{times}
-\usepackage[latin1]{inputenc}
-
-\title{Beamer Animation Example}
-\author{Till~Tantau}
-\institute{
- Fakultät für Elektrotechnik und Informatik\\
- Technical University of Berlin}
-
-
-\begin{document}
-
-% View this in acroread with "loop after last page option" in full screen mode.
-
-\newcount\opaqueness
-\frame[plain]{
- \itshape
- \animate<1-30>
- \Large
-
- \only<1-10>{
- \animatevalue<1-10>{\opaqueness}{100}{10}
- \begin{colormixin}{\the\opaqueness!averagebackgroundcolor}
- \begin{centering}
- \Huge Urfaust\par
- \end{centering}
- \end{colormixin}
- }
-
- \only<11-20>{
- \animatevalue<11-20>{\opaqueness}{100}{10}
- \begin{colormixin}{\the\opaqueness!averagebackgroundcolor}
- \begin{verse}
- Hab nun, ach! die Philosophey,\\
- Medizin und Juristerey \\
- Und leider auch die Theologie\\
- Durchaus studirt mit heisser Müh.
- \end{verse}
- \end{colormixin}
- }
-
- \only<21-30>{
- \animatevalue<21-30>{\opaqueness}{100}{10}
- \begin{colormixin}{\the\opaqueness!averagebackgroundcolor}
- \begin{verse}
- Da steh ich nun, ich armer Tohr,\\
- Und binn so klug als wie zuvor.
- \end{verse}
- \end{colormixin}}
-}
-
-\end{document}
-
-
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/lyx-based-presentation/beamerexample-lyx.lyx b/Master/texmf-dist/doc/latex/beamer/examples/lyx-based-presentation/beamerexample-lyx.lyx
new file mode 100644
index 00000000000..0d443181c8b
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/lyx-based-presentation/beamerexample-lyx.lyx
@@ -0,0 +1,3880 @@
+#LyX 1.3 created this file. For more info see http://www.lyx.org/
+\lyxformat 221
+\textclass beamer
+\begin_preamble
+\beamertemplateshadingbackground{red!5}{structure!5}
+
+\usepackage{beamerthemeshadow}
+\usepackage{pgfnodes,pgfarrows,pgfheaps}
+
+\beamertemplatetransparentcovereddynamicmedium
+
+
+\pgfdeclareimage[width=0.6cm]{icsi-logo}{beamer-icsi-logo}
+\logo{\pgfuseimage{icsi-logo}}
+
+
+
+
+\newcommand{\Class}[1]{\operatorname{\mathchoice
+ {\text{\small #1}}
+ {\text{\small #1}}
+ {\text{#1}}
+ {\text{#1}}}}
+
+\newcommand{\Lang}[1]{\operatorname{\text{\textsc{#1}}}}
+
+\newcommand{\tape}[3]{%
+ \color{structure!30!averagebackgroundcolor}
+ \pgfmoveto{\pgfxy(-0.5,0)}
+ \pgflineto{\pgfxy(-0.6,0.1)}
+ \pgflineto{\pgfxy(-0.4,0.2)}
+ \pgflineto{\pgfxy(-0.6,0.3)}
+ \pgflineto{\pgfxy(-0.4,0.4)}
+ \pgflineto{\pgfxy(-0.5,0.5)}
+ \pgflineto{\pgfxy(4,0.5)}
+ \pgflineto{\pgfxy(4.1,0.4)}
+ \pgflineto{\pgfxy(3.9,0.3)}
+ \pgflineto{\pgfxy(4.1,0.2)}
+ \pgflineto{\pgfxy(3.9,0.1)}
+ \pgflineto{\pgfxy(4,0)}
+ \pgfclosepath
+ \pgffill
+
+ \color{structure}
+ \pgfputat{\pgfxy(0,0.7)}{\pgfbox[left,base]{#1}}
+ \pgfputat{\pgfxy(0,-0.1)}{\pgfbox[left,top]{#2}}
+
+ \color{black}
+ \pgfputat{\pgfxy(-.1,0.25)}{\pgfbox[left,center]{\texttt{#3}}}%
+}
+
+\newcommand{\shorttape}[3]{%
+ \color{structure!30!averagebackgroundcolor}
+ \pgfmoveto{\pgfxy(-0.5,0)}
+ \pgflineto{\pgfxy(-0.6,0.1)}
+ \pgflineto{\pgfxy(-0.4,0.2)}
+ \pgflineto{\pgfxy(-0.6,0.3)}
+ \pgflineto{\pgfxy(-0.4,0.4)}
+ \pgflineto{\pgfxy(-0.5,0.5)}
+ \pgflineto{\pgfxy(1,0.5)}
+ \pgflineto{\pgfxy(1.1,0.4)}
+ \pgflineto{\pgfxy(0.9,0.3)}
+ \pgflineto{\pgfxy(1.1,0.2)}
+ \pgflineto{\pgfxy(0.9,0.1)}
+ \pgflineto{\pgfxy(1,0)}
+ \pgfclosepath
+ \pgffill
+
+ \color{structure}
+ \pgfputat{\pgfxy(0.25,0.7)}{\pgfbox[center,base]{#1}}
+ \pgfputat{\pgfxy(0.25,-0.1)}{\pgfbox[center,top]{#2}}
+
+ \color{black}
+ \pgfputat{\pgfxy(-.1,0.25)}{\pgfbox[left,center]{\texttt{#3}}}%
+}
+
+\pgfdeclareverticalshading{heap1}{\the\paperwidth}%
+ {color(0pt)=(black); color(1cm)=(structure!65!white)}
+\pgfdeclareverticalshading{heap2}{\the\paperwidth}%
+ {color(0pt)=(black); color(1cm)=(structure!55!white)}
+\pgfdeclareverticalshading{heap3}{\the\paperwidth}%
+ {color(0pt)=(black); color(1cm)=(structure!45!white)}
+\pgfdeclareverticalshading{heap4}{\the\paperwidth}%
+ {color(0pt)=(black); color(1cm)=(structure!35!white)}
+\pgfdeclareverticalshading{heap5}{\the\paperwidth}%
+ {color(0pt)=(black); color(1cm)=(structure!25!white)}
+\pgfdeclareverticalshading{heap6}{\the\paperwidth}%
+ {color(0pt)=(black); color(1cm)=(red!35!white)}
+
+\newcommand{\heap}[5]{%
+ \begin{pgfscope}
+ \color{#4}
+ \pgfheappath{\pgfxy(0,#1)}{\pgfxy(-#2,0)}{\pgfxy(#2,0)}
+ \pgfclip
+ \begin{pgfmagnify}{1}{#1}
+ \pgfputat{\pgfpoint{-.5\paperwidth}{0pt}}{\pgfbox[left,base]{\pgfuseshading{heap#5}}}
+ \end{pgfmagnify}
+ \end{pgfscope}
+ %\pgffill
+
+ \color{#4}
+ \pgfheappath{\pgfxy(0,#1)}{\pgfxy(-#2,0)}{\pgfxy(#2,0)}
+ \pgfstroke
+
+ \color{white}
+ \pgfheaplabel{\pgfxy(0,#1)}{#3}%
+}
+
+
+\newcommand{\langat}[2]{%
+ \color{black!30!beamerexample}
+ \pgfsetlinewidth{0.6pt}
+ \pgfsetendarrow{\pgfarrowdot}
+ \pgfline{\pgfxy(-3.5,#1)}{\pgfxy(0.05,#1)}
+ \color{beamerexample}
+ \pgfputat{\pgfxy(-3.6,#1)}{\pgfbox[right,center]{#2}}%
+}
+
+\newcommand{\langatother}[2]{%
+ \color{black!30!beamerexample}
+ \pgfsetlinewidth{0.6pt}
+ \pgfsetendarrow{\pgfarrowdot}
+ \pgfline{\pgfxy(3.5,#1)}{\pgfxy(-0.05,#1)}
+ \color{beamerexample}
+ \pgfputat{\pgfxy(3.6,#1)}{\pgfbox[left,center]{#2}}%
+}
+
+
+\pgfdeclaremask{knight1-mask}{beamer-knight1-mask} \pgfdeclareimage[height=2cm,mask=knight1-mask]{knight1}{beamer-knight1} \pgfdeclaremask{knight2-mask}{beamer-knight2-mask} \pgfdeclareimage[height=2cm,mask=knight2-mask]{knight2}{beamer-knight2} \pgfdeclaremask{knight3-mask}{beamer-knight3-mask} \pgfdeclareimage[height=2cm,mask=knight3-mask,interpolate=true]{knight3}{beamer-knight3} \pgfdeclaremask{knight4-mask}{beamer-knight4-mask} \pgfdeclareimage[height=2cm,mask=knight4-mask,interpolate=true]{knight4}{beamer-knight4}
+
+
+\pgfdeclareradialshading{graphnode}
+ {\pgfpoint{-3pt}{3.6pt}}%
+ {color(0cm)=(beamerexample!15);
+ color(2.63pt)=(beamerexample!75);
+ color(5.26pt)=(beamerexample!70!black);
+ color(7.6pt)=(beamerexample!50!black);
+ color(8pt)=(beamerexample!10!averagebackgroundcolor)}
+
+\newcommand{\graphnode}[2]{
+ \pgfnodecircle{#1}[virtual]{#2}{8pt}
+ \pgfputat{#2}{\pgfbox[center,center]{\pgfuseshading{graphnode}}}
+}
+\end_preamble
+\options notes=show
+\language english
+\inputencoding auto
+\fontscheme times
+\graphics default
+\paperfontsize default
+\spacing single
+\papersize Default
+\paperpackage a4
+\use_geometry 0
+\use_amsmath 1
+\use_natbib 0
+\use_numerical_citations 0
+\paperorientation portrait
+\secnumdepth 2
+\tocdepth 2
+\paragraph_separation indent
+\defskip medskip
+\quotes_language english
+\quotes_times 2
+\papercolumns 1
+\papersides 1
+\paperpagestyle default
+
+\layout Title
+
+The Complexity of
+\newline
+Finding Paths in Tournaments
+\layout Author
+
+Till Tantau
+\layout Institute
+
+International Computer Schience Institute
+\newline
+Berkeley, California
+\begin_inset OptArg
+collapsed true
+
+\layout Standard
+
+ICSI
+\end_inset
+
+
+\layout Date
+
+January 30th, 2004
+\layout BeginFrame
+
+Outline
+\layout Standard
+
+
+\begin_inset LatexCommand \tableofcontents{}
+
+\end_inset
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+[pausesections]
+\end_inset
+
+
+\layout EndFrame
+
+\layout Standard
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+% Show the table of contents at the beginning
+\layout Standard
+% of every subsection.
