diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-solidespredefinis-en.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-solidespredefinis-en.tex | 1042 |
1 files changed, 1042 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-solidespredefinis-en.tex b/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-solidespredefinis-en.tex new file mode 100644 index 00000000000..8d6f5019b46 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-solidespredefinis-en.tex @@ -0,0 +1,1042 @@ +\section {The predefined solids and their parameters} + +The basic command is:~ +\texttt{\Lcs{psSolid}[object=\textsl{name}]$(x, y ,z)$} which allows us to translate the chosen object to the point with the coordinates $(x, y, +z)$. + +The available predefined names for the objects are: +\begin{sloppypar} +{\ttfamily%\flushleft \hyphenchar\font`\-% +point, line, vector, plan, grille, cube, cylindre, cylindrecreux, cone, conecreux, tronccone, +troncconecreux, sphere, calottesphere, calottespherecreuse, tore, +tetrahedron, octahedron, dodecahedron, +isocahedron, anneau, prisme, prismecreux, parallelepiped, face, polygonregulier, ruban, surface, surface*, surfaceparamettree, pie, fusion, geode, load, offfile, objfile, datfile, new.} +\end{sloppypar} + + +The following table gives an example of every one of the above named solids with their specified parameters: + +\begin{center} +\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{5cm}} + \hline +\toptableau +\\\hline + \Index{Point}& + \begin{tabular}{c} + \texttt{[args=1 1 0]}\\ + coordinates + \end{tabular} + & + \begin{pspicture}(-2,-2)(2,2) +\psset{lightsrc=10 5 20,viewpoint=50 20 30 rtp2xyz} +\psSolid[object=point,args=1 1 0]% +\axesIIID(1.5,1.5,1) +\end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} +\psSolid[object=point, +args=1 1 0]% +\end{verbatim} +\end{minipage} +\\\hline + \Index{Line}& + \begin{tabular}{c} + \texttt{[args=0 -1 0 1 2 2]}\\ + coordinates of the\\ + end points + \end{tabular} + & + \begin{pspicture}(-2,-2)(2,2) +\psset{lightsrc=10 5 20,viewpoint=50 20 30 rtp2xyz} +\psSolid[object=line,args=0 -1 0 1 2 2] +\axesIIID(1.5,1.5,1) +\end{pspicture} + & +\begin{minipage}{5cm} +\begin{verbatim} +\psSolid[object=line, +args=0 -1 0 1 2 2] +\end{verbatim} +\end{minipage} +\\\hline + \Index{Vector}& + \begin{tabular}{c} + \texttt{[args=1 2 2]}\\ + components of\\ + the vector + \end{tabular} + & +\begin{pspicture}(-2,-2)(2,2) +\psset{lightsrc=10 5 20,viewpoint=50 20 30 rtp2xyz} +\psSolid[object=vecteur,args=1 2 2] +\axesIIID(1.5,1.5,1) +\end{pspicture} + & +\begin{minipage}{5cm} +\begin{verbatim} +\psSolid[object=vecteur, +args=1 2 2] +\end{verbatim} +\end{minipage} +\\\hline + \Index{Plane}& + \begin{tabular}{c} + \texttt{[base=-x x -y y]}\\ + range of plane\\ + \texttt{args={[0 0 1 0]}}\\ + equation of plane + \end{tabular} + & + \begin{pspicture}(-2,-2)(2,2) +\psset{lightsrc=10 5 20,viewpoint=50 20 30 rtp2xyz} +\psSolid[object=plan, + definition=equation, + args={[0 0 1 0]}, + base=-1 1 -1.5 1.5] +\axesIIID(1.5,1.5,1) +\end{pspicture} + & +\begin{minipage}{5cm} +\begin{verbatim} +\psSolid[object=plan, +definition=equation, +args={[0 0 1 0]}, +base=-1 1 -1.5 1.5] +\end{verbatim} +\end{minipage} +\\\hline + +\end{tabular} +\end{center} + +\begin{center} +\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{5cm}} + \hline +\toptableau +\\\hline + \Index{Cube}& \begin{tabular}{c} + \texttt{[a=4]}\\ + edge's length + \end{tabular} + & + \begin{pspicture}(-2,-2)(2,2) +\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} + \psset{Decran=60} + \psSolid[ + object=cube,a=2,action=draw*,fillcolor=magenta!20]% + \axesIIID(1,1,1)(1.5,1.5,1.5) + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} +\psSolid[ + object=cube, + a=2, + action=draw*, + fillcolor=magenta!20] + \end{verbatim} + \end{minipage} +\\\hline + \Index{Cylinder}& + \begin{tabular}{c} + \texttt{[h=6,r=2]}\\ + height and radius\\ + grid:\\ + \texttt{[ngrid=n1 n2]} + \end{tabular} + & + \begin{pspicture}(-2,-2.5)(2,3) +\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} + \psset{Decran=30} +\psSolid[object=cylindre,h=5,r=2,fillcolor=white,ngrid=4 32](0,0,-3) + \axesIIID(2,2,2.5)(3,3,3.5) + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} +\psSolid[ + object=cylindre, + h=5,r=2, + fillcolor=white, + ngrid=4 32] + (0,0,-3) + \end{verbatim} + \end{minipage} +\\\hline + \Index{Hollow Cylinder}& + \begin{tabular}{c} + \texttt{[h=6,r=2]}\\ + height and radius\\ + grid:\\ + \texttt{[ngrid=n1 n2]} + \end{tabular} + & + \begin{pspicture}(-2,-2.5)(2,3) +\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} + \psset{Decran=30} +\psSolid[object=cylindrecreux,h=5,r=2,fillcolor=white,mode=4,incolor=green!50](0,0,-2.5) + \axesIIID(2,2,2.5)(3,3,4.5) + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} +\psSolid[ + object=cylindrecreux, + h=5,r=2, + fillcolor=white, + mode=4, + incolor=green!50] + (0,0,-3) + \end{verbatim} + \end{minipage} + \\\hline +\end{tabular} +\end{center} + +\begin{center} +\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{5cm}} + \hline +\toptableau +\\\hline + \Index{Cone}& + \begin{tabular}{c} + \texttt{[h=6,r=2]}\\ + height and radius\\ + grid:\\ + \texttt{[ngrid=n1 n2]} + \end{tabular} + & + \begin{pspicture}(-2,-1)(2,4) +\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} + \psset{Decran=30} + \psSolid[object=cone,h=5,r=2,fillcolor=cyan,mode=4]% + \axesIIID(2,2,5)(2.5,2.5,6) + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} + \psSolid[ + object=cone, + h=5,r=2, + fillcolor=cyan, + mode=4]% + \end{verbatim} + \end{minipage} +\\\hline + \Index{Hollow Cone}& + \begin{tabular}{c} + \texttt{[h=6,r=2]}\\ + height and radius\\ + grid:\\ + \texttt{[ngrid=n1 n2]} + \end{tabular} + & + \begin{pspicture}(-2,-1)(2,4) +\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} + \psset{Decran=30} + \psSolid[object=conecreux,h=5,r=2,fillcolor=white,mode=4,RotY=-60,incolor=green!50]% + \axesIIID(2,2,5)(2.5,2.5,6) + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} + \psSolid[ + object=conecreux, + h=5,r=2, + RotY=-60, + fillcolor=white, + incolor=green!50, + mode=4]% + \end{verbatim} + \end{minipage} + \\\hline + \Index{Truncated Cone}& + \begin{tabular}{c} + \texttt{[h=6,r0=4,r1=1.5]}\\ + height and radii\\ + grid:\\ + \texttt{[ngrid=n1 n2]} + \end{tabular} + & + \begin{pspicture}(-2,-1)(2,4) +\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} + \psset{Decran=30} + \psSolid[object=tronccone,r0=2,r1=1.5,h=5,fillcolor=cyan,mode=4]% + \axesIIID(2,2,5)(2.5,2.5,6) + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} + \psSolid[ + object=tronccone, + r0=2,r1=1.5,h=5, + fillcolor=cyan, + mode=4]% + \end{verbatim} + \end{minipage} +\\\hline + \begin{tabular}{c} + Truncated \\ + Hollow Cone + \end{tabular} + & + \begin{tabular}{c} + \texttt{[h=6,r0=4,r1=1.5]}\\ + height and radii\\ + grid:\\ + \texttt{[ngrid=n1 n2]} + \end{tabular} + & + \begin{pspicture}(-2,-1)(2,4) +\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} + \psset{Decran=30} + \psSolid[object=troncconecreux,r0=2,r1=1,h=5,fillcolor=white,mode=4]% + \axesIIID(2,2,5)(2.5,2.5,6) + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} +\psSolid[ + object=troncconecreux, + r0=2,r1=1,h=5, + fillcolor=white, + mode=4]% + \end{verbatim} + \end{minipage} +\\\hline +\end{tabular} +\end{center} + +%\newpage + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\begin{center} +%\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{5cm}} +\begin{tabular}{ + >{\bfseries\sffamily\color{blue}} l + >{\centering} m{4cm} m{4cm} m{5cm}} + \hline +\toptableau +\\\hline + \Index{Sphere} & + \begin{tabular}{c} + \texttt{[r=2]}\\ + radius\\ + grid:\\ + \texttt{[ngrid=n1 n2]} + \end{tabular} + & + \begin{pspicture}(-2,-2)(2,3) +\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} + \psset{Decran=30} + \psSolid[object=sphere,r=3,fillcolor=red!25,ngrid=18 18,linewidth=0.2\pslinewidth]% + \axesIIID(3,3,3)(4,4,4) + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} + \psSolid[ + object=sphere, + r=2,fillcolor=red!25, + ngrid=18 18]% + \end{verbatim} + \end{minipage} +\\\hline + \begin{tabular}{c} + Spherical \\ + zone + \end{tabular} & + \begin{tabular}{c} + \texttt{[r=2]} \\ + radius\\ + \texttt{[phi=0,theta=90]} \\ + latitude for slicing\\ + the zone respectively \\ + from the bottom and top \\ + \end{tabular} + & +\begin{pspicture}(-2,-3)(5,3) +\psset{unit=0.5} +\psset{lightsrc=42 24 13,viewpoint=50 30 15 rtp2xyz,Decran=50} +\psSolid[object=calottesphere,r=3,ngrid=16 18, + fillcolor=cyan!50,incolor=yellow,theta=45,phi=-30,hollow,RotY=-80]% +\axesIIID(0,3,3)(6,5,4) +\end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} +\psSolid[ + object=calottesphere, + r=3,ngrid=16 18, + theta=45,phi=-30, + hollow,RotY=-80]% + \end{verbatim} + \end{minipage} +\\\hline + \Index{Torus} & + \begin{tabular}{c} + \texttt{[r0=4,r1=1.5]} \\ + inner radius\\ + mean radius\\ + grid:\\ + \texttt{[ngrid=n1 n2]} + \end{tabular} + & + \begin{pspicture}(-2,-2)(2,2.35) +\psset{lightsrc=42 24 13,viewpoint=50 30 15 rtp2xyz} + \psset{Decran=30,unit=0.9} + \psSolid[r1=2.5,r0=1.5,object=tore,ngrid=18 36,fillcolor=green!30,action=draw**]% + \axesIIID(4,4,0)(5,5,4) + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} + \psSolid[ + r1=2.5,r0=1.5, + object=tore, + ngrid=18 36, + fillcolor=green!30, + action=draw*]% + \end{verbatim} + \end{minipage} +\\\hline + \begin{tabular}{c} + Cylindric \\ + Ring + \end{tabular} + & + \begin{tabular}{c} + \texttt{[r1=2.5,r0=1.5,}\\ + inner and outer radius\\ + \texttt{h=6,section=...]