diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-surfacesparametrees-en.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-surfacesparametrees-en.tex | 169 |
1 files changed, 169 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-surfacesparametrees-en.tex b/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-surfacesparametrees-en.tex new file mode 100644 index 00000000000..5e3448591bd --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-surfacesparametrees-en.tex @@ -0,0 +1,169 @@ +\section{Parameterised surfaces} + +\subsection{The method} + +The parameterised \Index{surfaces} are setup as $[x(u,v),y(u,v),z(u,v)]$ and administered thanks to the macro \Lcs{psSolid} by the option +\texttt{\Lkeyword{object}=\Lkeyval{surfaceparametree}} and defined either in \textit{Reverse Polish Notation}(\textit{RPN}): + + +\begin{verbatim} +\defFunction{shell}(u,v){1.2 v exp u Sin dup mul v Cos mul mul}% x(u,v) + {1.2 v exp u Sin dup mul v Sin mul mul}% y(u,v) + {1.2 v exp u Sin u Cos mul mul} % z(u,v) +\end{verbatim} + +or in \textit{algebraic notation}: + +\begin{verbatim} +\defFunction[algebraic]{shell}(u,v){1.2^v*(sin(u)^2*cos(v))}% x(u,v) + {1.2^v*(sin(u)^2*sin(v))}% y(u,v) + {1.2^v*(sin(u)*cos(u))} % z(u,v) +\end{verbatim} + +The range for the values of $u$ and $v$ are defined within the option +\texttt{\Lkeyword{range}=$\mathtt{u_{min}}$ $\mathtt{u_{max}}$ $\mathtt{v_{min}}$ %$ +$\mathtt{v_{max}}$}. + +The drawing of the function is activated with +\texttt{\Lkeyword{function}=name}, this name is implied when the parametric equations are written: +\verb+\defFunction{name}...+ + +Any other choice of $u$ and $v$ are accepted. Let's remind that the argument of +\texttt{Sin} and \texttt{Cos} must be in radians those of \texttt{sin} and +\texttt{cos} in degrees if \textit{RPN} is used. Within the algebraic notation, the argument is in radians. + + +\subsection{Example 1: a \Index{sea shell}} +\newcommand\quadrillage{% +\psset{linecolor={[cmyk]{1,0,1,0.5}}}\green +\multido{\ix=-4+1}{9}{% + \psPoint(\ix\space,4,-3){X1} + \psPoint(\ix\space,4 .2 add,-3){X2} + \psline(X1)(X2) + \uput[-120](X1){\small\ix}} +\multido{\iy=-4+1}{9}{% + \psPoint(-4,\iy\space,-3){Y1} + \psPoint(-4 .2 sub,\iy\space,-3){Y2} + \psline(Y1)(Y2) + \uput[0](Y1){\small\iy}} +\multido{\iz=-3+1}{7}{% + \psPoint(4,4,\iz\space){Z1} + \psPoint(4,4 .2 add,\iz\space){Z2} + \psline(Z1)(Z2) + \uput[l](Z1){\small\iz}} +\psPoint(0,4 0.5 add,-3){X0} +\uput[-120](X0){$x$} + \psPoint(-4 .5 sub,0,-3){Y0} +\uput[0](Y0){$y$}} +\begin{LTXexample}[width=7.8cm] +\psset{unit=0.75} +\begin{pspicture}(-5.5,-6)(4.5,4) +\psframe*(-5.5,-6)(4.5,4) +\psset[pst-solides3d]{viewpoint=20 120 30 rtp2xyz, + Decran=15,lightsrc=-10 15 10} +% Parametric Surfaces +\psSolid[object=grille,base=-4 4 -4 4, + action=draw*,linecolor={[cmyk]{1,0,1,0.5}}] + (0,0,-3) +\defFunction{shell}(u,v) + {1.2 