+\layout Standard
+
+\backslash
+AtBeginSubsection[]{
+\layout Standard
+
+\backslash
+frame<handout:0>{
+\layout Standard
+
+\backslash
+frametitle{Outline}
+\layout Standard
+
+\backslash
+tableofcontents[current,currentsubsection]
+\layout Standard
+ }
+\layout Standard
+}
+\end_inset
+
+
+\layout Section
+
+Introduction
+\layout Subsection
+
+What are Tournaments?
+\layout BeginFrame
+
+Tournaments Consist of Jousts Between Knights
+\layout Columns
+
+\begin_deeper
+\layout Column
+
+5.75cm
+\layout Standard
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+begin{pgfpicture}{1.25cm}{-1cm}{7cm}{4cm}
+\layout Standard
+
+\backslash
+pgfnodebox{A}[virtual]{
+\backslash
+pgfxy(2,1)}{
+\backslash
+pgfuseimage{knight1}}{2pt}{2pt}
+\layout Standard
+
+\backslash
+pgfnodebox{B}[virtual]{
+\backslash
+pgfxy(6,1)}{
+\backslash
+pgfuseimage{knight2}}{2pt}{2pt}
+\layout Standard
+
+\backslash
+pgfnodebox{C}[virtual]{
+\backslash
+pgfxy(4,-1)}{
+\backslash
+pgfuseimage{knight3}}{2pt}{2pt}
+\layout Standard
+
+\backslash
+pgfnodebox{D}[virtual]{
+\backslash
+pgfxy(4,3)}{
+\backslash
+pgfuseimage{knight4}}{2pt}{2pt}
+\layout Standard
+
+\layout Standard
+
+\backslash
+color{beamerexample}
+\layout Standard
+
+\backslash
+only<3->{
+\backslash
+pgfsetendarrow{
+\backslash
+pgfarrowto}}
+\layout Standard
+
+\backslash
+only<2->{
+\layout Standard
+
+\backslash
+pgfsetlinewidth{0.6pt}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A}{B}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A}{C}
+\layout Standard
+
+\backslash
+pgfnodeconnline{D}{A}
+\layout Standard
+
+\backslash
+pgfnodeconnline{C}{B}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B}{D}
+\layout Standard
+
+\backslash
+pgfnodeconnline{C}{D}}
+\layout Standard
+
+\backslash
+end{pgfpicture}
+\end_inset
+
+
+\layout Column
+
+6cm
+\layout Block
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+{What is a Tournament?}
+\end_inset
+
+
+\begin_deeper
+\layout Itemize
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<1->
+\end_inset
+
+A group of knights.
+\layout Itemize
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<2->
+\end_inset
+
+Every pair has a joust.
+\layout Itemize
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<3->
+\end_inset
+
+In every joust one knight wins.
+\end_deeper
+\end_deeper
+\layout BeginFrame
+
+Tournaments are Complete Directed Graphs
+\layout Columns
+
+\begin_deeper
+\layout Column
+
+5cm
+\layout Standard
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+begin{pgfpicture}{1.5cm}{-1cm}{6.5cm}{4cm}
+\layout Standard
+
+\backslash
+color{beamerexample}
+\layout Standard
+
+\backslash
+pgfsetlinewidth{0.6pt}
+\layout Standard
+
+\backslash
+graphnode{A}{
+\backslash
+pgfxy(2.5,1)}
+\layout Standard
+
+\backslash
+graphnode{B}{
+\backslash
+pgfxy(5.5,1)}
+\layout Standard
+
+\backslash
+graphnode{C}{
+\backslash
+pgfxy(4,-0.5)}
+\layout Standard
+
+\backslash
+graphnode{D}{
+\backslash
+pgfxy(4,2.5)}
+\layout Standard
+
+\layout Standard
+
+\backslash
+color{white}
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfnodecenter{A}}{
+\backslash
+pgfbox[center,center]{$v_2$}}
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfnodecenter{B}}{
+\backslash
+pgfbox[center,center]{$v_3$}}
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfnodecenter{C}}{
+\backslash
+pgfbox[center,center]{$v_4$}}
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfnodecenter{D}}{
+\backslash
+pgfbox[center,center]{$v_1$}}
+\layout Standard
+
+\layout Standard
+
+\backslash
+color{beamerexample}
+\layout Standard
+
+\backslash
+pgfsetendarrow{
+\backslash
+pgfarrowto}
+\layout Standard
+
+\backslash
+pgfnodesetsepstart{2pt}
+\layout Standard
+
+\backslash
+pgfnodesetsepend{4pt}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A}{B}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A}{C}
+\layout Standard
+
+\backslash
+pgfnodeconnline{D}{A}
+\layout Standard
+
+\backslash
+pgfnodeconnline{C}{B}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B}{D}
+\layout Standard
+
+\backslash
+pgfnodeconnline{D}{C}
+\layout Standard
+
+\backslash
+end{pgfpicture}
+\end_inset
+
+
+\layout Column
+
+6cm
+\layout Definition
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<2->
+\end_inset
+
+A
+\color red
+tournament
+\color default
+ is a
+\begin_deeper
+\layout Enumerate
+
+directed graphs,
+\layout Enumerate
+
+with exactly one edge between
+\newline
+any two different vertices.
+\end_deeper
+\end_deeper
+\layout BeginFrame
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+[<+>]
+\end_inset
+
+Tournaments Arise Naturally in Different Situations
+\layout ExampleBlock
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+{Applicatins in Ordering Theory}
+\end_inset
+
+
+\begin_deeper
+\layout Standard
+
+Elements in a set need to be sorted.
+
+\newline
+The comparison relation may be cyclic, however.
+\end_deeper
+\layout Separator
+
+\layout ExampleBlock
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+{Applications in Sociology}
+\end_inset
+
+
+\begin_deeper
+\layout Standard
+
+Several candidates apply for a position.
+\newline
+Reviewers decide for any two candidates whom they prefer.
+
+\end_deeper
+\layout Separator
+
+\layout ExampleBlock
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+{Applications in Structural Complexity Theory}
+\end_inset
+
+
+\begin_deeper
+\layout Standard
+
+A language
+\begin_inset Formula $L$
+\end_inset
+
+ is given and a selector function
+\begin_inset Formula $f$
+\end_inset
+
+.
