diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-solides3d/doc-en/par-projectionvecteur-en.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-solides3d/doc-en/par-projectionvecteur-en.tex | 85 |
1 files changed, 85 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-solides3d/doc-en/par-projectionvecteur-en.tex b/Master/texmf-dist/doc/generic/pst-solides3d/doc-en/par-projectionvecteur-en.tex new file mode 100644 index 00000000000..ec850c1abba --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-solides3d/doc-en/par-projectionvecteur-en.tex @@ -0,0 +1,85 @@ +\section{Vectors} + +\subsection{Direct definition} + +The object \Lkeyword{vecteur} allows us to define and draw a \Index{vector}. +To do so in a simple way, we use the option \Lkeyword{args} to define +its components $(x,y)$ and we specify the point from where the +vector starts with the macro \Lcs{psProjection} (or we may use a +named point). + +As with points, we can save the components of a vector using the +option \Lkeyword{name}. + +\begin{LTXexample}[width=7.5cm] +\begin{pspicture}(-3,-3)(4,3.5)% +\psframe*[linecolor=blue!50](-3,-3)(4,3.5) +\psset{viewpoint=50 30 15,Decran=60} +\psset{solidmemory} +%% definition du plan de projection +\psSolid[object=plan, + definition=equation, + args={[1 0 0 0] 90}, + planmarks, + name=monplan] +\psset{plan=monplan} +%% definition du point A +\psProjection[object=point, + args=-2 0.75, + name=A,text=A, + pos=dl] +\psProjection[object=vecteur, + linecolor=red, + args=1 1, + name=U](1,0) +\psProjection[object=vecteur, + args=U, + linecolor=blue](A) +\composeSolid +\axesIIID(4,2,2)(5,4,3) +\end{pspicture} +\end{LTXexample} + + +\subsection{Some more definitions} + +There are other methods to define a vector in 2D. The options +\Lkeyword{definition} and \Lkeyword{args} allow us a variety of supported +methods: + +\begin{itemize} + +\item \texttt{\Lkeyword{definition}=\Lkeyval{vecteur}}; +\texttt{\Lkeyword{args}=$A$ $B$}. + +The vector $\overrightarrow {AB}$ + +\item \texttt{\Lkeyword{definition}=\Lkeyval{orthovecteur}}; +\texttt{\Lkeyword{args}=$u$}. + +A vector perpendicular to $\vec u$ with the same length. + +\item \texttt{\Lkeyword{definition}=\Lkeyval{normalize}}; +\texttt{\Lkeyword{args}=$u$}. + +The vector $\Vert \vec u \Vert ^{-1} \vec u$ +if $\vec u \neq \vec 0$, and $\vec 0$ otherwise. + +\item \texttt{\Lkeyword{definition}=\Lkeyval{addv}}; +\texttt{\Lkeyword{args}=$u$ $v$}. + +The vector $\vec u + \vec v$ + +\item \texttt{\Lkeyword{definition}=\Lkeyval{subv}}; +\texttt{\Lkeyword{args}=$u$ $v$}. + +The vector $\vec u - \vec v$ + +\item \texttt{\Lkeyword{definition}=\Lkeyval{mulv}}; +\texttt{\Lkeyword{args}=$u$ $\alpha $}. + +The vector $\alpha \vec u$ + +\end{itemize} + +\endinput |