diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex | 307 |
1 files changed, 307 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex new file mode 100644 index 00000000000..56d872d40af --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex @@ -0,0 +1,307 @@ +%% $Id: pst-magneticfield-docEN.tex 322 2010-05-16 08:07:26Z herbert $ +\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings + headexclude,footexclude,oneside]{pst-doc} +\usepackage[latin1]{inputenc} +\usepackage{pst-magneticfield} +\let\pstMFfv\fileversion +\lstset{pos=t,language=PSTricks, + morekeywords={psmagneticfield,psmagneticfieldThreeD},basicstyle=\footnotesize\ttfamily} +\newcommand\Cadre[1]{\psframebox[fillstyle=solid,fillcolor=black,linestyle=none,framesep=0]{#1}} +\def\bgImage{% +\psset{unit=0.5cm} +\begin{pspicture}(-7,-6)(7,6) +\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-8)(7,8) +\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}} +\end{pspicture} +} +% +\begin{document} + +\title{\texttt{pst-magneticfield}} +\subtitle{Magnetic field lines of a solenoid; v.\pstMFfv} +\author{Juergen Gilg\\ Manuel Luque\\Herbert Vo\ss} +%\docauthor{Juergen Gilg\\Manuel Luque\\Herbert Vo\ss} +\date{\today} +\maketitle + + +\clearpage% +\begin{abstract} +The package \LPack{pst-magneticfield} aims to trace the shape of field lines +af a solenoid. The physical parameters are the radius of the solenoid, the number of +turns and the length, the default values are given below: + +\begin{enumerate} + \item the number of turns: \LKeyset{N=6} ; + \item the radius : \LKeyset{R=2} ; + \item the length : \LKeyset{L=4}. +\end{enumerate} + +The line was calculated with the Runge-Kutta 2 algorithm, which, after several tries, +seems to be the best compromise between speed and accuracy of calculations of the path. +The calculation of elliptic integrals for the evaluation of magnetic field +was achieved by polynomial approximations from the "Handbook of Mathematical +Functions With Formulas, Graph, And Mathematical Tables" by Milton Abramowitz and +Irene.A. Stegun (\url{http://www.math.sfu.ca/~cbm/aands/}).~\cite{abramowitz} +\end{abstract} + +\clearpage +\tableofcontents + + +\clearpage + +\section{Introduction} + +The route options, with the default values are as follows: +\begin{enumerate} + \item The maximum number of points on each line of the entire coil: \LKeyset{pointsB=500}; + \item the maximum number of points on lines around turns selected: \LKeyset{pointsS=1000}; + \item the number of lines of the entire coil: \LKeyset{nL=8}; + \item not the route for the lines of the entire coil: \LKeyset{PasB=0.02}; + \item not the route for the lines around turns selected: \LKeyset{PasS=0.00275}; + \item the choice of individual coils to improve the rendering of + layout: \LKeyset{numSpires=\{\}}, we place following the sign "=" the numbers of turns \textsf{1 2 3 etc.} + starting from the top of the spire. By default, all the turns are targeted. + \item The number of field lines around the turns selected: \LKeyset{nS=1}. + \item We may decide not to represent the solenoid with the option \LKeyset{drawSelf=false} + is useful for 3D representation. + \item the route options of the turns (color, thickness, arrows) are: + \begin{enumerate} + \item The color and thickness of the coils: \Lkeyset{styleSpire=styleSpire}; + \item the current direction signs: \Lkeyset{styleCourant=sensCourant}. + \end{enumerate} +\begin{verbatim} +\newpsstyle{styleSpire}{linecap=1,linecolor=red,linewidth=2\pslinewidth} +\newpsstyle{sensCourant}{linecolor=red,linewidth=2\pslinewidth,arrowinset=0.1} +\end{verbatim} + + \item The color and thickness of the field lines can be adjusted with the parameters + usual \LPack{pstricks}: \Lkeyword{linecolor} and \Lkeyword{linewidth} +\end{enumerate} + +A command \Lcs{psmagneticfieldThreeD} allows 3D visualization of the solenoid and +field lines. + +\clearpage +\section{Influence of physical parameters on the map magnetic field} +\subsection{The length of the solenoid} + +\begin{LTXexample}[pos=t] +\psset{unit=0.5cm} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,nS=1] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,nS=1]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]} +\end{pspicture*} +\end{LTXexample} + +\textbf{Note:} To refine the layout of the second solenoid, we had to increase the +points and lower the pitch of the route: \Cadre{\textcolor{white}{pointsB=5500,PasB=0.0025}}, which +lengthens the calculations. + + + +\clearpage + +\subsection{The number of turns} +\begin{LTXexample}[pos=t] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2] +\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8) +\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]} +\end{pspicture*} +\end{LTXexample} + +\begin{LTXexample}[pos=t] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,nS=2 