summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-solidespredefinis-en.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-solidespredefinis-en.tex')
-rw-r--r--Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-solidespredefinis-en.tex1042
1 files changed, 1042 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-solidespredefinis-en.tex b/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-solidespredefinis-en.tex
new file mode 100644
index 00000000000..8d6f5019b46
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-solidespredefinis-en.tex
@@ -0,0 +1,1042 @@
+\section {The predefined solids and their parameters}
+
+The basic command is:~
+\texttt{\Lcs{psSolid}[object=\textsl{name}]$(x, y ,z)$} which allows us to translate the chosen object to the point with the coordinates $(x, y,
+z)$.
+
+The available predefined names for the objects are:
+\begin{sloppypar}
+{\ttfamily%\flushleft \hyphenchar\font`\-%
+point, line, vector, plan, grille, cube, cylindre, cylindrecreux, cone, conecreux, tronccone,
+troncconecreux, sphere, calottesphere, calottespherecreuse, tore,
+tetrahedron, octahedron, dodecahedron,
+isocahedron, anneau, prisme, prismecreux, parallelepiped, face, polygonregulier, ruban, surface, surface*, surfaceparamettree, pie, fusion, geode, load, offfile, objfile, datfile, new.}
+\end{sloppypar}
+
+
+The following table gives an example of every one of the above named solids with their specified parameters:
+
+\begin{center}
+\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{5cm}}
+ \hline
+\toptableau
+\\\hline
+ \Index{Point}&
+ \begin{tabular}{c}
+ \texttt{[args=1 1 0]}\\
+ coordinates
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{lightsrc=10 5 20,viewpoint=50 20 30 rtp2xyz}
+\psSolid[object=point,args=1 1 0]%
+\axesIIID(1.5,1.5,1)
+\end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+\psSolid[object=point,
+args=1 1 0]%
+\end{verbatim}
+\end{minipage}
+\\\hline
+ \Index{Line}&
+ \begin{tabular}{c}
+ \texttt{[args=0 -1 0 1 2 2]}\\
+ coordinates of the\\
+ end points
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{lightsrc=10 5 20,viewpoint=50 20 30 rtp2xyz}
+\psSolid[object=line,args=0 -1 0 1 2 2]
+\axesIIID(1.5,1.5,1)
+\end{pspicture}
+ &
+\begin{minipage}{5cm}
+\begin{verbatim}
+\psSolid[object=line,
+args=0 -1 0 1 2 2]
+\end{verbatim}
+\end{minipage}
+\\\hline
+ \Index{Vector}&
+ \begin{tabular}{c}
+ \texttt{[args=1 2 2]}\\
+ components of\\
+ the vector
+ \end{tabular}
+ &
+\begin{pspicture}(-2,-2)(2,2)
+\psset{lightsrc=10 5 20,viewpoint=50 20 30 rtp2xyz}
+\psSolid[object=vecteur,args=1 2 2]
+\axesIIID(1.5,1.5,1)
+\end{pspicture}
+ &
+\begin{minipage}{5cm}
+\begin{verbatim}
+\psSolid[object=vecteur,
+args=1 2 2]
+\end{verbatim}
+\end{minipage}
+\\\hline
+ \Index{Plane}&
+ \begin{tabular}{c}
+ \texttt{[base=-x x -y y]}\\
+ range of plane\\
+ \texttt{args={[0 0 1 0]}}\\
+ equation of plane
