summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/animate/animate.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/animate/animate.tex')
-rw-r--r--Master/texmf-dist/doc/latex/animate/animate.tex46
1 files changed, 24 insertions, 22 deletions
diff --git a/Master/texmf-dist/doc/latex/animate/animate.tex b/Master/texmf-dist/doc/latex/animate/animate.tex
index dd3ced9d01e..943cc2de2ae 100644
--- a/Master/texmf-dist/doc/latex/animate/animate.tex
+++ b/Master/texmf-dist/doc/latex/animate/animate.tex
@@ -164,9 +164,9 @@ and the environment
While \verb+\animategraphics+ can be used to assemble animations from sets of existing graphics files or from multipage PDF, the environment `\verb+animateinline+' is meant to create the animation from the typeset material it encloses. This material can be pictures drawn within the \LaTeX{} `\verb+picture+' environment or using the advanced capabilities of PSTricks or pgf/TikZ. Even ordinary textual material may be animated in this way. The parameter \verb+<frame rate>+ specifies the number of frames per second of the animation.
-The command \verb+\newframe+ terminates a frame and starts the next one. It can be used inside the `\verb+animateinline+' environment only. There is a starred variant, \verb+\newframe*+. If placed after a particular frame it causes the animation to pause at that frame. The animation continues normally after clicking it again. Both \verb+\newframe+ variants take an optional argument that allows to change the frame rate in the middle of an animation.
+The \verb+\newframe+ command terminates a frame and starts the next one. It can be used only inside the `\verb+animateinline+' environment. There is a starred variant, \verb+\newframe*+. If placed after a particular frame, it causes the animation to pause at that frame. The animation continues as normal after clicking it again. Both \verb+\newframe+ variants take an optional argument that allows the frame rate to be changed in the middle of an animation.
-The command \verb+\multiframe+ allows to build loops around pictures. The first argument \verb+<number of frames>+ does what one would expect it to do, the second argument \verb+<variables>+ is a comma-separated list of variable declarations. The list may be of arbitrary, even zero, length. Variables may be used to parameterize pictures which are defined in the loop body (third argument of \verb+\multiframe+). A single variable declaration has the form
+The \verb+\multiframe+ command allows the construction of loops around pictures. The first argument \verb+<number of frames>+ does what one would expect it to do, the second argument \verb+<variables>+ is a comma-separated list of variable declarations. The list may be of arbitrary, even zero, length. Variables may be used to parameterize pictures which are defined in the loop body (third argument of \verb+\multiframe+). A single variable declaration has the form
\begin{verbatim}
<variable name>=<initial value>+<increment>
\end{verbatim}
@@ -177,15 +177,15 @@ By default, the animation is built frame by frame in the order of inclusion of t
\myparagraph*{Sets of graphics files}
All files of the sequence should exist and be consecutively numbered. (Exception to this rule is allowed in connection with the `\verb+every+' option, see below.) {\tt <file base\-name>} is the leftmost part of the file name that is common to all members of the sequence. \verb+<first>+ is the number of the first and \verb+<last>+ the number of the last file in the set. If \verb+<first>+ is greater than \verb+<last>+, files are embedded in reverse order. File names may be simply numbered, such as $0\dots99$. If there are leading zeros, make sure that all file numbers have the same number of digits, such as $0000\dots0099$, and that the \verb+<first>+ and \verb+<last>+ arguments are filled in accordingly.