3 4] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]} +\end{pspicture*} +\end{LTXexample} + + +\clearpage +\section{The three route options} +\subsection{The number of field lines} + +Due to the symmetry of the problem the number of field lines given +\Lkeyword{nL} option is half the number actually represented with an added line +confused with the axis of revolution. We must also add the lines around the turns \Lkeyword{nS}, +these turns can be selected individually \Lkeyword{numSpires}. + + + +\begin{LTXexample}[pos=t] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2] +\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12] +\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]} +\end{pspicture*} +\end{LTXexample} + +\clearpage +\subsection{The number of points for the path} + The plot of field lines is achieved by a numerical method (RK2) and +follows the step of the route and the number of selected points affect the accuracy of the route, +as in the two examples below: + + +\begin{LTXexample}[pos=t] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100] +\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) +\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} +\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100] +\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) +\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} +\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]} +\end{pspicture*} +\end{LTXexample} + + +If the defaults do not suit it must be found by testing the +values that give a correct path. + + + +\clearpage + +\section{The parameter \nxLkeyword{numSpires}} +\begin{LTXexample}[pos=t,wide] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-8,-10)(8,10) +\psset{linecolor=blue} +\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075] +\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9) +\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]} +\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} +\end{pspicture*}\quad +\begin{pspicture*}[showgrid](0,-10)(16,10) +\psset{linecolor=blue} +\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075] +\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9) +\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]} +\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} +\end{pspicture*} +\end{LTXexample} + +\clearpage +\section{The parameter \nxLkeyword{AntiHelmholtz}} +\begin{LTXexample}[pos=t] +\psset{unit=0.75,AntiHelmholtz, + R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, + nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} +\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} +\newpsstyle{cadre}{linecolor=yellow!50} +\begin{pspicture*}[showgrid](-7,-6)(7,6) +\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) +\psmagneticfield[linecolor={[HTML]{660066}}] +\end{pspicture*} +\end{LTXexample} + + + +\clearpage +\section{3D views} +3D views are possible with the macros + +\begin{BDef} +\Lcs{psmagneticfield}\OptArgs\coord1\coord2\\ +\Lcs{psmagneticfieldThreeD}\OptArgs\coord1\coord2 +\end{BDef} + +in which options are settings \Lcs{psmagneticfield} and \verb+(x1,y1)(x2,y2)+ +coordinates of bottom left corner and upper right framework +is encapsulated as the field map for \Lcs{psframe}. We can use the option +\Lkeyword{viewpoint} of \LPack{pst-3d} package to change the view. + The options framework are by default, the following: +\begin{verbatim} +\newpsstyle{grille}{subgriddiv=0,gridcolor=lightgray,griddots=10} +\newpsstyle{cadre}{linecolor=green!20} +\end{verbatim} + + So it is that they must change if we want change, as in +Example below. +\begin{LTXexample}[pos=t] +\psset{unit=0.7cm} +\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} +\newpsstyle{cadre}{linecolor=yellow!50} +\begin{pspicture}(-7,-6)(7,6) +\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-8)(7,8) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[pos=t] +\psset{unit=0.7cm} +\begin{pspicture}(-7,-6)(7,6) +\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-8)(7,8) +\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[pos=t] +\psset{unit=0.75cm,AntiHelmholtz, + R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, + nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant} +\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} +\newpsstyle{cadre}{linecolor=yellow!50} +\begin{pspicture}(-7,-6)(7,6) +\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6) +\end{pspicture} +\end{LTXexample} + + + + +\clearpage +\section{List of all optional arguments for \texttt{pst-magneticfield}} + +\xkvview{family=pst-magneticfield,columns={key,type,default}} + +\nocite{*} +\bgroup +\raggedright +\bibliographystyle{plain} +\bibliography{\jobname} +\egroup + + +\printindex + + + + +\end{document} |