+\newline
+It chooses from any two words the one more likely to be in
+\begin_inset Formula $f$
+\end_inset
+
+.
+\end_deeper
+\layout Subsection
+
+What Does ``Finding Paths'' Mean?
+\layout BeginFrame
+
+``Finding Paths'' is Ambiguous
+\layout Block
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+{
+\backslash
+strut Input for
+\backslash
+ignorespaces
+\backslash
+def
+\backslash
+par{}% because LyX inserts superfluous paragraphs
+\layout Standard
+
+\backslash
+only<1>{Path Finding Problems}
+\backslash
+ignorespaces
+\layout Standard
+
+\backslash
+only<2-3>{$
+\backslash
+Lang{reach}$}
+\backslash
+ignorespaces
+\layout Standard
+
+\backslash
+only<4-5>{the Construction Problem}
+\backslash
+ignorespaces
+\layout Standard
+
+\backslash
+only<6-7>{the Optimization Problem}
+\backslash
+ignorespaces
+\layout Standard
+
+\backslash
+only<8-9>{$
+\backslash
+Lang{distance}$}
+\backslash
+ignorespaces
+\layout Standard
+
+\backslash
+only<10->{the Approximation Problem}}
+\end_inset
+
+
+\begin_deeper
+\layout Itemize
+
+A
+\color red
+graph
+\color default
+
+\begin_inset Formula $G=(V,E)$
+\end_inset
+
+, a
+\color red
+source
+\color default
+
+\begin_inset Formula $s\in V$
+\end_inset
+
+ and a
+\color red
+target
+\color default
+
+\begin_inset Formula $t\in V$
+\end_inset
+
+.
+\layout Itemize
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<only@-9| visible@8->
+\end_inset
+
+A
+\color red
+maximum distance
+\color default
+\SpecialChar ~
+
+\begin_inset Formula $d$
+\end_inset
+
+.
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+
+\backslash
+phantom{p}
+\end_inset
+
+
+\layout Itemize
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<only@10->
+\end_inset
+
+An
+\color red
+approximation ratio
+\color default
+
+\begin_inset Formula $r>1$
+\end_inset
+
+.
+\end_deeper
+\layout Standard
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+
+\backslash
+nointerlineskip
+\end_inset
+
+
+\layout Overprint
+
+\begin_deeper
+\layout Standard
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+onslide<1,3,5,7,9,11-12>
+\end_inset
+
+
+\layout Columns
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+[t,onlytextwidth]
+\end_inset
+
+
+\begin_deeper
+\layout Standard
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+alt<1-2>{
+\backslash
+column{
+\backslash
+textwidth}}{
+\backslash
+column{5cm}}
+\end_inset
+
+
+\layout ExampleBlock
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+{Example Input}
+\end_inset
+
+
+\begin_deeper
+\layout Standard
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+begin{pgfpicture}{2.5cm}{-0.6cm}{7.5cm}{2.6cm}
+\layout Standard
+
+\backslash
+color{beamerexample}
+\layout Standard
+
+\backslash
+pgfsetlinewidth{0.6pt}
+\layout Standard
+
+\backslash
+graphnode{A}{
+\backslash
+pgfxy(3,1)}
+\layout Standard
+
+\backslash
+graphnode{B}{
+\backslash
+pgfxy(5,1)}
+\layout Standard
+
+\backslash
+graphnode{C}{
+\backslash
+pgfxy(4,0)}
+\layout Standard
+
+\backslash
+graphnode{D}{
+\backslash
+pgfxy(4,2)}
+\layout Standard
+
+\layout Standard
+
+\backslash
+color{white}
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfnodecenter{B}}{
+\backslash
+pgfbox[center,center]{$t$}}
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfnodecenter{D}}{
+\backslash
+pgfbox[center,center]{$s$}}
+\layout Standard
+
+\layout Standard
+
+\backslash
+color{beamerexample}
+\layout Standard
+
+\backslash
+pgfsetendarrow{
+\backslash
+pgfarrowto}
+\layout Standard
+
+\backslash
+pgfnodesetsepstart{2pt}
+\layout Standard
+
+\backslash
+pgfnodesetsepend{4pt}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A}{B}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A}{C}
+\layout Standard
+
+\backslash
+pgfnodeconnline{D}{A}
+\layout Standard
+
+\backslash
+pgfnodeconnline{C}{B}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B}{D}
+\layout Standard
+
+\backslash
+pgfnodeconnline{D}{C}
+\layout Standard
+
+\layout Standard
+
+\backslash
+only<9> {
+\backslash
+pgfputat{
+\backslash
+pgfxy(5.3,1)}{
+\backslash
+pgfbox[left,center]{, $d=2$}}}
+\layout Standard
+
+\backslash
+only<11>{
+\backslash
+pgfputat{
+\backslash
+pgfxy(5.3,1)}{
+\backslash
+pgfbox[left,center]{, $r=1.5$}}}
+\layout Standard
+
+\backslash
+only<12>{
+\backslash
+pgfputat{
+\backslash
+pgfxy(5.3,1)}{
+\backslash
+pgfbox[left,center]{, $r=1.25$}}}
+\layout Standard
+
+\backslash
+end{pgfpicture}
+\end_inset
+
+
+\end_deeper
+\layout Standard
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+only<3->{
+\backslash
+column{5cm}}
+\end_inset
+
+
+\layout ExampleBlock
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+<only@3->{Example Output}
+\end_inset
+
+
+\begin_deeper
+\layout Standard
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+begin{pgfpicture}{2.5cm}{-0.6cm}{7.5cm}{2.6cm}
+\layout Standard
+
+\backslash
+only<5-8,10->{
+\layout Standard
+
+\backslash
+color{beamerexample}
+\layout Standard
+
+\backslash
+pgfsetlinewidth{0.6pt}
+\layout Standard
+
+\backslash
+graphnode{A}{
+\backslash
+pgfxy(3,1)}
+\layout Standard
+
+\backslash
+graphnode{B}{
+\backslash
+pgfxy(5,1)}
+\layout Standard
+
+\backslash
+graphnode{C}{
+\backslash
+pgfxy(4,0)}
+\layout Standard
+
+\backslash
+graphnode{D}{
+\backslash
+pgfxy(4,2)}
+\layout Standard
+
+\layout Standard
+
+\backslash
+color{white}
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfnodecenter{B}}{
+\backslash
+pgfbox[center,center]{$t$}}
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfnodecenter{D}}{
+\backslash
+pgfbox[center,center]{$s$}}
+\layout Standard
+
+\layout Standard
+
+\backslash
+color{beamerexample}
+\layout Standard
+
+\backslash
+pgfsetendarrow{
+\backslash
+pgfarrowto}
+\layout Standard
+
+\backslash
+pgfnodesetsepstart{2pt}
+\layout Standard
+
+\backslash
+pgfnodesetsepend{4pt}
+\layout Standard
+
+\layout Standard
+
+\backslash
+alert<7,12>{
+\backslash
+pgfnodeconnline{A}{B}}
+\layout Standard
+
+\backslash
+alert<5,11>{
+\backslash
+pgfnodeconnline{A}{C}}
+\layout Standard
+
+\backslash
+alert<5,7,11-12>{
+\backslash
+pgfnodeconnline{D}{A}}
+\layout Standard
+
+\backslash
+alert<5,11>{
+\backslash
+pgfnodeconnline{C}{B}}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B}{D}
+\layout Standard
+
+\backslash
+pgfnodeconnline{D}{C}
+\layout Standard
+ }
+\layout Standard
+
+\backslash
+only<3,9>{
+\backslash
+pgfputat{
+\backslash
+pgfxy(2.75,1)}{
+\backslash
+pgfbox[left,center]{
+\backslash
+alert{``Yes''}}}}
+\layout Standard
+
+\backslash
+end{pgfpicture}
+\end_inset
+
+
+\end_deeper
+\end_deeper
+\layout Standard
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+onslide<2,4,6,8,10>
+\end_inset
+
+
+\layout Block
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+{Variants of Path Finding Problems}
+\end_inset
+
+
+\begin_deeper
+\layout Standard
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+usedescriptionitemofwidthas{Approximation Problem:}
+\end_inset
+
+
+\layout Description
+
+Reachability\SpecialChar ~
+Problem:
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<2->
+\end_inset
+
+Is there a path from
+\begin_inset Formula $s$
+\end_inset
+
+ to\SpecialChar ~
+
+\begin_inset Formula $t$
+\end_inset
+
+?