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{lightsrc=10 5 20,viewpoint=50 20 30 rtp2xyz}
+\psSolid[object=plan,
+ definition=equation,
+ args={[0 0 1 0]},
+ base=-1 1 -1.5 1.5]
+\axesIIID(1.5,1.5,1)
+\end{pspicture}
+ &
+\begin{minipage}{5cm}
+\begin{verbatim}
+\psSolid[object=plan,
+definition=equation,
+args={[0 0 1 0]},
+base=-1 1 -1.5 1.5]
+\end{verbatim}
+\end{minipage}
+\\\hline
+
+\end{tabular}
+\end{center}
+
+\begin{center}
+\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{5cm}}
+ \hline
+\toptableau
+\\\hline
+ \Index{Cube}& \begin{tabular}{c}
+ \texttt{[a=4]}\\
+ edge's length
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz}
+ \psset{Decran=60}
+ \psSolid[
+ object=cube,a=2,action=draw*,fillcolor=magenta!20]%
+ \axesIIID(1,1,1)(1.5,1.5,1.5)
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+\psSolid[
+ object=cube,
+ a=2,
+ action=draw*,
+ fillcolor=magenta!20]
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+ \Index{Cylinder}&
+ \begin{tabular}{c}
+ \texttt{[h=6,r=2]}\\
+ height and radius\\
+ grid:\\
+ \texttt{[ngrid=n1 n2]}
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-2.5)(2,3)
+\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz}
+ \psset{Decran=30}
+\psSolid[object=cylindre,h=5,r=2,fillcolor=white,ngrid=4 32](0,0,-3)
+ \axesIIID(2,2,2.5)(3,3,3.5)
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+\psSolid[
+ object=cylindre,
+ h=5,r=2,
+ fillcolor=white,
+ ngrid=4 32]
+ (0,0,-3)
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+ \Index{Hollow Cylinder}&
+ \begin{tabular}{c}
+ \texttt{[h=6,r=2]}\\
+ height and radius\\
+ grid:\\
+ \texttt{[ngrid=n1 n2]}
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-2.5)(2,3)
+\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz}
+ \psset{Decran=30}
+\psSolid[object=cylindrecreux,h=5,r=2,fillcolor=white,mode=4,incolor=green!50](0,0,-2.5)
+ \axesIIID(2,2,2.5)(3,3,4.5)
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+\psSolid[
+ object=cylindrecreux,
+ h=5,r=2,
+ fillcolor=white,
+ mode=4,
+ incolor=green!50]
+ (0,0,-3)
+ \end{verbatim}
+ \end{minipage}
+ \\\hline
+\end{tabular}
+\end{center}
+
+\begin{center}
+\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{5cm}}
+ \hline
+\toptableau
+\\\hline
+ \Index{Cone}&
+ \begin{tabular}{c}
+ \texttt{[h=6,r=2]}\\
+ height and radius\\
+ grid:\\
+ \texttt{[ngrid=n1 n2]}
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-1)(2,4)
+\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz}
+ \psset{Decran=30}
+ \psSolid[object=cone,h=5,r=2,fillcolor=cyan,mode=4]%
+ \axesIIID(2,2,5)(2.5,2.5,6)
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+ \psSolid[
+ object=cone,
+ h=5,r=2,
+ fillcolor=cyan,
+ mode=4]%
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+ \Index{Hollow Cone}&
+ \begin{tabular}{c}
+ \texttt{[h=6,r=2]}\\
+ height and radius\\
+ grid:\\
+ \texttt{[ngrid=n1 n2]}
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-1)(2,4)