}\\ + height\\ + cross \\ + section + \end{tabular} + & + \begin{pspicture}(-2,-2)(2,2.35) +%\psset{unit=0.44} +\psset{lightsrc=42 24 13,viewpoint=50 30 15 rtp2xyz} + \psset{Decran=30} +\psSolid[object=anneau,fillcolor=yellow,h=1.5,r1=4,r0=3]% + \axesIIID(4,4,0)(5,5,4) + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} + \psSolid[ + object=anneau, + fillcolor=yellow, + h=1.5,r1=4,r0=3]% + \end{verbatim} + \end{minipage} +\\\hline +\end{tabular} +\end{center} + + +\begin{center} +%\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{6cm}} +\begin{tabular}{ + >{\bfseries\sffamily\color{blue}} l + >{\centering} m{4cm} m{4cm} m{5cm}} + \hline +\toptableau +\\\hline + \Index{Tetrahedron}& + \begin{tabular}{c} + \texttt{[r=2]}\\ + radius of the\\ + circumscribed sphere + \end{tabular} + & + \begin{pspicture}(-2,-2)(2,2) +\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} + \psset{Decran=30} + \psSolid[object=tetrahedron,r=3,linecolor=blue,action=draw]% + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} +\psSolid[ + object=tetrahedron, + r=3, + linecolor=blue, + action=draw]% + \end{verbatim} + \end{minipage} +\\\hline +\Index{Octahedron} & + \begin{tabular}{c} + \texttt{[a=2]}\\ + radius of the\\ + circumscribed sphere + \end{tabular} + & + \begin{pspicture}(-2,-1.85)(2,2.85) +\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} + \psset{Decran=30} + \psSolid[object=octahedron,a=3,linecolor=blue,fillcolor=Turquoise]% + \axesIIID(3,3,3)(4,4,4) + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} + \psSolid[ + object=octahedron, + a=3, + linecolor=blue, + fillcolor=Turquoise]% + \end{verbatim} + \end{minipage} +\\\hline + \Index{Dodecahedron} & + \begin{tabular}{c} + \texttt{[a=2]}\\ + radius of the\\ + circumscribed sphere + \end{tabular} + & + \begin{pspicture}(-2,-1.85)(2,1.85) +\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} + \psset{Decran=30} + \psSolid[object=dodecahedron,a=2.5,RotZ=90,action=draw*,fillcolor=OliveGreen]% + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} + \psSolid[ + object=dodecahedron, + a=2.5,RotZ=90, + action=draw*, + fillcolor=OliveGreen]% + \end{verbatim} + \end{minipage} +\\ \hline +\Index{Icosahedron} & + \begin{tabular}{c} + \texttt{[a=2]}\\ + radius of the\\ + circumscribed sphere + \end{tabular} + & + \begin{pspicture}(-2,-1.85)(2,2.85) +\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} + \psset{Decran=30} + \psSolid[object=icosahedron,a=3,action=draw*,fillcolor=green!50]% + \axesIIID(3,3,3)(4,4,4) + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} +\psSolid[ + object=icosahedron, + a=3, + action=draw*, + fillcolor=green!50]% + \end{verbatim} + \end{minipage} +\\\hline + \Index{Prism} + & + \begin{tabular}{c} + \texttt{[axe=0 0 1]}\\ + direction of the axis\\ + \texttt{[base=}\\ + \texttt{-1 -1 1 -1 0 1]}\\ + coordinates of\\ + the vertices\\ + of the base\\ + \texttt{[h=6]}\\ + height + \end{tabular} + & + \begin{pspicture}(-2,-2)(2,3) +\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} + \psset{Decran=30,unit=0.9} +\psSolid[object=prisme,action=draw*,linecolor=red,h=4,fillcolor=gray!50]% +\psSolid[object=grille,base=-3 3 -3 3,action=draw]% + \axesIIID(3,3,4)(5,5,5) + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} +\psSolid[ + object=prisme, + action=draw*, + linecolor=red, + h=4]% + \end{verbatim} + \end{minipage} + \\\hline +\end{tabular} +\end{center} + +%\newpage +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\begin{center} +%\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} +%\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{6cm}} +\begin{tabular}{ + >{\bfseries\sffamily\color{blue}} l + >{\centering} m{4cm} m{4cm} m{5cm}} + \hline +\toptableau +\\\hline + \Index{Grid} + & + \begin{tabular}{c} + \texttt{[base=-X +X -Y +Y]} + \end{tabular} + & + \begin{pspicture}(-1.5,-2)(2,3) +\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} + \psset{Decran=30,unit=0.9} +\psSolid[object=grille,base=-5 5 -3 3]% + \axesIIID(5,3,0)(6,4,4) + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} +\psSolid[ + object=grille, + base=-5 5 -3 3]% + \end{verbatim} + \end{minipage} +\\\hline +% + \Index{Cuboid} + & + \begin{tabular}{c} + \texttt{[a=4,b=3,c=2]}\\ + edge lenghts\\ + with center in $O$ + \end{tabular} + & + \begin{pspicture}(-1.5,-2)(2,3) + \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} + \psset{Decran=30} +\psSolid[object=parallelepiped,a=5,b=6,c=2,fillcolor=bleuciel,axe=1 1 1](0,0,c 2 div) +\psSolid[object=grille,base=-2.5 2.5 -3 3,action=draw](0,0,2) +\psSolid[object=grille,base=-1 1 -3 3,RotY=90,action=draw](2.5,0,1) +\psSolid[object=grille,base=-2.5 2.5 -1 1,RotX=-90,action=draw](0,3,1) + \axesIIID(2.5,3,2)(3.5,4,4) + \end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} +\psSolid[ + object=parallelepiped,% + a=5,b=6,c=2, + fillcolor=yellow]% + (0,0,c 2 div) + \end{verbatim} + \end{minipage} +\\\hline +% + \Index{Face} + & + \begin{tabular}{l} + \texttt{[base=x0 y0 x1 y1}\\ + \texttt{~ x2 y2 etc.]}\\ + the coordinates \\ + of the vertices + \end{tabular} + & +\begin{pspicture}(-2,-2)(3,2) +\psset{unit=0.4} +\psset{viewpoint=50 -20 30 rtp2xyz,Decran=50} +\psSolid[object=grille,base=-4 6 -4 4,action=draw,linecolor=gray](0,0,0) +\psSolid[object=face,fillcolor=yellow, + incolor=blue, + base=0 0 3 0 1.5 3 + ](0,1,0) +\psSolid[object=face,fillcolor=yellow, + incolor=blue, + base=0 0 3 0 1.5 3, + RotX=180](0,-1,0) +\axesIIID(0,0,0)(6,6,3) +\end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} +\psSolid[ + object=face, + fillcolor=yellow, + incolor=blue, + base=0 0 3 0 1.5 3 + ](0,1,0) +\psSolid[ + object=face, + fillcolor=yellow, + incolor=blue, + base=0 0 3 0 1.5 3, + RotX=180](0,-1,0) + \end{verbatim} + \end{minipage} +\\\hline +% + \Index{Strip} + & + \begin{tabular}{l} + \texttt{[base=x0 y0 x1 y1}\\ + \texttt{~ x2 y2 etc.]}\\ + \texttt{[h=height]}\\ + \texttt{[ngrid=value]}\\ + number of gridlines\\ + \texttt{[axe=0 0 1]}\\ + direction of inclination\\ + of the strip + \end{tabular} + & +\begin{pspicture}(-2,-2)(5,3) +\psset{lightsrc=10 0 10,viewpoint=50 -20 30 rtp2xyz,Decran=50,unit=0.5} +\psSolid[object=grille,base=-4 6 -2 4,action=draw,linecolor=gray](0,0,0) +\psSolid[object=ruban,h=3,fillcolor=red!50, + base=0 0 2 2 4 0 6 2, + num=0 1 2 3, + show=0 1 2 3, + ngrid=3]% +\axesIIID(0,2,0)(6,6,6) +\end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} +\psSolid[ + object=ruban,h=3, + fillcolor=red!50, + base=0 0 2 2 4 0 6 2, + num=0 1 2 3, + show=0 1 2 3, + ngrid=3]) + \end{verbatim} + \end{minipage} +\\\hline +\end{tabular} +\end{center} + +%\newpage + +%\begin{center} +%\psset{lightsrc=10 20 30,SphericalCoor,viewpoint=50 20 30} +%%\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{6cm}} +%\begin{tabular}{ +% >{\bfseries\sffamily\color{blue}} l +% >{\centering} m{4cm} m{4cm} m{5cm}} +% \hline +%\toptableau +%% chemin +%% & +%% \begin{tabular}{l} +%% dessine un chemin\\ +%% d\'{e}fini