+\layout Description
+
+Construction\SpecialChar ~
+Problem:
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<4->
+\end_inset
+
+Construct a path from
+\begin_inset Formula $s$
+\end_inset
+
+ to\SpecialChar ~
+
+\begin_inset Formula $t$
+\end_inset
+
+?
+\layout Description
+
+Optimization\SpecialChar ~
+Problem:
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<6->
+\end_inset
+
+Construct a shortest path from
+\begin_inset Formula $s$
+\end_inset
+
+ to\SpecialChar ~
+
+\begin_inset Formula $t$
+\end_inset
+
+.
+\layout Description
+
+Distance\SpecialChar ~
+Problem:
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<8->
+\end_inset
+
+Is the distance of
+\begin_inset Formula $s$
+\end_inset
+
+ and\SpecialChar ~
+
+\begin_inset Formula $t$
+\end_inset
+
+ at most\SpecialChar ~
+
+\begin_inset Formula $d$
+\end_inset
+
+?
+\layout Description
+
+Approximation\SpecialChar ~
+Problem:
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<10->
+\end_inset
+
+Construct a path from
+\begin_inset Formula $s$
+\end_inset
+
+ to\SpecialChar ~
+
+\begin_inset Formula $t$
+\end_inset
+
+ of length
+\newline
+approximately their distance.
+\end_deeper
+\end_deeper
+\layout Section
+
+Review
+\layout Subsection
+
+Standard Complexity Classes
+\layout Standard
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+pgfdeclaremask{computer-mask}{beamer-g4-mask}
+\backslash
+pgfdeclareimage[height=2cm,mask=computer-mask,interpolate=true]{computer}{beamer-g4}
+\end_inset
+
+
+\layout BeginFrame
+
+The Classes L and NL are Defined via
+\newline
+Logspace Turing Machines
+\layout Standard
+
+
+\begin_inset ERT
+status Open
+
+\layout Standard
+
+\backslash
+begin{pgfpicture}{-0.5cm}{0cm}{8cm}{5cm}
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfxy(0,4)}{
+\backslash
+tape{input tape (read only), $n$ symbols}{}{3401234*3143223=}}
+\layout Standard
+
+\backslash
+uncover<2->{
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfxy(0,0.5)}{
+\backslash
+tape{}{output tape (write only)}{10690836937182}}}
+\layout Standard
+
+\backslash
+uncover<3->{
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfxy(7,2)}{
+\backslash
+shorttape{work tape (read/write), $O(
+\backslash
+log n)$ symbols}{}{42}}
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfxy(1.75,2.5)}{
+\backslash
+pgfbox[center,center]{
+\backslash
+pgfuseimage{computer}}}
+\layout Standard
+ }
+\layout Standard
+
+\backslash
+pgfsetlinewidth{0.6pt}
+\layout Standard
+
+\layout Standard
+
+\backslash
+color{structure}
+\layout Standard
+
+\backslash
+pgfsetendarrow{
+\backslash
+pgfarrowto}
+\layout Standard
+
+\backslash
+pgfxycurve(1.75,3.5)(1.75,3.75)(0,3.5)(0,3.85)
+\layout Standard
+
+\backslash
+uncover<2->{
+\backslash
+pgfxycurve(1.75,1.5)(1.75,1)(0,1.5)(0,1.05)}
+\layout Standard
+
+\backslash
+uncover<3->{
+\backslash
+pgfxycurve(2.65,2.5)(3.75,2.5)(7,1)(7,1.9)}
+\layout Standard
+
+\backslash
+end{pgfpicture}
+\end_inset
+
+
+\layout BeginFrame
+
+Logspace Turing Machines Are Quite Powerful
+\layout Block
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+{Deterministic logspace machines can compute}
+\end_inset
+
+
+\begin_deeper
+\layout Itemize
+
+addition, multiplication, and even division
+\layout Itemize
+
+reductions used in completeness proofs,
+\layout Itemize
+
+reachability in forests.
+\end_deeper
+\layout Pause
+
+\layout Block
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+{Non-deterministic logspace machines can compute}
+\end_inset
+
+
+\begin_deeper
+\layout Itemize
+
+reachability in graphs,
+\layout Itemize
+
+non-reachability in graphs,
+\layout Itemize
+
+satisfiability with two literals per clause.
+\end_deeper
+\layout BeginFrame
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+<1>[label=hierarchy]
+\end_inset
+
+The Complexity Class Hierarchy
+\layout Standard
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{5.5cm}
+\layout Standard
+
+\backslash
+pgfsetlinewidth{0.8pt}
+\layout Standard
+
+\backslash
+heap{5.5}{3.5}{$
+\backslash
+Class P$}{black}{1}
+\layout Standard
+
+\backslash
+pgfsetdash{{2pt}}{0pt}
+\layout Standard
+
+\backslash
+only<2->{
+\backslash
+heap{4.5}{3}{$
+\backslash
+Class{NC}^2$}{black!50!structure}{2}}
+\layout Standard
+
+\backslash
+heap{3.5}{2.5}{$
+\backslash
+Class{NL}$}{black!50!structure}{3}
+\layout Standard
+
+\backslash
+heap{2.5}{2}{$
+\backslash
+Class{L}$}{black!50!structure}{4}
+\layout Standard
+
+\backslash
+only<2->{
+\backslash
+heap{1.75}{1.5}{$
+\backslash
+vphantom{A}
+\backslash
+smash{
+\backslash
+Class{NC}^1}$}{black!50!structure}{5}}
+\layout Standard
+
+\backslash
+pgfsetdash{}{0pt}
+\layout Standard
+
+\backslash
+only<2->{
+\backslash
+heap{1.1}{1}{$
+\backslash
+vphantom{A}
+\backslash
+smash{
+\backslash
+Class{AC}^0}$}{black}{6}}
+\layout Standard
+
+\layout Standard
+
+\backslash
+pgfsetlinewidth{1.0pt}
+\layout Standard
+
+\backslash
+color{black}
+\layout Standard
+
+\backslash
+pgfxyline(-5,0)(5,0)
+\layout Standard
+
+\layout Standard
+
+\backslash
+only<1-2>{
+\backslash
+langat{3.375}{$
+\backslash
+Lang{reach}$}}
+\layout Standard
+
+\backslash
+only<1-2>{
+\backslash
+langat{2.375}{$
+\backslash
+Lang{reach}_{
+\backslash
+operatorname{forest}}$}}
+\layout Standard
+
+\layout Standard
+
+\backslash
+only<2>{
+\backslash
+langat{0.975}{$
+\backslash
+Lang{addition}$}}
+\layout Standard
+
+\backslash
+only<2>{
+\backslash
+langatother{1.6}{
+\backslash
+vbox{
+\backslash
+hbox{$
+\backslash
+Lang{division}$,}
+\backslash
+hbox{$
+\backslash
+Lang{parity}$}}}}
+\layout Standard
+
+\backslash
+only<3-5>{
+\backslash
+langat{3.375}{
+\backslash
+vbox{
+\backslash
+hbox{$
+\backslash
+Lang{distance}$,}
+\backslash
+hbox{$
+\backslash
+Lang{reach}$}}}}
+\layout Standard
+
+\backslash
+only<4->{
+\backslash
+langatother{2.375}{
+\backslash
+vbox{
+\backslash
+ignorespaces
+\layout Standard
+
+\backslash
+hbox{$
+\backslash
+Lang{distance}_{
+\backslash
+operatorname{forest}}$,}
+\backslash
+ignorespaces
+\layout Standard
+
+\backslash
+hbox{$
+\backslash
+Lang{reach}_{
+\backslash
+operatorname{forest}}$,}
+\backslash
+ignorespaces
+\layout Standard
+
+\backslash
+hbox{$
+\backslash
+Lang{distance}_{
+\backslash
+operatorname{path}}$,}
+\backslash
+ignorespaces
+\layout Standard
+
+\backslash
+hbox{$
+\backslash
+Lang{reach}_{
+\backslash
+operatorname{path}}$}}}}
+\layout Standard
+
+\backslash
+only<5->{
+\backslash
+langat{0.975}{$
+\backslash
+Lang{reach}_{
+\backslash
+operatorname{tourn}}$}}
+\layout Standard
+
+\backslash
+only<6->{
+\backslash
+langat{3.375}{
+\backslash
+vbox{
+\backslash
+ignorespaces
+\layout Standard
+
+\backslash
+hbox{$
+\backslash
+Lang{distance}_{
+\backslash
+operatorname{tourn}}$,}
+\backslash
+ignorespaces
+\layout Standard
+
+\backslash
+hbox{$
+\backslash
+Lang{distance}$,}
+\backslash
+ignorespaces
+\layout Standard
+
+\backslash
+hbox{$
+\backslash
+Lang{reach}$}}}}
+\layout Standard
+
+\backslash
+only<7->{
+\backslash
+pgfsetdash{{1pt}}{0pt}
+\backslash
+langat{2.375}{``$
+\backslash
+Lang{approx}_{
+\backslash
+operatorname{tourn}}$''}}
+\layout Standard
+
+\backslash
+end{pgfpicture}
+\end_inset
+
+
+\layout BeginFrame
+
+The Circuit Complexity Classes AC
+\begin_inset Formula $^{0}$
+\end_inset
+
+, NC
+\begin_inset Formula $^{1}$
+\end_inset
+
+, and NC
+\begin_inset Formula $^{2}$
+\end_inset
+
+
+\newline
+Limit the Circuit Depth
+\layout Standard
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+setlength
+\backslash
+leftmargini{1em}
+\layout Standard
+
+\backslash
+nointerlineskip
+\end_inset
+
+
+\layout Columns
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+[t]
+\end_inset
+
+
+\begin_deeper
+\layout Column
+
+3.6cm
+\layout Block
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+{
+\end_inset
+
+Circuit Class
+\begin_inset Formula $\Class{AC}^{0}$
+\end_inset
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+}
+\end_inset
+
+
+\begin_deeper
+\layout Itemize
+
+
+\begin_inset Formula $O(1)$
+\end_inset
+
+ depth
+\layout Itemize
+
+unbounded fan-in
+\end_deeper
+\layout Examples
+
+\begin_deeper
+\layout Itemize
+
+
+\begin_inset Formula $\Lang{addition}\in\Class{AC}^{0}$
+\end_inset
+
+.