+\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz}
+ \psset{Decran=30}
+ \psSolid[object=conecreux,h=5,r=2,fillcolor=white,mode=4,RotY=-60,incolor=green!50]%
+ \axesIIID(2,2,5)(2.5,2.5,6)
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+ \psSolid[
+ object=conecreux,
+ h=5,r=2,
+ RotY=-60,
+ fillcolor=white,
+ incolor=green!50,
+ mode=4]%
+ \end{verbatim}
+ \end{minipage}
+ \\\hline
+ \Index{Truncated Cone}&
+ \begin{tabular}{c}
+ \texttt{[h=6,r0=4,r1=1.5]}\\
+ height and radii\\
+ grid:\\
+ \texttt{[ngrid=n1 n2]}
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-1)(2,4)
+\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz}
+ \psset{Decran=30}
+ \psSolid[object=tronccone,r0=2,r1=1.5,h=5,fillcolor=cyan,mode=4]%
+ \axesIIID(2,2,5)(2.5,2.5,6)
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+ \psSolid[
+ object=tronccone,
+ r0=2,r1=1.5,h=5,
+ fillcolor=cyan,
+ mode=4]%
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+ \begin{tabular}{c}
+ Truncated \\
+ Hollow Cone
+ \end{tabular}
+ &
+ \begin{tabular}{c}
+ \texttt{[h=6,r0=4,r1=1.5]}\\
+ height and radii\\
+ grid:\\
+ \texttt{[ngrid=n1 n2]}
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-1)(2,4)
+\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz}
+ \psset{Decran=30}
+ \psSolid[object=troncconecreux,r0=2,r1=1,h=5,fillcolor=white,mode=4]%
+ \axesIIID(2,2,5)(2.5,2.5,6)
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+\psSolid[
+ object=troncconecreux,
+ r0=2,r1=1,h=5,
+ fillcolor=white,
+ mode=4]%
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+\end{tabular}
+\end{center}
+
+%\newpage
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\begin{center}
+%\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{5cm}}
+\begin{tabular}{
+ >{\bfseries\sffamily\color{blue}} l
+ >{\centering} m{4cm} m{4cm} m{5cm}}
+ \hline
+\toptableau
+\\\hline
+ \Index{Sphere} &
+ \begin{tabular}{c}
+ \texttt{[r=2]}\\
+ radius\\
+ grid:\\
+ \texttt{[ngrid=n1 n2]}
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-2)(2,3)
+\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz}
+ \psset{Decran=30}
+ \psSolid[object=sphere,r=3,fillcolor=red!25,ngrid=18 18,linewidth=0.2\pslinewidth]%
+ \axesIIID(3,3,3)(4,4,4)
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+ \psSolid[
+ object=sphere,
+ r=2,fillcolor=red!25,
+ ngrid=18 18]%
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+ \begin{tabular}{c}
+ Spherical \\
+ zone
+ \end{tabular} &
+ \begin{tabular}{c}
+ \texttt{[r=2]} \\
+ radius\\
+ \texttt{[phi=0,theta=90]} \\
+ latitude for slicing\\
+ the zone respectively \\
+ from the bottom and top \\
+ \end{tabular}
+ &
+\begin{pspicture}(-2,-3)(5,3)
+\psset{unit=0.5}
+\psset{lightsrc=42 24 13,viewpoint=50 30 15 rtp2xyz,Decran=50}
+\psSolid[object=calottesphere,r=3,ngrid=16 18,
+ fillcolor=cyan!50,incolor=yellow,theta=45,phi=-30,hollow,RotY=-80]%
+\axesIIID(0,3,3)(6,5,4)
