diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-point-en.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-point-en.tex | 88 |
1 files changed, 88 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-point-en.tex b/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-point-en.tex new file mode 100644 index 00000000000..859d4a0f330 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-point-en.tex @@ -0,0 +1,88 @@ +\section{The object \texttt{point}} + +\subsection{Definition via coordinates} + +The object \Lkeyword{point} defines a \Index{point}. The simplest method is to use the argument \texttt{\Lkeyword{args}=$x$ $y$ $z$} to specify its coordinates. +If we have already named a point $M(x, y, z)$ (see chapter ``\textit{Advanced usage\/}''), we can easily use the argument \texttt{args=$M$}. + +\subsection{Some other definitions} + +There are some other possibilities for defining a point. Here a list of possible definitions with the appropriate arguments: + +\begin{itemize} + +\item \texttt{\Lkeyword{definition}=\Lkeyval{solidgetsommet}}; +\texttt{\Lkeyword{args}= $solid$ $k$}. + +The vertex with index $k$ of the solid $solid$. + +\item \texttt{\Lkeyword{definition}=\Lkeyval{solidcentreface}}; +\texttt{\Lkeyword{args}=$solid$ $k$}. + +The centre of the face with index $k$ of the solid $solid$. + +\item \texttt{\Lkeyword{definition}=\Lkeyval{isobarycentre3d}}; +\texttt{\Lkeyword{args}=\{[ $A_0$ $\ldots $ $A_{n}$ ]\}}. + + {The isobarycentre of the system $[(A_0, 1); + \ldots ; (A_n, 1)]$.} + +\item \texttt{\Lkeyword{definition}=\Lkeyval{barycentre3d}}; +\Lkeyword{args}= \{[ $A$ $a$ $B$ $b$ ] \}. + + {The barycentre of the system $[(A, a) ; (B, b)]$.} + +\item \texttt{\Lkeyword{definition}=\Lkeyval{hompoint3d}}; +\texttt{\Lkeyword{args}={$M$ $A$ $\alpha $}}. + + {The image of $M$ via a homothety with centre $A$ and ratio $\alpha $.} + +\item \texttt{\Lkeyword{definition}=\Lkeyval{sympoint3d}}; +\texttt{\Lkeyword{args}= {$M$ $A$}}. + + {The image of $M$ via the center of symmetry $A$}%I don't understand + +\item \texttt{\Lkeyword{definition}=\Lkeyval{translatepoint3d}}; +\texttt{\Lkeyword{args}= {$M$ $u$}}. + + {The image of $M$ under the translation via the vector $\vec u$} + +\item \texttt{\Lkeyword{definition}=\Lkeyval{scaleOpoint3d}}; +\texttt{\Lkeyword{args}= {$x$ $y$ $z$ $k_1$ $k_2$ $k_3$}}. + + {This gives a ``dilation'' \ of the coordinates of the point $M (x, y, + z)$ on the axes $Ox$, $Oy$ and $Oz$ each multiplied by an appropriate factor $k_1$, + $k_2$ and $k_3$} + +\item \texttt{\Lkeyword{definition}=\Lkeyval{rotateOpoint3d}}; +\texttt{\Lkeyword{args}= {$M$ $\alpha_x$ $\alpha_y$ $\alpha_z$}}. + + {The image of $M$ through consecutive rotations---centered at $O$---and with respective angles + $\alpha_x$, $\alpha_y$ and $\alpha_z$ around the axes $Ox$, + $Oy$ and $Oz$.} + + + +%% Projection orthogonale d'un point 3d sur un plan +%% Mx My Mz (=le point a projeter) +%% Ax Ay Az (=un point du plan) +%% Vx Vy Vz (un vecteur normal au plan) +\item \Lkeyword{definition}=\Lkeyval{orthoprojplane3d}; +\texttt{\Lkeyword{args}= {$M$ $A$ $\vec v$}}. + + {The projection of the point $M$ to the plane $P$ which is defined + by the point $A$ and the vector $\vec v$, perpendicular to $P$.} + +\item \texttt{\Lkeyword{definition}=\Lkeyval{milieu3d}}; +\texttt{\Lkeyword{args}= {$A$ $B$}}. + + {The midpoint of $[AB]$} + +\item \texttt{\Lkeyword{definition}=\Lkeyval{addv3d}}; +\texttt{\Lkeyword{args}= {$A$ $u$}}. + + {Gives the point $B$ so that $\overrightarrow {AB} = \vec u$} + +\end{itemize} + +\endinput |