-There is no file name extension to be specified as a parameter. The possible file formats depend on the output driver being used. In the case of \LaTeX{}+\verb+dvips+, files with the extension `eps' are searched for at first, followed by `mps' (\MP-generated Postscript) and `ps'. With pdf\LaTeX{} the searching order is: (1)~`pdf', (2)~`mps', (3)~`png', (4)~`jpg', (5)~`jpeg', (6)~`jbig2', (7)~`jb2', (8)~`jp2'\footnotemark[1], (9)~`j2k'\footnotemark[1], (10)~`jpx'\footnotemark[1]\footnotetext[1]{JPEG2000 is not yet supported by pdf\TeX.} and with \XeLaTeX{} or \LaTeX{}+\verb+dvipdfmx+: (1)~`pdf', (2)~`mps', (3)~`eps', (4)~`ps', (5)~`png', (6)~`jpg', (7)~`jpeg', (8)~`bmp'. That is, files capable to store vector graphics are found first. Make sure that all file names have \emph{lower case} extensions.
+No file name extension may be specified as a parameter. The possible file formats depend on the output driver being used. In the case of \LaTeX{}+\verb+dvips+, files with the `eps' extension are at first searched for, followed by `mps' (\MP-generated Postscript) and `ps'. With pdf\LaTeX{} the searching order is: (1)~`pdf', (2)~`mps', (3)~`png', (4)~`jpg', (5)~`jpeg', (6)~`jbig2', (7)~`jb2', (8)~`jp2'\footnotemark[1], (9)~`j2k'\footnotemark[1], (10)~`jpx'\footnotemark[1]\footnotetext[1]{JPEG2000 is not yet supported by pdf\TeX.} and with \XeLaTeX{} or \LaTeX{}+\verb+dvipdfmx+: (1)~`pdf', (2)~`mps', (3)~`eps', (4)~`ps', (5)~`png', (6)~`jpg', (7)~`jpeg', (8)~`bmp'. That is, files capable of storing vector graphics are found first. Make sure that all file names have \emph{lower case} extensions.
-For example, given the sequence `frame\_5.png' through `frame\_50.png' from a possibly larger set that shall be used to build an animation running at 12 frames per second. Then, the correct inclusion command reads
+For example, given the sequence `frame\_5.png' through `frame\_50.png' from a possibly larger set that shall be used to build an animation running at 12 frames per second, the correct inclusion command would read
\begin{verbatim}
\animategraphics{12}{frame_}{5}{50}
\end{verbatim}
\myparagraph*{Multipage PDF {\rm(pdf\LaTeX, \XeLaTeX)} and JBIG2 {\rm(pdf\LaTeX)} inclusion}
-If the file `\verb+<file basename>+.(pdf|jbig2|jb2)' exists (again, there is no file name extension to be specified), it is taken as a multipage document where each page represents one frame of the animation. In this case, the last two arguments, \verb+<first>+ \& \verb+<last>+, are interpreted differently from above; they specify a zero-based range of pages to be included in the animation. Either or both of them may be left empty, `\verb+{}+', in which case they default to $0$ and $n-1$, where $n$ is the total number of available pages. Arguments that fall outside this range are automatically corrected to the existing limits. If \verb+<first>+ is greater than \verb+<last>+, pages are embedded in reverse order.
+If the file `\verb+<file basename>+.(pdf|jbig2|jb2)' exists (again, no file name extension may be specified), it is taken as a multipage document where each page represents one frame of the animation. In this case, the last two arguments, \verb+<first>+ \& \verb+<last>+, are interpreted differently from above; they specify a zero-based range of pages to be included in the animation. Either or both of them may be omitted, `\verb+{}+', in which case they default to $0$ and $n-1$, where $n$ is the total number of available pages. Arguments that fall outside this range are automatically corrected to the actual limits. If \verb+<first>+ is greater than \verb+<last>+, pages are embedded in reverse order.
For example, the line
\begin{verbatim}
@@ -223,17 +223,17 @@ The animation restarts immediately after reaching the end.
\begin{verbatim}
palindrome
\end{verbatim}
-The animation continuously plays forward and backward.
+The animation continuously plays forwards and backwards.
\begin{verbatim}
step
\end{verbatim}
-Step through the animation by one frame per mouse-click. The \verb+<frame rate>+ argument will be ignored.