+\end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+\psSolid[
+ object=calottesphere,
+ r=3,ngrid=16 18,
+ theta=45,phi=-30,
+ hollow,RotY=-80]%
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+ \Index{Torus} &
+ \begin{tabular}{c}
+ \texttt{[r0=4,r1=1.5]} \\
+ inner radius\\
+ mean radius\\
+ grid:\\
+ \texttt{[ngrid=n1 n2]}
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-2)(2,2.35)
+\psset{lightsrc=42 24 13,viewpoint=50 30 15 rtp2xyz}
+ \psset{Decran=30,unit=0.9}
+ \psSolid[r1=2.5,r0=1.5,object=tore,ngrid=18 36,fillcolor=green!30,action=draw**]%
+ \axesIIID(4,4,0)(5,5,4)
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+ \psSolid[
+ r1=2.5,r0=1.5,
+ object=tore,
+ ngrid=18 36,
+ fillcolor=green!30,
+ action=draw*]%
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+ \begin{tabular}{c}
+ Cylindric \\
+ Ring
+ \end{tabular}
+ &
+ \begin{tabular}{c}
+ \texttt{[r1=2.5,r0=1.5,}\\
+ inner and outer radius\\
+ \texttt{h=6,section=...]}\\
+ height\\
+ cross \\
+ section
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-2)(2,2.35)
+%\psset{unit=0.44}
+\psset{lightsrc=42 24 13,viewpoint=50 30 15 rtp2xyz}
+ \psset{Decran=30}
+\psSolid[object=anneau,fillcolor=yellow,h=1.5,r1=4,r0=3]%
+ \axesIIID(4,4,0)(5,5,4)
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+ \psSolid[
+ object=anneau,
+ fillcolor=yellow,
+ h=1.5,r1=4,r0=3]%
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+\end{tabular}
+\end{center}
+
+
+\begin{center}
+%\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{6cm}}
+\begin{tabular}{
+ >{\bfseries\sffamily\color{blue}} l
+ >{\centering} m{4cm} m{4cm} m{5cm}}
+ \hline
+\toptableau
+\\\hline
+ \Index{Tetrahedron}&
+ \begin{tabular}{c}
+ \texttt{[r=2]}\\
+ radius of the\\
+ circumscribed sphere
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz}
+ \psset{Decran=30}
+ \psSolid[object=tetrahedron,r=3,linecolor=blue,action=draw]%
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+\psSolid[
+ object=tetrahedron,
+ r=3,
+ linecolor=blue,
+ action=draw]%
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+\Index{Octahedron} &
+ \begin{tabular}{c}
+ \texttt{[a=2]}\\
+ radius of the\\
+ circumscribed sphere
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-1.85)(2,2.85)
+\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz}
+ \psset{Decran=30}
+ \psSolid[object=octahedron,a=3,linecolor=blue,fillcolor=Turquoise]%
+ \axesIIID(3,3,3)(4,4,4)
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+ \psSolid[
+ object=octahedron,
+ a=3,
+ linecolor=blue,
+ fillcolor=Turquoise]%
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+ \Index{Dodecahedron} &
+ \begin{tabular}{c}
+ \texttt{[a=2]}\\
+ radius of the\\
+ circumscribed sphere
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-1.85)(2,1.85)
+\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz}
+ \psset{Decran=30}