v exp u Sin dup mul v Cos mul mul} + {1.2 v exp u Sin dup mul v Sin mul mul} + {1.2 v exp u Sin u Cos mul mul} +\psSolid[object=surfaceparametree, + linecolor={[cmyk]{1,0,1,0.5}}, + base=0 pi pi 4 div neg 5 pi mul 2 div, + fillcolor=yellow!50,incolor=green!50, + function=shell,linewidth=0.5\pslinewidth,ngrid=25]% +\psSolid[object=parallelepiped,a=8,b=8,c=6, + action=draw,linecolor={[cmyk]{1,0,1,0.5}}]% +\quadrillage +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=7.8cm] +\psset{unit=0.75} +\begin{pspicture}(-5,-4)(5,6) +\psframe*(-5,-4)(5,6) +\psset[pst-solides3d]{viewpoint=20 20 -10 rtp2xyz, + Decran=15,lightsrc=5 10 2} +% Parametric Surfaces +\psSolid[object=grille,base=-4 4 -4 4, + action=draw*,linecolor=red](0,0,-3) +\defFunction[algebraic]{shell}(u,v) + {1.21^v*(sin(u)*cos(u))} + {1.21^v*(sin(u)^2*sin(v))} + {1.21^v*(sin(u)^2*cos(v))} +%% \defFunction{shell}(u,v) +%% {1.2 v exp u Sin u Cos mul mul} +%% {1.2 v exp u Sin dup mul v Sin mul mul} +%% {1.2 v exp u Sin dup mul v Cos mul mul} +\psSolid[object=surfaceparametree, + linecolor={[cmyk]{1,0,1,0.5}}, + base=0 pi pi 4 div neg 5 pi mul 2 div, + fillcolor=green!50,incolor=yellow!50, + function=shell,linewidth=0.5\pslinewidth, + ngrid=25]% +\white% +\gridIIID[Zmin=-3,Zmax=4,linecolor=white, + QZ=0.5](-4,4)(-4,4) +\end{pspicture} +\end{LTXexample} + + + +\subsection{Example 2: a \Index{helix}} +\begin{LTXexample}[width=5.5cm] +\psset{unit=0.75} +\begin{pspicture}(-3,-4)(3,6) +\psset[pst-solides3d]{viewpoint=20 10 2,Decran=20, + lightsrc=20 10 10} +% Parametric Surfaces +\defFunction{helix}(u,v) + {1 .4 v Cos mul sub u Cos mul 2 mul} + {1 .4 v Cos mul sub u Sin mul 2 mul} + {.4 v Sin mul u .3 mul add} +\psSolid[object=surfaceparametree,linewidth=0.5\pslinewidth, + base=-10 10 0 6.28,fillcolor=yellow!50,incolor=green!50, + function=helix, + ngrid=60 0.4]% +\gridIIID[Zmin=-3,Zmax=3](-2,2)(-2,2) +\end{pspicture} +\end{LTXexample} + + +\subsection{Example 3: a \Index{cone}} +\begin{LTXexample}[width=10cm] +\psset{unit=0.5} +\begin{pspicture}(-9,-7)(10,12) +\psframe*(-9,-7)(10,12) +\psset[pst-solides3d]{ + viewpoint=20 5 10, + Decran=50,lightsrc=20 10 5} +\psSolid[ + object=grille,base=-2 2 -2 2, + linecolor=white](0,0,-2) +% Parametric Surfaces +\defFunction{cone}(u,v) + {u v Cos mul}{u v Sin mul}{u} +\psSolid[object=surfaceparametree, + base=-2 2 0 2 pi mul, + fillcolor=yellow!50, + incolor=green!50,function=cone, + linewidth=0.5\pslinewidth, + ngrid=25 40]% +\psset{linecolor=white}\white +\gridIIID[Zmin=-2,Zmax=2] + (-2,2)(-2,2) +\end{pspicture} +\end{LTXexample} + + +\subsection{An advised website} +You will find on the website: + +\centerline{\url{http://k3dsurf.sourceforge.net/}} + +an excellent software to represent surfaces with numerous examples of parameterised surfaces and others. + +\endinput + |