+Step through the animation one frame at a time per mouse-click. The \verb+<frame rate>+ argument will be ignored.
\begin{verbatim}
width=<width>
height=<height>
depth=<depth>
\end{verbatim}
-Resize the animation widget. Option `\verb+depth+' specifies how far the animation widget should extend below the bottom line of the running text. If only one or two of these options are given, the remaining, unspecified dimensions are scaled to keep the aspect ratio. Any valid \TeX{} dimension is accepted as a parameter. In addition, the length commands \verb+\width+, \verb+\height+, \verb+\depth+ and \verb+\totalheight+ can be used to refer to the original dimensions of the animation widget which correspond to the size of the first frame of the animated sequence.
+Resize the animation widget. Option `\verb+depth+' specifies how far the animation widget should extend below the bottom line of the running text. If only one or two of these options are given, the remaining, unspecified dimensions are scaled to maintain the aspect ratio. Any valid \TeX{} dimension is accepted as a parameter. In addition, the length commands \verb+\width+, \verb+\height+, \verb+\depth+ and \verb+\totalheight+ can be used to refer to the original dimensions of the animation widget which correspond to the size of the first frame of the animated sequence.
\begin{verbatim}
scale=<factor>
\end{verbatim}
@@ -271,7 +271,7 @@ With `\verb+draft+' the animation is not embedded. Instead, a box with the exact
\begin{verbatim}
useocg
\end{verbatim}
-Use an alternative animation method based on Optional Content Groups (OCGs, also known as PDF Layers). May result in less performing animations.
+Use an alternative animation method based on Optional Content Groups (OCGs, also known as PDF Layers). May result in slower animations.
\begin{verbatim}
measure
\end{verbatim}
@@ -284,7 +284,7 @@ end={<end text>}
\begin{verbatim}
begin={\begin{pspicture}(...)(...)}, end={\end{pspicture}}
\end{verbatim}
-A short note on the `\verb+tikzpicture+' environment: Unlike `\verb+pspicture+', the `{\tt tikz\-pic\-ture}' environment is able to determine its size from the graphical objects it encloses. However, this may result in differently sized frames of a sequence, depending on the size and position of the graphical objects. Thus, in order to ensure that all frames of the sequence be displayed properly scaled in the animation widget, a common bounding box should be shared by the frames. A bounding box can be provided by means of an invisible `\verb+rectangle+' object:
+A short note on the `\verb+tikzpicture+' environment: Unlike `\verb+pspicture+', the `{\tt tikz\-pic\-ture}' environment is able to determine its size from the graphical objects it encloses. However, this may result in differently sized frames of a sequence, depending on the size and position of the graphical objects. Thus, in order to ensure that all frames of the sequence be displayed at the same scale in the animation widget, a common bounding box should be shared by the frames. A bounding box can be provided by means of an invisible `\verb+rectangle+' object:
\begin{verbatim}
begin={
\begin{tikzpicture}
@@ -298,11 +298,11 @@ A short note on the `\verb+tikzpicture+' environment: Unlike `\verb+pspicture+',
\begin{verbatim}
timeline=<timeline file>
\end{verbatim}
-\verb+<timeline file>+ is a plain text file whose contents determines the order of appearance of the embedded material during the animation. It allows to freely rearrange, repeat and overlay the material at any point of the animation. This may greatly reduce the file size of the resulting PDF, as objects that do not change between several or all frames, such as coordinate axes or labels, can be embedded once and re-used in other frames of the animation. (Technically, this is done by the XObject referencing mechanism of PDF.)
+\verb+<timeline file>+ is a plain text file whose contents determines the order of appearance of the embedded material during the animation. It allows the user to freely rearrange, repeat and overlay the material at any point of the animation. This may greatly reduce the file size of the resulting PDF, as objects that do not change between several or all frames, such as coordinate axes or labels, can be embedded once and re-used in other frames of the animation. (Technically, this is done by the XObject referencing mechanism of PDF.)
