summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex')
-rw-r--r--Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex307
1 files changed, 307 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex
new file mode 100644
index 00000000000..56d872d40af
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex
@@ -0,0 +1,307 @@
+%% $Id: pst-magneticfield-docEN.tex 322 2010-05-16 08:07:26Z herbert $
+\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings
+ headexclude,footexclude,oneside]{pst-doc}
+\usepackage[latin1]{inputenc}
+\usepackage{pst-magneticfield}
+\let\pstMFfv\fileversion
+\lstset{pos=t,language=PSTricks,
+ morekeywords={psmagneticfield,psmagneticfieldThreeD},basicstyle=\footnotesize\ttfamily}
+\newcommand\Cadre[1]{\psframebox[fillstyle=solid,fillcolor=black,linestyle=none,framesep=0]{#1}}
+\def\bgImage{%
+\psset{unit=0.5cm}
+\begin{pspicture}(-7,-6)(7,6)
+\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-8)(7,8)
+\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}}
+\end{pspicture}
+}
+%
+\begin{document}
+
+\title{\texttt{pst-magneticfield}}
+\subtitle{Magnetic field lines of a solenoid; v.\pstMFfv}
+\author{Juergen Gilg\\ Manuel Luque\\Herbert Vo\ss}
+%\docauthor{Juergen Gilg\\Manuel Luque\\Herbert Vo\ss}
+\date{\today}
+\maketitle
+
+
+\clearpage%
+\begin{abstract}
+The package \LPack{pst-magneticfield} aims to trace the shape of field lines
+af a solenoid. The physical parameters are the radius of the solenoid, the number of
+turns and the length, the default values are given below:
+
+\begin{enumerate}
+ \item the number of turns: \LKeyset{N=6} ;
+ \item the radius : \LKeyset{R=2} ;
+ \item the length : \LKeyset{L=4}.
+\end{enumerate}
+
+The line was calculated with the Runge-Kutta 2 algorithm, which, after several tries,
+seems to be the best compromise between speed and accuracy of calculations of the path.
+The calculation of elliptic integrals for the evaluation of magnetic field
+was achieved by polynomial approximations from the "Handbook of Mathematical
+Functions With Formulas, Graph, And Mathematical Tables" by Milton Abramowitz and
+Irene.A. Stegun (\url{http://www.math.sfu.ca/~cbm/aands/}).~\cite{abramowitz}
+\end{abstract}
+
+\clearpage
+\tableofcontents
+
+
+\clearpage
+
+\section{Introduction}
+
+The route options, with the default values are as follows:
+\begin{enumerate}
+ \item The maximum number of points on each line of the entire coil: \LKeyset{pointsB=500};
+ \item the maximum number of points on lines around turns selected: \LKeyset{pointsS=1000};
+ \item the number of lines of the entire coil: \LKeyset{nL=8};
+ \item not the route for the lines of the entire coil: \LKeyset{PasB=0.02};
+ \item not the route for the lines around turns selected: \LKeyset{PasS=0.00275};
+ \item the choice of individual coils to improve the rendering of
+ layout: \LKeyset{numSpires=\{\}}, we place following the sign "=" the numbers of turns \textsf{1 2 3 etc.}
+ starting from the top of the spire. By default, all the turns are targeted.
+ \item The number of field lines around the turns selected: \LKeyset{nS=1}.
+ \item We may decide not to represent the solenoid with the option \LKeyset{drawSelf=false}
+ is useful for 3D representation.
+ \item the route options of the turns (color, thickness, arrows) are:
+ \begin{enumerate}
+ \item The color and thickness of the coils: \Lkeyset{styleSpire=styleSpire};
+ \item the current direction signs: \Lkeyset{styleCourant=sensCourant}.
+ \end{enumerate}
+\begin{verbatim}
+\newpsstyle{styleSpire}{linecap=1,linecolor=red,linewidth=2\pslinewidth}
+\newpsstyle{sensCourant}{linecolor=red,linewidth=2\pslinewidth,arrowinset=0.1}
+\end{verbatim}
+
+ \item The color and thickness of the field lines can be adjusted with the parameters
+ usual \LPack{pstricks}: \Lkeyword{linecolor} and \Lkeyword{linewidth}
+\end{enumerate}
+
+A command \Lcs{psmagneticfieldThreeD} allows 3D visualization of the solenoid and
+field lines.
+
+\clearpage
+\section{Influence of physical parameters on the map magnetic field}
+\subsection{The length of the solenoid}
+
+\begin{LTXexample}[pos=t]
+\psset{unit=0.5cm}
+\begin{pspicture*}[showgrid](-7,-8)(7,8)
+\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,nS=1]
+\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
+\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,nS=1]}
+\end{pspicture*}
+\begin{pspicture*}[showgrid](-7,-8)(7,8)
+\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500]
+\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
+\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]}
+\end{pspicture*}
+\end{LTXexample}
+
+\textbf{Note:} To refine the layout of the second solenoid, we had to increase the
+points and lower the pitch of the route: \Cadre{\textcolor{white}{pointsB=5500,PasB=0.0025}}, which
+lengthens the calculations.