+ \psSolid[object=dodecahedron,a=2.5,RotZ=90,action=draw*,fillcolor=OliveGreen]%
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+ \psSolid[
+ object=dodecahedron,
+ a=2.5,RotZ=90,
+ action=draw*,
+ fillcolor=OliveGreen]%
+ \end{verbatim}
+ \end{minipage}
+\\ \hline
+\Index{Icosahedron} &
+ \begin{tabular}{c}
+ \texttt{[a=2]}\\
+ radius of the\\
+ circumscribed sphere
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-1.85)(2,2.85)
+\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz}
+ \psset{Decran=30}
+ \psSolid[object=icosahedron,a=3,action=draw*,fillcolor=green!50]%
+ \axesIIID(3,3,3)(4,4,4)
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+\psSolid[
+ object=icosahedron,
+ a=3,
+ action=draw*,
+ fillcolor=green!50]%
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+ \Index{Prism}
+ &
+ \begin{tabular}{c}
+ \texttt{[axe=0 0 1]}\\
+ direction of the axis\\
+ \texttt{[base=}\\
+ \texttt{-1 -1 1 -1 0 1]}\\
+ coordinates of\\
+ the vertices\\
+ of the base\\
+ \texttt{[h=6]}\\
+ height
+ \end{tabular}
+ &
+ \begin{pspicture}(-2,-2)(2,3)
+\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz}
+ \psset{Decran=30,unit=0.9}
+\psSolid[object=prisme,action=draw*,linecolor=red,h=4,fillcolor=gray!50]%
+\psSolid[object=grille,base=-3 3 -3 3,action=draw]%
+ \axesIIID(3,3,4)(5,5,5)
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+\psSolid[
+ object=prisme,
+ action=draw*,
+ linecolor=red,
+ h=4]%
+ \end{verbatim}
+ \end{minipage}
+ \\\hline
+\end{tabular}
+\end{center}
+
+%\newpage
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\begin{center}
+%\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz}
+%\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{6cm}}
+\begin{tabular}{
+ >{\bfseries\sffamily\color{blue}} l
+ >{\centering} m{4cm} m{4cm} m{5cm}}
+ \hline
+\toptableau
+\\\hline
+ \Index{Grid}
+ &
+ \begin{tabular}{c}
+ \texttt{[base=-X +X -Y +Y]}
+ \end{tabular}
+ &
+ \begin{pspicture}(-1.5,-2)(2,3)
+\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz}
+ \psset{Decran=30,unit=0.9}
+\psSolid[object=grille,base=-5 5 -3 3]%
+ \axesIIID(5,3,0)(6,4,4)
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+\psSolid[
+ object=grille,
+ base=-5 5 -3 3]%
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+%
+ \Index{Cuboid}
+ &
+ \begin{tabular}{c}
+ \texttt{[a=4,b=3,c=2]}\\
+ edge lenghts\\
+ with center in $O$
+ \end{tabular}
+ &
+ \begin{pspicture}(-1.5,-2)(2,3)
+ \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz}
+ \psset{Decran=30}
+\psSolid[object=parallelepiped,a=5,b=6,c=2,fillcolor=bleuciel,axe=1 1 1](0,0,c 2 div)
+\psSolid[object=grille,base=-2.5 2.5 -3 3,action=draw](0,0,2)
+\psSolid[object=grille,base=-1 1 -3 3,RotY=90,action=draw](2.5,0,1)
+\psSolid[object=grille,base=-2.5 2.5 -1 1,RotX=-90,action=draw](0,3,1)
+ \axesIIID(2.5,3,2)(3.5,4,4)
+ \end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+\psSolid[
+ object=parallelepiped,%
+ a=5,b=6,c=2,