If a timeline is associated with the animation, the graphics files or inline graphics embedded by \verb+\animategraphics+ and `\verb+animateinline+' no longer represent the actual frames of the animation. Rather, they are a collection of \emph{transparencies} that can be played with at will. However, it is now up to the author's responsibility to construct a timeline that makes use of \emph{each} of those transparencies and to put them into a sensible order. In order to identify the transparencies within the timeline file, they are numbered in the order of their inclusion, starting at zero.
-An animation can be thought of as a \emph{living stack} of translucent transparencies. Each animation frame is a snapshot of the stack viewed \emph{from above}. Transparencies are usually put on top of that stack and stay there for a given number of frames before expiring (becoming invisible). The lifetime of each transparency within the stack can be set individually. Once expired, a transparency can be put on the stack again, if desired. The stack may also be divided into an arbitrary number of \emph{sub-stacks} to facilitate the creation of layers, such as background, foreground and intermediate layers. Sub-stacks allow to insert transparencies at other depth positions of the global stack, not just at its top. It is important to keep in mind the stack-like nature of animations because graphical objects on transparencies at higher stack positions overlay the content of transparencies at lower stack positions.
+An animation can be thought of as a \emph{living stack} of translucent transparencies. Each animation frame is a snapshot of the stack viewed \emph{from above}. Transparencies are usually put on top of that stack and stay there for a given number of frames before expiring (becoming invisible). The lifetime of each transparency within the stack can be set individually. Once expired, a transparency can be put on the stack again, if desired. The stack may also be divided into an arbitrary number of \emph{sub-stacks} to facilitate the creation of layers, such as background, foreground and intermediate layers. Sub-stacks allow the insertion of transparencies at depth positions of the global stack other than just the top. It is important to keep the stack-like nature of animations in mind because graphical objects on transparencies at higher stack positions overlay the content of transparencies at lower stack positions.
\myparagraph*{General structure of the timeline file}
Each line of the timeline file that is not blank and which does not begin with a comment (`\verb+%+') corresponds to \emph{one} frame of the animation. There may be more transparencies than animation frames and vice-versa. A frame specification consists of three, colon-(\verb+:+)-separated fields:
@@ -311,21 +311,21 @@ Each line of the timeline file that is not blank and which does not begin with a
\end{verbatim}
While any field may be left blank, the colons are mandatory.
-An asterisk (`\verb+*+') in the leftmost field causes the animation to pause at that frame, very much as a \verb+\newframe*+ would do; a number in the second field changes the frame rate of the animation section that follows. In connection with the `\verb+timeline+' option the asterisk extension and the optional \verb+<frame rate>+ argument of \verb+\newframe+ cease to make sense and will be tacitly ignored, if present.
+An asterisk (`\verb+*+') in the leftmost field causes the animation to pause at that frame, very much as a \verb+\newframe*+ would do; a number in the second field changes the frame rate of the animation section that follows. In connection with the `\verb+timeline+' option, the asterisk extension and the optional \verb+<frame rate>+ argument of \verb+\newframe+ cease to make sense and will be tacitly ignored if present.
The third field \verb+<transparencies>+ is a comma-separated \emph{list} of \emph{transparency specifications} that determines the transparencies to be put on the stack. Semicolons (\verb+;+) are used to separate sub-stacks (= layers) from each other. A \emph{single} transparency specification obeys the syntax
\begin{verbatim}
<transparency ID>[x<number of frames>]
\end{verbatim}
-where \verb+<transparency ID>+ is an integer number that identifies the transparency to be drawn into the current animation frame. As pointed out above, the transparencies are consecutively numbered in the order of their inclusion, starting at zero. The optional postfix `\verb+x<number of frames>+' specifies the number of consecutive frames the transparency is to appear within. If omitted, a postfix of `\verb+x1+' is assumed, which causes the transparency to be shown in the current frame only. Obviously, \verb+<number of frames>+ must be a non-negative integer number. The meaning of postfix `\verb+x0+' is special; it causes the transparency to be shown in all frames, starting with the current one, until the end of the animation or until the animation sub-stack to which it belongs is explicitly cleared.