+\layout Itemize
+
+
+\begin_inset Formula $\Lang{parity}\notin\Class{AC}^{0}$
+\end_inset
+
+.
+\end_deeper
+\layout Pause
+
+\layout Column
+
+3.6cm
+\layout Block
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+{
+\end_inset
+
+Circuit Class
+\begin_inset Formula $\Class{NC}^{1}$
+\end_inset
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+}
+\end_inset
+
+
+\begin_deeper
+\layout Itemize
+
+
+\begin_inset Formula $O(\log n)$
+\end_inset
+
+ depth
+\layout Itemize
+
+bounded fan-in
+\end_deeper
+\layout Examples
+
+\begin_deeper
+\layout Itemize
+
+
+\begin_inset Formula $\Lang{parity}\in\Class{NC}^{1}$
+\end_inset
+
+.
+\layout Itemize
+
+
+\begin_inset Formula $\Lang{mutiply}\in\Class{NC}^{1}$
+\end_inset
+
+.
+\layout Itemize
+
+
+\begin_inset Formula $\Lang{divide}\in\Class{NC}^{1}$
+\end_inset
+
+.
+\end_deeper
+\layout Pause
+
+\layout Column
+
+3.6cm
+\layout Block
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+{
+\end_inset
+
+Circuit Class
+\begin_inset Formula $\Class{NC}^{2}$
+\end_inset
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+}
+\end_inset
+
+
+\begin_deeper
+\layout Itemize
+
+
+\begin_inset Formula $O(\log^{2}n)$
+\end_inset
+
+ depth
+\layout Itemize
+
+bounded fan-in
+\end_deeper
+\layout Examples
+
+\begin_deeper
+\layout Itemize
+
+
+\begin_inset Formula $\Class{NL}\subseteq\Class{NC}^{2}$
+\end_inset
+
+.
+\end_deeper
+\end_deeper
+\layout AgainFrame
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<2>
+\end_inset
+
+hierarchy
+\layout Subsection
+
+Standard Complexity Results on Finding Paths
+\layout BeginFrame
+
+All Variants of Finding Paths in Directed Graphs
+\newline
+Are Equally Difficult
+\layout Fact
+
+
+\begin_inset Formula $\Lang{reach}$
+\end_inset
+
+ and
+\begin_inset Formula $\Lang{distance}$
+\end_inset
+
+ are
+\begin_inset Formula $\Class{NL}$
+\end_inset
+
+-complete.
+
+\layout Pause
+
+\layout Corollary
+
+For directed graphs, we can solve
+\begin_deeper
+\layout Itemize
+
+the reachability problem in logspace iff
+\begin_inset Formula $\Class{L}=\Class{NL}$
+\end_inset
+
+.
+\layout Itemize
+
+the construction problem in logspace iff
+\begin_inset Formula $\Class{L}=\Class{NL}$
+\end_inset
+
+.
+\layout Itemize
+
+the optimization problem in logspace iff
+\begin_inset Formula $\Class{L}=\Class{NL}$
+\end_inset
+
+.
+\layout Itemize
+
+the approximation problem in logspace iff
+\begin_inset Formula $\Class{L}=\Class{NL}$
+\end_inset
+
+.
+\end_deeper
+\layout AgainFrame
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<3>
+\end_inset
+
+hierarchy
+\layout BeginFrame
+
+FindingPaths in Forests and Directed Paths is Easy,
+\newline
+But Not Trivial
+\layout Fact
+
+
+\begin_inset Formula $\Lang{reach}_{\operatorname{forest}}$
+\end_inset
+
+ and
+\begin_inset Formula $\Lang{distance}_{\operatorname{forest}}$
+\end_inset
+
+ are
+\begin_inset Formula $\Class{L}$
+\end_inset
+
+-complete.
+\layout Separator
+
+\layout Fact
+
+
+\begin_inset Formula $\Lang{reach}_{\operatorname{path}}$
+\end_inset
+
+ and
+\begin_inset Formula $\Lang{distance}_{\operatorname{path}}$
+\end_inset
+
+ are
+\begin_inset Formula $\Class{L}$
+\end_inset
+
+-complete.
+\layout AgainFrame
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<4>
+\end_inset
+
+hierarchy
+\layout Section
+
+Finding Paths in Tournaments
+\layout Subsection
+
+Complexity of: Does a Path Exist?
+\layout BeginFrame
+
+Definition of the Tournament Reachability Problem
+\layout Definition
+
+Let
+\color red
+
+\begin_inset Formula $\Lang{reach}_{\operatorname{tourn}}$
+\end_inset
+
+
+\color default
+ contain all triples
+\begin_inset Formula $(T,s,t)$
+\end_inset
+
+ such that
+\begin_deeper
+\layout Enumerate
+
+
+\begin_inset Formula $T=(V,E)$
+\end_inset
+
+ is a tournament and
+\layout Enumerate
+
+there exists a path from\SpecialChar ~
+
+\begin_inset Formula $s$
+\end_inset
+
+ to\SpecialChar ~
+
+\begin_inset Formula $t$
+\end_inset
+
+.
+\end_deeper
+\layout BeginFrame
+
+The Tournament Reachability Problem is Very Easy
+\layout Theorem
+
+
+\begin_inset Formula $\Lang{reach}_{\operatorname{tourn}}\in\Class{AC}^{0}$
+\end_inset
+
+.
+\layout Pause
+
+\layout AlertBlock
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+{Implications}
+\end_inset
+
+
+\begin_deeper
+\layout Itemize
+
+The problem is
+\begin_inset Quotes eld
+\end_inset
+
+easier
+\begin_inset Quotes erd
+\end_inset
+
+ than
+\begin_inset Formula $\Lang{reach}$
+\end_inset
+
+ and even
+\begin_inset Formula $\Lang{reach}_{\operatorname{path}}$
+\end_inset
+
+.
+\layout Itemize
+
+
+\begin_inset Formula $\Lang{reach}\not\le_{\operatorname{m}}^{\Class{AC}^{0}}\Lang{reach}_{\operatorname{tourn}}$
+\end_inset
+
+.