+ fillcolor=yellow]%
+ (0,0,c 2 div)
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+%
+ \Index{Face}
+ &
+ \begin{tabular}{l}
+ \texttt{[base=x0 y0 x1 y1}\\
+ \texttt{~ x2 y2 etc.]}\\
+ the coordinates \\
+ of the vertices
+ \end{tabular}
+ &
+\begin{pspicture}(-2,-2)(3,2)
+\psset{unit=0.4}
+\psset{viewpoint=50 -20 30 rtp2xyz,Decran=50}
+\psSolid[object=grille,base=-4 6 -4 4,action=draw,linecolor=gray](0,0,0)
+\psSolid[object=face,fillcolor=yellow,
+ incolor=blue,
+ base=0 0 3 0 1.5 3
+ ](0,1,0)
+\psSolid[object=face,fillcolor=yellow,
+ incolor=blue,
+ base=0 0 3 0 1.5 3,
+ RotX=180](0,-1,0)
+\axesIIID(0,0,0)(6,6,3)
+\end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+\psSolid[
+ object=face,
+ fillcolor=yellow,
+ incolor=blue,
+ base=0 0 3 0 1.5 3
+ ](0,1,0)
+\psSolid[
+ object=face,
+ fillcolor=yellow,
+ incolor=blue,
+ base=0 0 3 0 1.5 3,
+ RotX=180](0,-1,0)
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+%
+ \Index{Strip}
+ &
+ \begin{tabular}{l}
+ \texttt{[base=x0 y0 x1 y1}\\
+ \texttt{~ x2 y2 etc.]}\\
+ \texttt{[h=height]}\\
+ \texttt{[ngrid=value]}\\
+ number of gridlines\\
+ \texttt{[axe=0 0 1]}\\
+ direction of inclination\\
+ of the strip
+ \end{tabular}
+ &
+\begin{pspicture}(-2,-2)(5,3)
+\psset{lightsrc=10 0 10,viewpoint=50 -20 30 rtp2xyz,Decran=50,unit=0.5}
+\psSolid[object=grille,base=-4 6 -2 4,action=draw,linecolor=gray](0,0,0)
+\psSolid[object=ruban,h=3,fillcolor=red!50,
+ base=0 0 2 2 4 0 6 2,
+ num=0 1 2 3,
+ show=0 1 2 3,
+ ngrid=3]%
+\axesIIID(0,2,0)(6,6,6)
+\end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+\psSolid[
+ object=ruban,h=3,
+ fillcolor=red!50,
+ base=0 0 2 2 4 0 6 2,
+ num=0 1 2 3,
+ show=0 1 2 3,
+ ngrid=3])
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+\end{tabular}
+\end{center}
+
+%\newpage
+
+%\begin{center}
+%\psset{lightsrc=10 20 30,SphericalCoor,viewpoint=50 20 30}
+%%\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{6cm}}
+%\begin{tabular}{
+% >{\bfseries\sffamily\color{blue}} l
+% >{\centering} m{4cm} m{4cm} m{5cm}}
+% \hline
+%\toptableau
+%% chemin
+%% &
+%% \begin{tabular}{l}
+%% dessine un chemin\\
+%% d\'{e}fini en postscript\\
+%% sur un plan
+%% \end{tabular}
+%% &
+%% \psset{unit=0.4}
+%% \begin{pspicture}(-2,-5)(6,8)%
+%% \psframe*[linecolor=blue!50](-6,-5)(6,7)
+%% \psset{lightsrc=50 20 20,viewpoint=50 30 15,Decran=60}
+%% \psProjection[object=chemin,fillstyle=solid,fillcolor=white,
+%% linewidth=.05,linecolor=red,
+%% normal=1 1 2 180,
+%% path=newpath
+%% -4 -4 smoveto
+%% -4 4 slineto
+%% 4 4 slineto
+%% 4 -4 slineto
+%% closepath
+%% ](1,1,2)
+%% \psProjection[object=chemin,
+%% linewidth=.02,
+%% normal=1 1 2 180,
+%% path=newpath
+%% -4 1 4
+%% {-4 exch smoveto
+%% 8 0 srlineto} for
+%% -4 1 4
+%% {-4 smoveto
+%% 0 8 srlineto} for
+%% ](1,1,2)
+%% \psProjection[object=chemin,fillstyle=hlines,hatchcolor=yellow,
+%% linecolor=red,
+%% normal=1 1 2 180,
+%% path=newpath