+where \verb+<transparency ID>+ is an integer number that identifies the transparency to be drawn into the current animation frame. As pointed out above, the transparencies are consecutively numbered in the order of their inclusion, starting at zero. The optional postfix `\verb+x<number of frames>+' specifies the number of consecutive frames within which the transparency is to appear. If omitted, a postfix of `\verb+x1+' is assumed, which causes the transparency to be shown in the current frame only. Obviously, \verb+<number of frames>+ must be a non-negative integer number. The meaning of postfix `\verb+x0+' is special; it causes the transparency to be shown in all frames, starting with the current one, until the end of the animation or until the animation sub-stack to which it belongs is explicitly cleared.
-The letter `\verb+c+', if put into \verb+<transparencies>+, clears an animation sub-stack, that is, it causes all transparencies added so far to be removed from the sub-stack, overriding any \verb+<number of frames>+ value. The effect of `\verb+c+' is restricted to the sub-stack where it appears. Thus, a `\verb+c+' must be applied to every sub-stack if the complete animation stack is to be cleared. Moreover, if applied, `\verb+c+' should go into the first position of the transparency list of a sub-stack because \emph{everything} in the sub-stack up to `\verb+c+' will be cleared.
+The letter `\verb+c+', if put into \verb+<transparencies>+, clears an animation sub-stack, that is, it causes all transparencies added so far to be removed from the sub-stack, overriding any \verb+<number of frames>+ value. The effect of `\verb+c+' is restricted to the sub-stack in which it appears. Thus, a `\verb+c+' must be applied to every sub-stack if the complete animation stack is to be cleared. Moreover, if applied, `\verb+c+' should go into the first position of the transparency list of a sub-stack because \emph{everything} in the sub-stack up to `\verb+c+' will be cleared.
%If a frame is composed of more than one transparency, transparency specifications on the left of the input line are closer to the background and will be overprinted by those on the right of the input line or which appear on subsequent lines of the timeline file. That is, the depth \emph{de}creases from left to right within \verb+<transparencies>+ as well as in top-down direction within the timeline file.
%Also, if there are transparency specifications which span several frames (using postfix `\verb+x<number of frames>+'), they will be overprinted by transparency specifications that appear on subsequent lines in the timeline file. That is, the depth decreases in top-down direction within the timeline file.
\myparagraph*{Timeline example with a single animation stack}
-Table~\ref{tab:single} is an example of a single-stack animation. It lists the contents of a timeline file together with the resulting stack of transparencies. Note, how the stack is strictly built from the bottom up as transparency specifications are read from left to right and line by line from the timeline file. In frame No. 4, the stack is first cleared before new transparencies are deposited on it. Also note that the stack is viewed from above and transparencies in higher stack position overprint the lower ones.
+Table~\ref{tab:single} is an example of a single-stack animation. It lists the contents of a timeline file together with the resulting stack of transparencies. Note how the stack is strictly built from the bottom up as transparency specifications are read from left to right and line by line from the timeline file. In frame No. 4, the stack is first cleared before new transparencies are deposited on it. Also note that the stack is viewed from above and transparencies in higher stack position overprint the lower ones.
\begin{table}[ht]\centering
\caption{Timeline example of a single-stack animation}\label{tab:single}
@@ -345,7 +345,7 @@ frame No. & timeline file & transparency stack\\\hline\hline
Figures~\ref{fig:taylor} and \ref{fig:lorenz} in Section~\ref{sect:examples} are animation examples with a single transparency stack.