en postscript\\ +%% sur un plan +%% \end{tabular} +%% & +%% \psset{unit=0.4} +%% \begin{pspicture}(-2,-5)(6,8)% +%% \psframe*[linecolor=blue!50](-6,-5)(6,7) +%% \psset{lightsrc=50 20 20,viewpoint=50 30 15,Decran=60} +%% \psProjection[object=chemin,fillstyle=solid,fillcolor=white, +%% linewidth=.05,linecolor=red, +%% normal=1 1 2 180, +%% path=newpath +%% -4 -4 smoveto +%% -4 4 slineto +%% 4 4 slineto +%% 4 -4 slineto +%% closepath +%% ](1,1,2) +%% \psProjection[object=chemin, +%% linewidth=.02, +%% normal=1 1 2 180, +%% path=newpath +%% -4 1 4 +%% {-4 exch smoveto +%% 8 0 srlineto} for +%% -4 1 4 +%% {-4 smoveto +%% 0 8 srlineto} for +%% ](1,1,2) +%% \psProjection[object=chemin,fillstyle=hlines,hatchcolor=yellow, +%% linecolor=red, +%% normal=1 1 2 180, +%% path=newpath +%% 2 0 moveto +%% 0 2 360 { +%% /x exch def +%% x cos 2 mul +%% x sin 2 mul +%% slineto +%% } for +%% ](1,1,2) +%% \psPoint(0,0,0){O} +%% \psPoint(1,1,2){O1}\psPoint(1.4,1.4,2.8){K} +%% \psline[linewidth=.1,linecolor=red](O1)(K) +%% \psline[linestyle=dashed](O)(O1) +%% \psProjection[object=chemin, +%% linewidth=.1, +%% linecolor=green, +%% normal=1 1 2 180, +%% path= +%% newpath +%% 0 0 smoveto +%% 1 0 slineto](1,1,2) +%% \psProjection[object=chemin, +%% linewidth=.1, +%% linecolor=blue, +%% normal=1 1 2 180, +%% path= +%% newpath +%% 0 0 smoveto +%% 0 1 slineto](1,1,2) +%% \axesIIID(4,4,2)(5,5,6) +%% \end{pspicture} +%% & +%% \begin{minipage}{6cm} +%% \begin{verbatim} +%% \psProjection[object=chemin, +%% fillstyle=hlines, +%% hatchcolor=yellow, +%% linecolor=red, +%% normal=1 1 2 180, +%% path=newpath +%% 2 0 smoveto +%% 0 2 360 { +%% /x exch def +%% x cos 2 mul +%% x sin 2 mul +%% slineto +%% } for +%% ](1,1,2) +%% \end{verbatim} +%% \end{minipage} +%\end{tabular} +%\end{center} + +%\newpage +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\begin{center} +%\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{6cm}} +\begin{tabular}{ + >{\bfseries\sffamily\color{blue}} l + >{\centering} m{4cm} m{4cm} m{5cm}} + \hline +\toptableau +\\\hline + \Index{Surface} + & + \begin{tabular}{l} + see the related \\ + paragraph in the \\ + documentation + \end{tabular} + & +\begin{pspicture}(-2,-3)(3,3) +\psset{unit=0.4} +\psset{lightsrc=30 30 25} +\psset{viewpoint=50 40 30 rtp2xyz,Decran=50} +\psSurface[ngrid=.25 .25,incolor=white,axesboxed](-4,-4)(4,4){% + x dup mul y dup mul 3 mul sub x mul 32 div} +\end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} +\psSurface[ngrid=.25 .25, + incolor=white,axesboxed] + (-4,-4)(4,4){% + x dup mul y dup mul 3 mul + sub x mul 32 div} + \end{verbatim} + \end{minipage} +\\\hline +% + \Index{New} + & + \begin{tabular}{l} + solid defined\\ + by the coordinates \\ + of the vertices\\ + and the vertices\\ + of each face + \end{tabular} + & + +\begin{pspicture}(-2,-2)(2,4) +\psset{unit=0.4} +\psset{viewpoint=50 -20 30 rtp2xyz,Decran=50} +\psSolid[object=new, + action=draw, + sommets= + 2 4 3 + -2 4 3 + -2 -4 3 + 2 -4 3 + 2 4 0 + -2 4 0 + -2 -4 0 + 2 -4 0 + 0 4 5 + 0 -4 5, + faces={ + [0 1 2 3] + [7 6 5 4] + [0 3 7 4] + [3 9 2] + [1 8 0] + [8 9 3 0] + [9 8 1 2] + [6 7 3 2] + [2 1 5 6]}, + num=all, + show=all]% +\axesIIID(0,0,0)(5,5,7) +\end{pspicture} + & + \begin{minipage}{5cm} + \begin{verbatim} + \psSolid[object=new, + action=draw, + sommets= + 