+\end_deeper
+\layout AgainFrame
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<5>
+\end_inset
+
+hierarchy
+\layout Subsection
+
+Complexity of: Construct a Shortest Path
+\layout BeginFrame
+
+Finding a Shortest Path Is as Difficult as
+\newline
+the Distance Problem
+\layout Definition
+
+Let
+\color red
+
+\begin_inset Formula $\Lang{distance}_{\operatorname{tourn}}$
+\end_inset
+
+
+\color default
+contain all tuples
+\begin_inset Formula $(T,s,t,d)$
+\end_inset
+
+ such that
+\begin_deeper
+\layout Enumerate
+
+
+\begin_inset Formula $T=(V,E)$
+\end_inset
+
+ is a tournament in which
+\layout Enumerate
+
+the distance of
+\begin_inset Formula $s$
+\end_inset
+
+ and\SpecialChar ~
+
+\begin_inset Formula $t$
+\end_inset
+
+ is at most\SpecialChar ~
+
+\begin_inset Formula $d$
+\end_inset
+
+.
+\end_deeper
+\layout BeginFrame
+
+The Tournament Distance Problem is Hard
+\layout Theorem
+
+
+\begin_inset Formula $\Lang{distance}_{\operatorname{tourn}}$
+\end_inset
+
+ is
+\begin_inset Formula $\Class{NL}$
+\end_inset
+
+-complete.
+\layout Standard
+
+
+\hfill
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+hyperlink{hierarchy<6>}{
+\backslash
+beamerskipbutton{Skip Proof}}
+\end_inset
+
+
+\layout Pause
+
+\layout Corollary
+
+Shortest path in tournaments can be constructed
+\newline
+in logarithmic space, iff
+\begin_inset Formula $\Class{L}=\Class{NL}$
+\end_inset
+
+.
+\layout Pause
+
+\layout Corollary
+
+
+\begin_inset Formula $\Lang{distance}\le_{\operatorname{m}}^{\Class{AC}^{0}}\Lang{distance}_{\operatorname{tourn}}$
+\end_inset
+
+.
+\layout BeginFrame
+
+Proof That
+\begin_inset Formula $\Lang{distance}_{\operatorname{tourn}}$
+\end_inset
+
+ is NL-complete
+\layout Standard
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+
+\backslash
+nointerlineskip
+\end_inset
+
+
+\layout Columns
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+[t,onlytextwidth]
+\end_inset
+
+
+\begin_deeper
+\layout Column
+
+5.7cm
+\layout Standard
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+setlength
+\backslash
+leftmargini{1.5em}
+\end_inset
+
+
+\layout Block
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+{
+\end_inset
+
+Reduce
+\begin_inset Formula $\Lang{reach}$
+\end_inset
+
+ to
+\begin_inset Formula $\Lang{distance}_{\operatorname{tourn}}$
+\end_inset
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+}
+\end_inset
+
+
+\begin_deeper
+\layout Enumerate
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+<alert@1>
+\end_inset
+
+Is input
+\begin_inset Formula $(G,s,t)$
+\end_inset
+
+ in
+\begin_inset Formula $\Lang{reach}$
+\end_inset
+
+?
+\layout Enumerate
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+<2-| alert@2-8>
+\end_inset
+
+Map
+\begin_inset Formula $G$
+\end_inset
+
+ to
+\begin_inset Formula $G'$
+\end_inset
+
+.
+\layout Enumerate
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+<9-| alert@9>
+\end_inset
+
+Query:
+\newline
+
+\begin_inset Formula $(G',s',t',3)\in\Lang{distance}_{\operatorname{tourn}}$
+\end_inset
+
+?
+\end_deeper
+\layout Separator
+
+\layout Block
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+{
+\end_inset
+
+Correctness
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+}
+\end_inset
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<10->
+\end_inset
+
+
+\begin_deeper
+\layout Enumerate
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+<10-| alert@10-11>
+\end_inset
+
+A path in\SpecialChar ~
+
+\begin_inset Formula $G$
+\end_inset
+
+ induces
+\newline
+a length-3 path in\SpecialChar ~
+
+\begin_inset Formula $G'$
+\end_inset
+
+.
+\layout Enumerate
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+<12-| alert@12-13>
+\end_inset
+
+A length-3 path in\SpecialChar ~
+
+\begin_inset Formula $G'$
+\end_inset
+
+ induces
+\newline
+a path in\SpecialChar ~
+
+\begin_inset Formula $G'$
+\end_inset
+
+.
+\end_deeper
+\layout Column
+
+4.5cm
+\layout Example
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+begin{pgfpicture}{0cm}{-1.25cm}{4.5cm}{3.75cm}
+\layout Standard
+
+\backslash
+color{beamerexample}
+\layout Standard
+
+\backslash
+pgfsetlinewidth{0.6pt}
+\layout Standard
+
+\backslash
+graphnode{A}{
+\backslash
+pgfxy(1,3.3)}
+\layout Standard
+
+\backslash
+graphnode{B}{
+\backslash
+pgfxy(2,3.3)}
+\layout Standard
+
+\backslash
+graphnode{C}{
+\backslash
+pgfxy(3,3.3)}
+\layout Standard
+
+\backslash
+graphnode{D}{
+\backslash
+pgfxy(4,3.3)}
+\layout Standard
+
+\layout Standard
+
+\backslash
+color{white}
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfnodecenter{A}}{
+\backslash
+pgfbox[center,center]{$s$}}
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfnodecenter{D}}{
+\backslash
+pgfbox[center,center]{$t$}}
+\layout Standard
+
+\layout Standard
+
+\backslash
+color{beamerexample}
+\layout Standard
+
+\backslash
+pgfsetendarrow{
+\backslash
+pgfarrowto}
+\layout Standard
+
+\backslash
+pgfnodesetsepstart{2pt}
+\layout Standard
+
+\backslash
+pgfnodesetsepend{2pt}
+\layout Standard
+
+\backslash
+alert<3>{
+\backslash
+pgfnodeconnline{B}{A}}
+\layout Standard
+
+\backslash
+alert<4>{
+\backslash
+pgfnodeconnline{B}{C}}
+\layout Standard
+
+\backslash
+alert<5,10-11,13>{
+\backslash
+pgfnodeconnline{C}{D}}
+\layout Standard
+
+\backslash
+alert<6,10-11,13>{
+\backslash
+pgfnodeconncurve{A}{C}{45}{135}{15pt}{15pt}}
+\layout Standard
+
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfxy(0,3.3)}{
+\backslash
+pgfbox[left,center]{$G
+\backslash
+colon$}}
+\layout Standard
+
+\layout Standard
+
+\backslash
+only<2->{
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfxy(0,2.25)}{
+\backslash
+pgfbox[left,center]{$G'
+\backslash
+colon$}}
+\layout Standard
+
+\backslash
+graphnode{A1}{
+\backslash
+pgfxy(1,2.25)}
+\layout Standard
+
+\backslash
+graphnode{B1}{
+\backslash
+pgfxy(2,2.25)}
+\layout Standard
+
+\backslash
+graphnode{C1}{
+\backslash
+pgfxy(3,2.25)}
+\layout Standard
+
+\backslash
+graphnode{D1}{
+\backslash
+pgfxy(4,2.25)}
+\layout Standard
+
+\layout Standard
+
+\backslash
+graphnode{A2}{
+\backslash
+pgfxy(1,1.25)}
+\layout Standard
+
+\backslash
+graphnode{B2}{
+\backslash
+pgfxy(2,1.25)}
+\layout Standard
+
+\backslash
+graphnode{C2}{
+\backslash
+pgfxy(3,1.25)}
+\layout Standard
+
+\backslash
+graphnode{D2}{
+\backslash
+pgfxy(4,1.25)}
+\layout Standard
+
+\backslash
+graphnode{A3}{
+\backslash
+pgfxy(1,0.25)}
+\layout Standard
+
+\backslash
+graphnode{B3}{
+\backslash
+pgfxy(2,0.25)}
+\layout Standard
+
+\backslash
+graphnode{C3}{
+\backslash
+pgfxy(3,0.25)}
+\layout Standard
+
+\backslash
+graphnode{D3}{
+\backslash
+pgfxy(4,0.25)}
+\layout Standard
+
+\backslash
+graphnode{A4}{
+\backslash
+pgfxy(1,-.75)}
+\layout Standard
+
+\backslash
+graphnode{B4}{
+\backslash
+pgfxy(2,-.75)}
+\layout Standard
+
+\backslash
+graphnode{C4}{
+\backslash
+pgfxy(3,-.75)}
+\layout Standard
+
+\backslash
+graphnode{D4}{
+\backslash
+pgfxy(4,-.75)}
+\layout Standard
+ {
+\backslash
+color{white}
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfnodecenter{A1}}{
+\backslash
+pgfbox[center,center]{$s'$}}
+\layout Standard
+
+\backslash
+pgfputat{
+\backslash
+pgfnodecenter{D4}}{
+\backslash
+pgfbox[center,center]{$t'$}}
+\layout Standard
+ }}
+\layout Standard
+
+\layout Standard
+