\myparagraph*{Grouping objects into layers (= sub-stacks) using `{\tt;}'}
-Due to the stack-like nature of the animation, the position of a transparency specification in the timeline file determines its \emph{depth} level in relation to other transparencies. The timeline file is processed line by line and from left to right. In a single-stack animation, the stack is strictly built from the bottom up, such that earlier transparencies are overprinted by more recent ones. This may turn out to be inconvenient in certain situations. For example, it might be desirable to allow for changing the background image in the middle of an animation without affecting objects that are located in the foreground. For this purpose, transparency specifications can be grouped into layers or sub-stacks using the semicolon (\verb+;+) as a separator. New transparencies can now be put on top of the individual sub-stacks. After a line of the timeline file has been processed, the global stack is built by placing the sub-stacks one on top of the other. Again, the left-to-right rule applies when determining the height of the sub-stacks in relation to each other within the global stack.
+Due to the stack-like nature of the animation, the position of a transparency specification in the timeline file determines its \emph{depth} level in relation to other transparencies. The timeline file is processed line by line and from left to right. In a single-stack animation, the stack is strictly built from the bottom up, such that earlier transparencies are overprinted by more recent ones. This may turn out to be inconvenient in certain situations. For example, it might be desirable to change the background image in the middle of an animation without affecting objects that are located in the foreground. For this purpose, transparency specifications can be grouped into layers or sub-stacks using the semicolon (\verb+;+) as a separator. New transparencies can now be put on top of the individual sub-stacks. After a line of the timeline file has been processed, the global stack is built by placing the sub-stacks on top of the other. Again, the left-to-right rule applies when determining the height of the sub-stacks in relation to each other within the global stack.
The layer concept is best illustrated by an example. In the timeline of Table~\ref{tab:multi}, transparencies are grouped into two sub-stacks only. One is reserved for the background images, transparencies No. 0 \& 1, to be exchanged in frame No. 3, as well as for two other transparencies, No. 7 \& 8, to be interspersed in frame No. 1. A second sub-stack takes the foreground objects that are successively added to the scene. The dotted lines in the third column of the table just mark the border between the two sub-stacks. In frame No. 3, `\verb+c+' first clears the bottom sub-stack before the new background image is inserted. (Instead, `\verb+x3+' could have been used with transparency No. 0 in frame No. 0.) As can be seen in the specifications of frames No. 2 \& 4, sub-stacks need not be explicitly populated; the leading semicolons just ensure the proper assignment of transparencies to animation sub-stacks.
@@ -406,7 +406,7 @@ The first example, Fig.~\ref{fig:taylor}, originally written by Jan Hole\v{c}ek~
\begin{verbatim}
\documentclass{article}
\usepackage{animate}
-\usepackage{graphics}
+\usepackage{graphicx}
\begin{document}
@@ -480,7 +480,7 @@ The second, somewhat more complex example, Fig.~\ref{fig:scarab}, animates the g
\documentclass{article}
\usepackage{intcalc} %defines \intcalcMod for Modulo computation
\usepackage{animate}
-\usepackage{graphics}
+\usepackage{graphicx}
\newcounter{scarab}
\setcounter{scarab}{0}
@@ -896,11 +896,11 @@ A timeline file, written on-the-fly, is used to assemble the curve segments fram
\item The Adobe Reader setting `Use page cache' (menu `Edit' $\rightarrow$ `Preferences' $\rightarrow$ `Startup') should be \emph{dis}abled for version 7, while remaining \emph{en}abled beginning with version 8 (menu `Edit' $\rightarrow$ `Preferences' $\rightarrow$ `Page Display' $\rightarrow$ `Rendering').
- \item The \verb+dvips+ option `\verb+-Ppdf+' should be avoided entirely or followed by something like `\verb+-D 1200+' on the command line in order to set a sensible DVI resolution. In times of Type-1 fonts, this does \emph{not} degrade the output quality! The configuration file `config.pdf' loaded by option `\verb+-Ppdf+' specifies an excessively high DVI resolution that will be passed on to the final PDF. Eventually, Adobe Reader gets confused and will not display the frames within the animation widget.