+%% 2 0 moveto
+%% 0 2 360 {
+%% /x exch def
+%% x cos 2 mul
+%% x sin 2 mul
+%% slineto
+%% } for
+%% ](1,1,2)
+%% \psPoint(0,0,0){O}
+%% \psPoint(1,1,2){O1}\psPoint(1.4,1.4,2.8){K}
+%% \psline[linewidth=.1,linecolor=red](O1)(K)
+%% \psline[linestyle=dashed](O)(O1)
+%% \psProjection[object=chemin,
+%% linewidth=.1,
+%% linecolor=green,
+%% normal=1 1 2 180,
+%% path=
+%% newpath
+%% 0 0 smoveto
+%% 1 0 slineto](1,1,2)
+%% \psProjection[object=chemin,
+%% linewidth=.1,
+%% linecolor=blue,
+%% normal=1 1 2 180,
+%% path=
+%% newpath
+%% 0 0 smoveto
+%% 0 1 slineto](1,1,2)
+%% \axesIIID(4,4,2)(5,5,6)
+%% \end{pspicture}
+%% &
+%% \begin{minipage}{6cm}
+%% \begin{verbatim}
+%% \psProjection[object=chemin,
+%% fillstyle=hlines,
+%% hatchcolor=yellow,
+%% linecolor=red,
+%% normal=1 1 2 180,
+%% path=newpath
+%% 2 0 smoveto
+%% 0 2 360 {
+%% /x exch def
+%% x cos 2 mul
+%% x sin 2 mul
+%% slineto
+%% } for
+%% ](1,1,2)
+%% \end{verbatim}
+%% \end{minipage}
+%\end{tabular}
+%\end{center}
+
+%\newpage
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\begin{center}
+%\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{6cm}}
+\begin{tabular}{
+ >{\bfseries\sffamily\color{blue}} l
+ >{\centering} m{4cm} m{4cm} m{5cm}}
+ \hline
+\toptableau
+\\\hline
+ \Index{Surface}
+ &
+ \begin{tabular}{l}
+ see the related \\
+ paragraph in the \\
+ documentation
+ \end{tabular}
+ &
+\begin{pspicture}(-2,-3)(3,3)
+\psset{unit=0.4}
+\psset{lightsrc=30 30 25}
+\psset{viewpoint=50 40 30 rtp2xyz,Decran=50}
+\psSurface[ngrid=.25 .25,incolor=white,axesboxed](-4,-4)(4,4){%
+ x dup mul y dup mul 3 mul sub x mul 32 div}
+\end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+\psSurface[ngrid=.25 .25,
+ incolor=white,axesboxed]
+ (-4,-4)(4,4){%
+ x dup mul y dup mul 3 mul
+ sub x mul 32 div}
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+%
+ \Index{New}
+ &
+ \begin{tabular}{l}
+ solid defined\\
+ by the coordinates \\
+ of the vertices\\
+ and the vertices\\
+ of each face
+ \end{tabular}
+ &
+
+\begin{pspicture}(-2,-2)(2,4)
+\psset{unit=0.4}
+\psset{viewpoint=50 -20 30 rtp2xyz,Decran=50}
+\psSolid[object=new,
+ action=draw,
+ sommets=
+ 2 4 3
+ -2 4 3
+ -2 -4 3
+ 2 -4 3
+ 2 4 0
+ -2 4 0
+ -2 -4 0
+ 2 -4 0
+ 0 4 5
+ 0 -4 5,
+ faces={
+ [0 1 2 3]
+ [7 6 5 4]
+ [0 3 7 4]
+ [3 9 2]
+ [1 8 0]
+ [8 9 3 0]
+ [9 8 1 2]
+ [6 7 3 2]
+ [2 1 5 6]},
+ num=all,
+ show=all]%
+\axesIIID(0,0,0)(5,5,7)
+\end{pspicture}
+ &
+ \begin{minipage}{5cm}
+ \begin{verbatim}
+ \psSolid[object=new,
+ action=draw,
+ sommets=
+ 2 4 3
+ -2 4 3
+ -2 -4 3
+ 2 -4 3
+ 2 4 0
+ -2 4 0
+ -2 -4 0
+ 2 -4 0
+ 0 4 5
+ 0 -4 5,
+ faces={
+ [0 1 2 3]
+ [7 6 5 4]
+ [0 3 7 4]
+ [3 9 2]
+ [1 8 0]
+ [8 9 3 0]
+ [9 8 1 2]
+ [6 7 3 2]
+ [2 1 5 6]}]%
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+%
+ \Index{Curve}
+ &
+ \begin{tabular}{l}
+ curve of a function\\
+ $\mathbb{R} \rightarrow \mathbb{R}^3$\\
+ defined by its\\