+\backslash
+only<8->{
+\layout Standard
+
+\backslash
+pgfsetlinewidth{0.4pt}
+\layout Standard
+
+\backslash
+color{beamerexample!25!averagebackgroundcolor}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A2}{C1}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A2}{D1}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B2}{A1}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B2}{C1}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B2}{D1}
+\layout Standard
+
+\backslash
+pgfnodeconnline{C2}{D1}
+\layout Standard
+
+\backslash
+pgfnodeconnline{D2}{A1}
+\layout Standard
+
+\backslash
+pgfnodeconnline{D2}{B1}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A3}{C2}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A3}{D2}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B3}{A2}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B3}{C2}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B3}{D2}
+\layout Standard
+
+\backslash
+pgfnodeconnline{C3}{D2}
+\layout Standard
+
+\backslash
+pgfnodeconnline{D3}{A2}
+\layout Standard
+
+\backslash
+pgfnodeconnline{D3}{B2}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A4}{C3}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A4}{D3}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B4}{A3}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B4}{C3}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B4}{D3}
+\layout Standard
+
+\backslash
+pgfnodeconnline{C4}{D3}
+\layout Standard
+
+\backslash
+pgfnodeconnline{D4}{A3}
+\layout Standard
+
+\backslash
+pgfnodeconnline{D4}{B3}
+\layout Standard
+
+\layout Standard
+
+\backslash
+pgfsetstartarrow{
+\backslash
+pgfarrowto}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A1}{B1}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B1}{C1}
+\layout Standard
+
+\backslash
+pgfnodeconnline{C1}{D1}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A2}{B2}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B2}{C2}
+\layout Standard
+
+\backslash
+pgfnodeconnline{C2}{D2}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A3}{B3}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B3}{C3}
+\layout Standard
+
+\backslash
+pgfnodeconnline{C3}{D3}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A4}{B4}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B4}{C4}
+\layout Standard
+
+\backslash
+pgfnodeconnline{C4}{D4}
+\layout Standard
+
+\layout Standard
+
+\backslash
+pgfclearstartarrow
+\layout Standard
+
+\backslash
+pgfnodeconncurve{A3}{A1}{135}{-135}{10pt}{10pt}
+\layout Standard
+
+\backslash
+pgfnodeconncurve{A4}{A2}{135}{-135}{10pt}{10pt}
+\layout Standard
+
+\backslash
+pgfnodeconncurve{A4}{A1}{135}{-135}{15pt}{15pt}
+\layout Standard
+
+\backslash
+pgfnodeconncurve{B3}{B1}{135}{-135}{10pt}{10pt}
+\layout Standard
+
+\backslash
+pgfnodeconncurve{B4}{B2}{135}{-135}{10pt}{10pt}
+\layout Standard
+
+\backslash
+pgfnodeconncurve{B4}{B1}{135}{-135}{15pt}{15pt}
+\layout Standard
+
+\backslash
+pgfnodeconncurve{C3}{C1}{135}{-135}{10pt}{10pt}
+\layout Standard
+
+\backslash
+pgfnodeconncurve{C4}{C2}{135}{-135}{10pt}{10pt}
+\layout Standard
+
+\backslash
+pgfnodeconncurve{C4}{C1}{135}{-135}{15pt}{15pt}
+\layout Standard
+
+\backslash
+pgfnodeconncurve{D3}{D1}{135}{-135}{10pt}{10pt}
+\layout Standard
+
+\backslash
+pgfnodeconncurve{D4}{D2}{135}{-135}{10pt}{10pt}
+\layout Standard
+
+\backslash
+pgfnodeconncurve{D4}{D1}{135}{-135}{15pt}{15pt}
+\layout Standard
+
+\backslash
+color{beamerexample}
+\layout Standard
+
+\backslash
+pgfsetlinewidth{0.6pt}
+\layout Standard
+ }
+\layout Standard
+
+\layout Standard
+
+\backslash
+only<3->{
+\layout Standard
+
+\backslash
+color<3>{red}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B1}{A2}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B2}{A3}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B3}{A4}
+\layout Standard
+ }
+\layout Standard
+
+\layout Standard
+
+\backslash
+only<4->{
+\layout Standard
+
+\backslash
+color<4>{red}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B1}{C2}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B2}{C3}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B3}{C4}
+\layout Standard
+ }
+\layout Standard
+
+\layout Standard
+
+\backslash
+only<5->{
+\layout Standard
+
+\backslash
+color<5>{red}
+\layout Standard
+
+\backslash
+pgfnodeconnline{C1}{D2}
+\layout Standard
+
+\backslash
+alert<11>{
+\backslash
+pgfnodeconnline{C2}{D3}}
+\layout Standard
+
+\backslash
+alert<12-13>{
+\backslash
+pgfnodeconnline{C3}{D4}}
+\layout Standard
+ }
+\layout Standard
+
+\layout Standard
+
+\backslash
+only<6->{
+\layout Standard
+
+\backslash
+color<6>{red}
+\layout Standard
+
+\backslash
+alert<11>{
+\backslash
+pgfnodeconnline{A1}{C2}}
+\layout Standard
+
+\backslash
+alert<12-13>{
+\backslash
+pgfnodeconnline{A2}{C3}}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A3}{C4}
+\layout Standard
+ }
+\layout Standard
+
+\layout Standard
+
+\backslash
+only<7->{
+\layout Standard
+
+\backslash
+color<7>{red}
+\layout Standard
+
+\backslash
+alert<12-13>{
+\backslash
+pgfnodeconnline{A1}{A2}}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A2}{A3}
+\layout Standard
+
+\backslash
+pgfnodeconnline{A3}{A4}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B1}{B2}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B2}{B3}
+\layout Standard
+
+\backslash
+pgfnodeconnline{B3}{B4}
+\layout Standard
+
+\backslash
+pgfnodeconnline{C1}{C2}
+\layout Standard
+
+\backslash
+pgfnodeconnline{C2}{C3}
+\layout Standard
+
+\backslash
+pgfnodeconnline{C3}{C4}
+\layout Standard
+
+\backslash
+pgfnodeconnline{D1}{D2}
+\layout Standard
+
+\backslash
+pgfnodeconnline{D2}{D3}
+\layout Standard
+
+\backslash
+alert<11>{
+\backslash
+pgfnodeconnline{D3}{D4}}
+\layout Standard
+ }
+\layout Standard
+
+\backslash
+end{pgfpicture}
+\end_inset
+
+
+\end_deeper
+\layout AgainFrame
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<6>
+\end_inset
+
+hierarchy
+\layout Subsection
+
+Complexity of: Approximating the Shortest Path
+\layout BeginFrame
+
+Approximators Compute Paths that Are Nearly As Short As a Shortest Path
+\layout Definition
+
+An
+\color red
+approximation scheme for
+\begin_inset Formula $\Lang{tournament-shortest-path}$
+\end_inset
+
+
+\color default
+ gets as input
+\begin_deeper
+\layout Enumerate
+
+a tuple
+\begin_inset Formula $(T,s,t)\in\Lang{reach}_{\operatorname{tourn}}$
+\end_inset
+
+ and
+\layout Enumerate
+
+a number
+\begin_inset Formula $r>1$
+\end_inset
+
+.
+\layout Standard
+
+It outputs
+\layout Itemize
+
+a path from
+\begin_inset Formula $s$
+\end_inset
+
+ to\SpecialChar ~
+
+\begin_inset Formula $t$
+\end_inset
+
+ of length at most
+\begin_inset Formula $r\operatorname{d_{T}}(s,t)$
+\end_inset
+
+.
+\end_deeper
+\layout BeginFrame
+
+There Exists a Logspace Approximation Scheme for
+\newline
+the Tournament Shortest Path Problem
+\layout Theorem
+
+There exists an approximation scheme for
+\begin_inset Formula $\Lang{tournament-shortest-path}$
+\end_inset
+
+ that for
+\begin_inset Formula $1<r<2$
+\end_inset
+
+ needs space
+\begin_inset Formula \[
+O\left(\log|V|\log\frac{1}{r-1}\right).\]
+
+\end_inset
+
+
+\layout Pause
+
+\layout Corollary
+
+In tournaments, paths can be constructed in logarithmic space.