2 4 3 + -2 4 3 + -2 -4 3 + 2 -4 3 + 2 4 0 + -2 4 0 + -2 -4 0 + 2 -4 0 + 0 4 5 + 0 -4 5, + faces={ + [0 1 2 3] + [7 6 5 4] + [0 3 7 4] + [3 9 2] + [1 8 0] + [8 9 3 0] + [9 8 1 2] + [6 7 3 2] + [2 1 5 6]}]% + \end{verbatim} + \end{minipage} +\\\hline +% + \Index{Curve} + & + \begin{tabular}{l} + curve of a function\\ + $\mathbb{R} \rightarrow \mathbb{R}^3$\\ + defined by its\\ + paramterised equations\\ + \end{tabular} + & + +\begin{pspicture}(-2,-1)(1.75,2.7) +\psset{unit=0.35} +\psset{lightsrc=10 -20 50,viewpoint=50 -20 20 rtp2xyz,Decran=50} +%\psframe*[linecolor=blue!50](-6,-3)(6,8) +\psSolid[object=grille,base=-4 4 -4 4,linecolor=red,linewidth=0.5\pslinewidth]% +\axesIIID(0,0,0)(4,4,7) +\defFunction[algebraic]{helice}(t){3*cos(4*t)}{3*sin(4*t)}{t} +\psSolid[object=courbe,r=0, + range=0 6, + linecolor=blue,linewidth=0.1, + resolution=360, + function=helice]% +\end{pspicture} + & + \begin{minipage}{5cm} +% \footnotesize + \begin{verbatim} +\defFunction[algebraic]% + {helice}(t) + {3*cos(4*t)}{3*sin(4*t)}{t} +\psSolid[object=courbe,r=0, + range=0 6, + linecolor=blue, + linewidth=0.1, + resolution=360, + function=helice]% + \end{verbatim} + \end{minipage} +\\\hline +%% courbeR2 +%% & +%% \begin{tabular}{l} +%% trac\'{e} d'une fonction\\ +%% R --> R\textsuperscript{2}\\ +%% d\'{e}finie par ses\\ +%% \'{e}quations param\'{e}triques\\ +%% \end{tabular} +%% & +%% \psset{unit=0.4} +%% \begin{pspicture}(-6,-7)(6,6) +%% \psframe*[linecolor=yellow!50](-6,-6)(6,6) +%% \psset{SphericalCoor,viewpoint=50 -20 30,Decran=50} +%% {\psset{linewidth=0.5\pslinewidth,linecolor=gray} +%% \psSolid[object=grille,base=-4 4 -4 0,RotX=90,RotZ=90]% +%% \psSolid[object=grille,base=-4 4 -4 4]% +%% \psSolid[object=grille,base=-4 4 0 4,RotX=90,RotZ=90]} +%% \defFunction{parabole}(t){t}{t dup mul}{} +%% \defFunction{droite}(t){t}{t 2 add }{} +%% \axesIIID(0,0,0)(4,4,4) +%% \psProjection[object=chemin, +%% linewidth=.1, +%% linecolor=blue, +%% normal=0 1 0 1 0 0, +%% path= +%% newpath +%% 0 0 moveto +%% 1 0 lineto] +%% \psProjection[object=chemin, +%% linewidth=.1, +%% linecolor=red, +%% normal=0 1 0 1 0 0, +%% path= +%% newpath +%% 0 0 moveto +%% 0 1 lineto] +%% \psProjection[object=courbeR2, +%% range=-1 2,fillstyle=vlines,hatchwidth=0.5\pslinewidth, +%% normal=0 1 0 1 0 0, +%% function=parabole] +%% \psProjection[object=courbeR2, +%% range=-2 2, +%% linecolor=green, +%% normal=0 1 0 1 0 0, +%% function=parabole] +%% \psProjection[object=courbeR2, +%% range=-2 2 , +%% linecolor=red, +%% normal=0 1 0 1 0 0, +%% function=droite] +%% \psPoint(0,0,4.15){Z1} +%% \uput*[60](Z1){$z=y^2$} +%% \rput(0,-6.5){\psframebox[linecolor=yellow!50]{\texttt{$\backslash${}defFunction\{parabole\}(t)\{t\}\{t dup mul\}\{\}}}} +%% \end{pspicture} +%% & +%% \begin{minipage}{6cm} +%% \footnotesize +%% \begin{verbatim} +%% \psProjection[object=courbeR2, +%% range=-2 2, +%% linecolor=green, +%% normal=0 1 0 1 0 0, +%% function=parabole] +%% \end{verbatim} +%% \end{minipage} +%% \\\hline +\end{tabular} +\end{center} + +Some information about rings and parallelepipeds is available in the documents: +\begin{itemize} + \item \texttt{doc-grille-parallelepiped.tex(.pdf)}; + \item \texttt{doc-anneau.tex(.pdf).} +\end{itemize} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%\newpage + +\endinput |