+ paramterised equations\\
+ \end{tabular}
+ &
+
+\begin{pspicture}(-2,-1)(1.75,2.7)
+\psset{unit=0.35}
+\psset{lightsrc=10 -20 50,viewpoint=50 -20 20 rtp2xyz,Decran=50}
+%\psframe*[linecolor=blue!50](-6,-3)(6,8)
+\psSolid[object=grille,base=-4 4 -4 4,linecolor=red,linewidth=0.5\pslinewidth]%
+\axesIIID(0,0,0)(4,4,7)
+\defFunction[algebraic]{helice}(t){3*cos(4*t)}{3*sin(4*t)}{t}
+\psSolid[object=courbe,r=0,
+ range=0 6,
+ linecolor=blue,linewidth=0.1,
+ resolution=360,
+ function=helice]%
+\end{pspicture}
+ &
+ \begin{minipage}{5cm}
+% \footnotesize
+ \begin{verbatim}
+\defFunction[algebraic]%
+ {helice}(t)
+ {3*cos(4*t)}{3*sin(4*t)}{t}
+\psSolid[object=courbe,r=0,
+ range=0 6,
+ linecolor=blue,
+ linewidth=0.1,
+ resolution=360,
+ function=helice]%
+ \end{verbatim}
+ \end{minipage}
+\\\hline
+%% courbeR2
+%% &
+%% \begin{tabular}{l}
+%% trac\'{e} d'une fonction\\
+%% R --> R\textsuperscript{2}\\
+%% d\'{e}finie par ses\\
+%% \'{e}quations param\'{e}triques\\
+%% \end{tabular}
+%% &
+%% \psset{unit=0.4}
+%% \begin{pspicture}(-6,-7)(6,6)
+%% \psframe*[linecolor=yellow!50](-6,-6)(6,6)
+%% \psset{SphericalCoor,viewpoint=50 -20 30,Decran=50}
+%% {\psset{linewidth=0.5\pslinewidth,linecolor=gray}
+%% \psSolid[object=grille,base=-4 4 -4 0,RotX=90,RotZ=90]%
+%% \psSolid[object=grille,base=-4 4 -4 4]%
+%% \psSolid[object=grille,base=-4 4 0 4,RotX=90,RotZ=90]}
+%% \defFunction{parabole}(t){t}{t dup mul}{}
+%% \defFunction{droite}(t){t}{t 2 add }{}
+%% \axesIIID(0,0,0)(4,4,4)
+%% \psProjection[object=chemin,
+%% linewidth=.1,
+%% linecolor=blue,
+%% normal=0 1 0 1 0 0,
+%% path=
+%% newpath
+%% 0 0 moveto
+%% 1 0 lineto]
+%% \psProjection[object=chemin,
+%% linewidth=.1,
+%% linecolor=red,
+%% normal=0 1 0 1 0 0,
+%% path=
+%% newpath
+%% 0 0 moveto
+%% 0 1 lineto]
+%% \psProjection[object=courbeR2,
+%% range=-1 2,fillstyle=vlines,hatchwidth=0.5\pslinewidth,
+%% normal=0 1 0 1 0 0,
+%% function=parabole]
+%% \psProjection[object=courbeR2,
+%% range=-2 2,
+%% linecolor=green,
+%% normal=0 1 0 1 0 0,
+%% function=parabole]
+%% \psProjection[object=courbeR2,
+%% range=-2 2 ,
+%% linecolor=red,
+%% normal=0 1 0 1 0 0,
+%% function=droite]
+%% \psPoint(0,0,4.15){Z1}
+%% \uput*[60](Z1){$z=y^2$}
+%% \rput(0,-6.5){\psframebox[linecolor=yellow!50]{\texttt{$\backslash${}defFunction\{parabole\}(t)\{t\}\{t dup mul\}\{\}}}}
+%% \end{pspicture}
+%% &
+%% \begin{minipage}{6cm}
+%% \footnotesize
+%% \begin{verbatim}
+%% \psProjection[object=courbeR2,
+%% range=-2 2,
+%% linecolor=green,
+%% normal=0 1 0 1 0 0,
+%% function=parabole]
+%% \end{verbatim}
+%% \end{minipage}
+%% \\\hline
+\end{tabular}
+\end{center}
+
+Some information about rings and parallelepipeds is available in the documents:
+\begin{itemize}
+ \item \texttt{doc-grille-parallelepiped.tex(.pdf)};
+ \item \texttt{doc-anneau.tex(.pdf).}
+\end{itemize}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%\newpage
+
+\endinput