+\layout Standard
+
+
+\hfill
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+hyperlink{optimality}{
+\backslash
+beamergotobutton{More Details}}
+\end_inset
+
+
+\layout AgainFrame
+
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+<7>
+\end_inset
+
+hierarchy
+\layout Section*
+
+Summary
+\layout Subsection*
+
+Summary
+\layout BeginFrame
+
+Summary
+\layout Block
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+{Summary}
+\end_inset
+
+
+\begin_deeper
+\layout Itemize
+
+Tournament
+\color red
+reachability
+\color default
+ is in
+\color red
+
+\begin_inset Formula $\Class{AC}^{0}$
+\end_inset
+
+
+\color default
+.
+
+\layout Itemize
+
+There exists a
+\color red
+logspace approximation scheme
+\color default
+ for
+\color red
+approximating
+\color default
+ shortest paths in tournaments.
+\layout Itemize
+
+Finding
+\color red
+shortest paths
+\color default
+ in tournaments is
+\color red
+
+\begin_inset Formula $\Class{NL}$
+\end_inset
+
+-complete
+\color default
+.
+\end_deeper
+\layout Separator
+
+\layout Block
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+{Outlook}
+\end_inset
+
+
+\begin_deeper
+\layout Itemize
+
+The same results apply to graphs with
+\newline
+bounded independence number.
+\hfill
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+hyperlink{independence}{
+\backslash
+beamergotobutton{More Details}}
+\end_inset
+
+
+\layout Itemize
+
+The complexity of finding paths in undirected graphs
+\newline
+is partly open.
+\hfill
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+hyperlink{undirected}{
+\backslash
+beamergotobutton{More Details}}
+\end_inset
+
+
+\end_deeper
+\layout Subsection*
+
+For Further Reading
+\layout BeginFrame
+
+For Further Reading
+\layout Standard
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+beamertemplatebookbibitems
+\end_inset
+
+
+\layout Bibliography
+\bibitem {Moon1968}
+
+\SpecialChar ~
+John Moon.
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+
+\backslash
+newblock
+\end_inset
+
+
+\emph on
+Topics on Tournaments.
+
+\emph default
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+
+\backslash
+newblock
+\end_inset
+
+ Holt, Rinehart, and Winston, 1968.
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+beamertemplatearticlebibitems
+\end_inset
+
+
+\layout Bibliography
+\bibitem {NickelsenT2002}
+
+\SpecialChar ~
+Arfst Nickelsen and Till Tantau.
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+
+\backslash
+newblock
+\end_inset
+
+ On reachability in graphs with bounded independence number.
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+
+\backslash
+newblock
+\end_inset
+
+ In
+\emph on
+Proc.
+ of COCOON 2002
+\emph default
+, Springer-Verlag, 2002.
+\layout Bibliography
+\bibitem {Tantau2004b}
+
+\SpecialChar ~
+Till Tantau
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+
+\backslash
+newblock
+\end_inset
+
+ A logspace approximation scheme for the shortest path problem for graphs
+ with bounded independence number.
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+
+\backslash
+newblock
+\end_inset
+
+ In
+\emph on
+Proc.
+ of STACS 2004
+\emph default
+, Springer-Verlag, 2004.
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+
+\backslash
+newblock
+\end_inset
+
+ In press.
+\layout EndFrame
+
+\layout Standard
+\start_of_appendix
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+AtBeginSubsection[]{}
+\end_inset
+
+
+\layout Section
+
+Appendix
+\layout Subsection
+
+Graphs With Bounded Independence Number
+\layout BeginFrame
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+[label=independence]
+\end_inset
+
+Definition of Independence Number of a Graph
+\layout Definition
+
+The
+\color red
+independence number
+\color default
+
+\begin_inset Formula $\alpha(G)$
+\end_inset
+
+ of a directed graph
+\newline
+is the maximum number of vertices we can pick,
+\newline
+such that there is no edge between them.
+\layout Example
+
+Tournaments have independence number 1.
+
+\layout BeginFrame
+
+The Results for Tournaments also Apply to
+\newline
+Graphs With Bounded Independence Number
+\layout Theorem
+
+For each\SpecialChar ~
+
+\begin_inset Formula $k$
+\end_inset
+
+,
+\color red
+reachability
+\color default
+ in graphs with independence number
+\newline
+at most\SpecialChar ~
+
+\begin_inset Formula $k$
+\end_inset
+
+ is in
+\begin_inset Formula $\Class{AC}^{0}$
+\end_inset
+
+.
+\layout Separator
+
+\layout Theorem
+
+For each\SpecialChar ~
+
+\begin_inset Formula $k$
+\end_inset
+
+, there exists a
+\color red
+logspace approximation scheme
+\color default
+ for approximating the shortest path in graphs with independence number
+ at most\SpecialChar ~
+
+\begin_inset Formula $k$
+\end_inset
+
+
+\layout Separator
+
+\layout Theorem
+
+For each\SpecialChar ~
+
+\begin_inset Formula $k$
+\end_inset
+
+, finding the
+\color red
+shortest path
+\color default
+ in graphs with independence number at most\SpecialChar ~
+
+\begin_inset Formula $k$
+\end_inset
+
+ is
+\color red
+
+\begin_inset Formula $\Class{NL}$
+\end_inset
+
+-complete
+\color default
+.
+\layout Subsection
+
+Finding Paths in Undirected Graphs
+\layout BeginFrame
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+<1-2>[label=undirected]
+\end_inset
+
+The Complexity of Finding Paths in Undirected Graphs
+\newline
+Is Party Unknown.
+\layout Fact
+
+
+\begin_inset Formula $\Lang{reach}_{\operatorname{undirected}}$
+\end_inset
+
+ is
+\begin_inset Formula $\Class{SL}$
+\end_inset
+
+-complete.
+\layout Corollary
+
+For undirected graphs, we can solve
+\begin_deeper
+\layout Itemize
+
+the reachability problem in logspace iff
+\begin_inset Formula $\Class L=\Class{SL}$
+\end_inset
+
+,
+\layout Itemize
+
+the construction problem in logspace iff
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+alt<1>{?}{
+\backslash
+alert{$
+\backslash
+Class L =
+\backslash
+Class{SL}$}}
+\end_inset
+
+,
+\layout Itemize
+
+the optimization problem in logspace iff
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+
+\backslash
+alt<1>{?}{
+\backslash
+alert{$
+\backslash
+Class L =
+\backslash
+Class{NL}$}}
+\end_inset
+
+,
+\layout Itemize
+
+the approximation problem in logspace iff ?.
+
+\end_deeper
+\layout Subsection
+
+The Approximation Scheme is Optimal
+\layout BeginFrame
+
+
+\begin_inset ERT
+status Inlined
+
+\layout Standard
+[label=optimality]
+\end_inset
+
+The Approximation Scheme is Optimal
+\layout Theorem
+
+Suppose there exists an approximation scheme for
+\begin_inset Formula $\Lang{tournament-shortest-path}$
+\end_inset
+
+ that needs space
+\begin_inset Formula $O\bigl(\log|V|\log^{1-\epsilon}\frac{1}{r-1}\bigr)$
+\end_inset
+
+.
+ Then
+\begin_inset Formula $\Class{NL}\subseteq\Class{DSPACE}\bigl[\log^{2-\epsilon}n\bigr]$
+\end_inset
+
+.
+\layout Proof
+
+\begin_deeper
+\layout Enumerate
+
+Suppose the approximation scheme exists.
+\newline
+We show
+\begin_inset Formula $\Lang{distance}_{\operatorname{tourn}}\in\Class{DSPACE}\bigl[\log^{2-\epsilon}n\bigr]$
+\end_inset
+
+.
+
+\layout Enumerate
+
+Let
+\begin_inset Formula $(T,s,t)$
+\end_inset
+
+ be an input.
+ Let
+\begin_inset Formula $n$
+\end_inset
+
+ be the number of vertices.
+\layout Enumerate
+
+Run the approximation scheme for
+\begin_inset Formula $r:=1+\smash{\frac{1}{n+1}}$
+\end_inset
+
+.
+\newline
+This needs space
+\begin_inset Formula $\smash{O(\log^{2-\epsilon}n)}$
+\end_inset
+
+.
+\layout Enumerate
+
+The resulting path has optimal length.
+
+\begin_inset ERT
+status Collapsed
+
+\layout Standard
+
+\backslash
+qedhere
+\end_inset
+
+
+\end_deeper
+\layout EndFrame
+
+\the_end