+
+
+
+\clearpage
+
+\subsection{The number of turns}
+\begin{LTXexample}[pos=t]
+\psset{unit=0.5}
+\begin{pspicture*}[showgrid](-7,-8)(7,8)
+\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0]
+\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
+\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]}
+\end{pspicture*}
+\begin{pspicture*}[showgrid](-7,-8)(7,8)
+\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2]
+\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8)
+\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
+\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
+\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]}
+\end{pspicture*}
+\end{LTXexample}
+
+\begin{LTXexample}[pos=t]
+\psset{unit=0.5}
+\begin{pspicture*}[showgrid](-7,-8)(7,8)
+\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3]
+\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
+\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]}
+\end{pspicture*}
+\begin{pspicture*}[showgrid](-7,-8)(7,8)
+\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,nS=2 3 4]
+\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
+\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]}
+\end{pspicture*}
+\end{LTXexample}
+
+
+\clearpage
+\section{The three route options}
+\subsection{The number of field lines}
+
+Due to the symmetry of the problem the number of field lines given
+\Lkeyword{nL} option is half the number actually represented with an added line
+confused with the axis of revolution. We must also add the lines around the turns \Lkeyword{nS},
+these turns can be selected individually \Lkeyword{numSpires}.
+
+
+
+\begin{LTXexample}[pos=t]
+\psset{unit=0.5}
+\begin{pspicture*}[showgrid](-7,-8)(7,8)
+\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2]
+\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7)
+\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]}
+\end{pspicture*}
+\begin{pspicture*}[showgrid](-7,-8)(7,8)
+\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12]
+\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7)
+\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]}
+\end{pspicture*}
+\end{LTXexample}
+
+\clearpage
+\subsection{The number of points for the path}
+ The plot of field lines is achieved by a numerical method (RK2) and
+follows the step of the route and the number of selected points affect the accuracy of the route,
+as in the two examples below:
+
+
+\begin{LTXexample}[pos=t]
+\psset{unit=0.5}
+\begin{pspicture*}[showgrid](-7,-8)(7,8)
+\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100]
+\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8)
+\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
+\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7)
+\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]}
+\end{pspicture*}
+\begin{pspicture*}[showgrid](-7,-8)(7,8)
+\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100]
+\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8)
+\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
+\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7)
+\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]}
+\end{pspicture*}
+\end{LTXexample}
+
+
+If the defaults do not suit it must be found by testing the
+values that give a correct path.
+
+
+
+\clearpage
+
+\section{The parameter \nxLkeyword{numSpires}}
+\begin{LTXexample}[pos=t,wide]
+\psset{unit=0.5}
+\begin{pspicture*}[showgrid](-8,-10)(8,10)
+\psset{linecolor=blue}
+\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075]
+\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9)
+\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]}
+\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}}
+\end{pspicture*}\quad
+\begin{pspicture*}[showgrid](0,-10)(16,10)
+\psset{linecolor=blue}
+\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075]
+\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9)
+\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]}
+\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}}
+\end{pspicture*}
+\end{LTXexample}
+
+\clearpage
+\section{The parameter \nxLkeyword{AntiHelmholtz}}
+\begin{LTXexample}[pos=t]
+\psset{unit=0.75,AntiHelmholtz,
+ R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10,
+ nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
+\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
+\newpsstyle{cadre}{linecolor=yellow!50}
+\begin{pspicture*}[showgrid](-7,-6)(7,6)
+\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8)
+\psmagneticfield[linecolor={[HTML]{660066}}]
+\end{pspicture*}
+\end{LTXexample}
+
+
+
+\clearpage
+\section{3D views}
+3D views are possible with the macros
+
+\begin{BDef}
+\Lcs{psmagneticfield}\OptArgs\coord1\coord2\\
+\Lcs{psmagneticfieldThreeD}\OptArgs\coord1\coord2
+\end{BDef}
+
+in which options are settings \Lcs{psmagneticfield} and \verb+(x1,y1)(x2,y2)+
+coordinates of bottom left corner and upper right framework
+is encapsulated as the field map for \Lcs{psframe}. We can use the option
+\Lkeyword{viewpoint} of \LPack{pst-3d} package to change the view.
+ The options framework are by default, the following:
+\begin{verbatim}
+\newpsstyle{grille}{subgriddiv=0,gridcolor=lightgray,griddots=10}
+\newpsstyle{cadre}{linecolor=green!20}
+\end{verbatim}
+
+ So it is that they must change if we want change, as in
+Example below.
+\begin{LTXexample}[pos=t]
+\psset{unit=0.7cm}
+\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
+\newpsstyle{cadre}{linecolor=yellow!50}
+\begin{pspicture}(-7,-6)(7,6)
+\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-8)(7,8)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[pos=t]
+\psset{unit=0.7cm}
+\begin{pspicture}(-7,-6)(7,6)
+\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-8)(7,8)
+\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}}
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[pos=t]
+\psset{unit=0.75cm,AntiHelmholtz,
+ R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10,
+ nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant}
+\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
+\newpsstyle{cadre}{linecolor=yellow!50}
+\begin{pspicture}(-7,-6)(7,6)
+\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6)
+\end{pspicture}
+\end{LTXexample}
+
+
+
+
+\clearpage
+\section{List of all optional arguments for \texttt{pst-magneticfield}}
+
+\xkvview{family=pst-magneticfield,columns={key,type,default}}
+
+\nocite{*}
+\bgroup
+\raggedright
+\bibliographystyle{plain}
+\bibliography{\jobname}
+\egroup
+
+
+\printindex
+
+
+
+
+\end{document}