+ \item The \verb+dvips+ option `\verb+-Ppdf+' should be avoided entirely or followed by something like `\verb+-D 1200+' on the command line in order to set a sensible DVI resolution. This does \emph{not} degrade the output quality! The configuration file `config.pdf' loaded by option `\verb+-Ppdf+' specifies an excessively high DVI resolution that will be passed on to the final PDF. Eventually, Adobe Reader gets confused and will not display the frames within the animation widget.
\item Animations do not work if the PDF has been produced with Ghostscript versions older than 8.31. This applies to all versions of ESP Ghostscript that comes with many Linux distributions.
- \item If the \LaTeX{} $\rightarrow$ \verb+dvips+ $\rightarrow$ \verb+ps2pdf+/Distiller route is being taken make sure that the original graphics size (i.\,e. not scaled by any of the `{\tt scale}', `{\tt width}', `{\tt height}' or `{\tt depth}' options) does not exceed the page size of the final document. During PS to PDF conversion every graphic of the animation is temporarily moved to the lower left page corner. Those parts of the graphics that do not fit onto the document page will be clipped in the resulting PDF. Fortunately, graphics files for building animations may be resized easily to fit into a given bounding box by means of the `{\tt epsffit}' command line tool:
+ \item If the \LaTeX{} $\rightarrow$ \verb+dvips+ $\rightarrow$ \verb+ps2pdf+/Distiller route is being taken, make sure that the original graphics size (i.\,e. not scaled by any of the `{\tt scale}', `{\tt width}', `{\tt height}' or `{\tt depth}' options) does not exceed the page size of the final document. During PS to PDF conversion every graphic of the animation is temporarily moved to the lower left page corner. Those parts of the graphics that do not fit onto the document page will be clipped in the resulting PDF. Fortunately, graphics files for building animations may be resized easily to fit into a given bounding box by means of the `{\tt epsffit}' command line tool:
\quad{\tt epsffit -c <llx> <lly> <urx> <ury> infile.eps outfile.eps}
@@ -937,11 +937,13 @@ Note that the name of the Ghostscript executable may vary between operating syst
{\tt fmtutil-sys -{}-byfmt xelatex}
\end{enumerate}
+ \item If you are postprocessing the created PDF file with tools such as pdftk to split the document into different parts, then the animation may fail. To work around this, don't use the OCG (PDF layers) option. In addition, the control buttons also use OCG's to change their appearance to provide feedback about the running state, independent of the `{\tt useocg}' option. The workaround for this is not to use the `{\tt controls}' option.
+
\item Animations should not be placed on \emph{multilayered} slides created with presentation making classes such as Beamer or Powerdot. Although possible (on the last overlay of a slide, at best), the result might be disappointing. Put animations on flat slides only. (Of course, slides without animations may still have overlays.)
\end{itemize}
\section{Acknowledgements}
-I would like to thank Fran\c{c}ois Lafont who discovered quite a few bugs and made many suggestions that helped to improve the functionality of the package. Many thanks to Jin-Hwan Cho, the developer of `\verb+dvipdfmx+', for contributing the `\verb+dvipdfmx+' specific code.
+I would like to thank Fran\c{c}ois Lafont who discovered quite a few bugs and made many suggestions that helped to improve the functionality of the package. Many thanks to Jin-Hwan Cho, the developer of `\verb+dvipdfmx+', for contributing the `\verb+dvipdfmx+' specific code, and to Walter Scott for proof-reading the documentation.
\begin{thebibliography}{8}
\bibitem{chupin} Chupin, M.: \href{http://melusine.eu.org/syracuse/metapost/animations/chupin/?idsec=scara}{\tt http://melusine.eu.org/syracuse/metapost/animations/} \href{http://melusine.eu.org/syracuse/metapost/animations/chupin/?idsec=scara}{\tt chupin/?idsec=scara}