diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex | 52 |
1 files changed, 49 insertions, 3 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex index dd322755d9d..00bac51fcf1 100644 --- a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex +++ b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex @@ -1,11 +1,12 @@ %% $Id: pst-func-doc.tex 918 2014-05-19 12:32:37Z herbert $ -\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false, - smallheadings, headexclude,footexclude,oneside]{pst-doc} +\documentclass[fontsize=11pt,english,BCOR=10mm,DIV=12,bibliography=totoc,parskip=false, + headings=small, headinclude=false,footinclude=false,oneside]{pst-doc} \usepackage[utf8]{inputenc} \usepackage{pst-func} \let\pstFuncFV\fileversion \usepackage{pst-math} \usepackage{pstricks-add} +\usepackage{luatex85} \usepackage{animate} \renewcommand\bgImage{% \psset{yunit=4cm,xunit=3} @@ -605,7 +606,7 @@ which plots the envelope curve instead of the Bernstein polynomial. \clearpage -\subsection{Calculating the zeros of a function or the the intermediate point of two function} +\section{Calculating the zeros of a function or the the intermediate point of two function} \begin{BDef} \Lcs{psZero}\OptArgs\Largr{$x_0,x_1$}\Largb{functionA}\OptArg{functionB}\Largb{node name} @@ -952,7 +953,52 @@ The following examples where done by Jürgen Gilg and Thomas Söll. %\end{LTXexample} +As an alternative the values of the zeros can be placed by using the optional arguments +\Lkeyword{labelangle} and +\Lkeyword{labeldistance}: + + +\begin{LTXexample}[pos=t] +\definecolor{BeigeTS}{rgb}{0.98,0.95,0.87} +\definecolor{CornBlauTS}{rgb}{0.39,0.59,0.93} +\definecolor{SandBraun}{rgb}{0.96,0.64,0.38} +\psset{yunit=1.25cm,arrowinset=0.02,arrowlength=2,linewidth=0.5pt,saveNodeCoors,NodeCoorPrefix=n,comma} +\def\funkf{2*sqrt(x)*cos(ln(x))*sin(x)} +\begin{pspicture}[plotpoints=500,algebraic,fontscale=5,markZeros, + PointName=N,dotscale=0.7](-0.5,-3)(10,2.5) +\psStep[fillstyle=solid,fillcolor=BeigeTS,opacity=0.7,linewidth=0.3pt, + linecolor=SandBraun!50](0.001,9.5){40}{\funkf} +\psStep[StepType=Riemann,fillstyle=solid,opacity=0.3,fillcolor=CornBlauTS, + linecolor=CornBlauTS,linewidth=0.3pt](0.001,9.5){40}{\funkf} +\psaxes[labelFontSize=\scriptstyle,ticksize=-0.1 0]{->}(0,0)(0,-2.75)(10,2.5) +\psplot[linecolor=BeigeTS!60,linewidth=0.8pt]{0.001}{9.75}{\funkf} +\psplotTangent[linecolor=blue,Derive={Derive(1,\funkf)}]{1.29}{1.5}{\funkf} +\uput[90](6,1.2){$f(x)=2\cdot\sqrt{x}\cdot\cos{(\ln{x})}\cdot\sin{x}$} +{\psset{dotscale=1.5,linecolor=blue!50!black!90,ydecimals=0,Framed,opacity=0.8,decimals=1,PrintCoord} + \psZero[labelangle=-90,labeldistance=0.3,postString=1,Newton](0.5,1){\funkf}{N1} + \psZero[labelangle=-90,labeldistance=0.3,postString=2](2,4){\funkf}{N2} + \psZero[labelangle=-90,labeldistance=0.3,postString=3](4,6){\funkf}{N3} + \psZero[labelangle=-90,labeldistance=0.3,postString=4](6,7){\funkf}{N4} + \psZero[labelangle=-90,labeldistance=0.3,PointName=x,postString=5,xory,PrintCoord=false, + linestyle=none,fillcolor=green,opacity=0.6](9,11){\funkf}{N5} + \psZero[labelangle=-90,labeldistance=0.3,PointName=M,decimals=0,linestyle=none,fillcolor=SandBraun, + ydecimals=1,opacity=0.8,postString={m=1}](0.5,2){Derive(1,\funkf)-1+\funkf}[\funkf]{M}% +} +\pcline{->}(0.5,-1)(M) +\nbput[nrot=:U,labelsep=0.3,npos=0.2]{% + \scriptsize \psZero[originV=true,xory=true,onlyYVal=true,PointName=f(x),postString={m=1},Framed, + opacity=0.8,linestyle=none,markZeros=false,fontscale=10](0.5,2){Derive(1,\funkf)-1+\funkf}[\funkf]{R}} +\psdot[linecolor=green,strokeopacity=0.8](M) +\uput{0.5}[40](M){\psZero[originV=true,approx=false,xory=true,onlyYVal=true, + PointName=m,postString={m=1},markZeros=false,fontscale=8](0.5,2){Derive(1,\funkf)-1}[1]{R}} +\end{pspicture} +\end{LTXexample} + + + \psset{unit=1cm} + + \clearpage \section{\Lcs{psFourier}} A Fourier sum has the form: |