diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-transformpointconnu-en.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-transformpointconnu-en.tex | 66 |
1 files changed, 66 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-transformpointconnu-en.tex b/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-transformpointconnu-en.tex new file mode 100644 index 00000000000..90175709d0c --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-transformpointconnu-en.tex @@ -0,0 +1,66 @@ +\section{\Index{Transformations} to a point} + +Given is an initial point $A(x,y,z)$. Now we make some +rotations around the axes $Ox$, $Oy$ and $Oz$ with the appropriate angles (in degrees): +\verb+[RotX=valueX,RotY=valueY,RotZ=valueZ]+, in this order, +then translate it with the vector $(v_x,v_y,v_z)$. The problem is to get back +the coordinates of the image (final point) $A'(x',y',z')$. + +The code +\texttt{\textbackslash psTransformPoint[RotX=valueX,RotY=valueY, + RotZ=valueZ](x y z)(vx,vy,vz)\{A'\}}\\ +now allows us to save the node $A'$, the coordinates of the transformed point. + +In the following example, $A(2,2,2)$ is one of the vertices of the initial +cube, where the centre is placed at the origin. + +\begin{verbatim} +\psSolid[object=cube,a=4,action=draw*,linecolor=red]% +\end{verbatim} + +Some transformations are applied to the cube: + +\begin{verbatim} +\psSolid[object=cube,a=4,action=draw*,RotX=-30,RotY=60,RotZ=-60](7.5,11.25,10)% +\end{verbatim} + +To obtain the image of $A$, we use the following command: + + +\begin{verbatim} +\psTransformPoint[RotX=-30,RotY=60,RotZ=-60](2 2 2)(7.5,11.25,10){A'} +\end{verbatim} + +This allows us, for example, to name these points and then draw the vector $\overrightarrow{AA'}$. +\begin{center} +\begin{pspicture}(-2,-4)(6,6) +\psframe(-3,-4)(9,6) +\psset{viewpoint=50 20 30 rtp2xyz,Decran=50,unit=0.5} +\psSolid[object=cube,a=4,action=draw*,linecolor=red]% +\psPoint(2,2,2){A}\psdot(A) +\psSolid[object=cube,a=4,action=draw*,RotX=-30,RotY=60,RotZ=-60](7.5,11.25,10)% +\psTransformPoint[RotX=-30,RotY=60,RotZ=-60](2 2 2)(7.5,11.25,10){A'} +\psdot(A')\psline[linecolor=blue,arrowsize=0.3]{{o-v}}(A)(A') +\uput[u](A'){$A'$}\uput[u](A){$A$} +\psset{solidmemory,action=none} +\psSolid[object=cube,a=4,name=A1,](0,0,0) +\psSolid[object=plan,definition=solidface,args=A1 0,name=P0] +\psSolid[object=plan,definition=solidface,args=A1 1,name=P1] +\psSolid[object=plan,definition=solidface,args=A1 4,name=P4] +\psset{fontsize=100} +\psProjection[object=texte,linecolor=red,text=A,plan=P0] +\psProjection[object=texte,linecolor=red,text=B,plan=P1] +\psProjection[object=texte,linecolor=red,text=E,plan=P4] +\psSolid[object=cube,a=4,RotX=-30,RotY=60,RotZ=-60,name=A2,](7.5,11.25,10) +\psSolid[object=plan,definition=solidface,args=A2 0,name=P'0] +\psSolid[object=plan,definition=solidface,args=A2 1,name=P'1] +\psSolid[object=plan,definition=solidface,args=A2 2,name=P'2] +\psProjection[object=texte,text=A,plan=P'0] +\psProjection[object=texte,text=B,plan=P'1] +\psProjection[object=texte,text=C,plan=P'2] +\axesIIID(2,2,2)(10,10,8) +\end{pspicture} +\end{center} + + +\endinput |