summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex')
-rw-r--r--Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex12
1 files changed, 8 insertions, 4 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
index 85c555a13c3..87fd1e143dd 100644
--- a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
+++ b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
@@ -1,4 +1,4 @@
-%% $Id: pst-func-doc.tex 621 2012-01-01 15:26:33Z herbert $
+%% $Id: pst-func-doc.tex 769 2013-04-18 08:53:32Z herbert $
\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,
smallheadings, headexclude,footexclude,oneside]{pst-doc}
\usepackage[utf8]{inputenc}
@@ -964,8 +964,12 @@ one should expect problems with $N>100$. PostScript cannot handle such small val
be no graph printed. This happens on PostScript side, so \TeX\ doesn't report any problem in
the log file. The valid options for the macros are \Lkeyword{markZeros} to draw rectangles instead
of a continous line and \Lkeyword{printValue} for printing the $y$-values on top of the lines,
-rotated by 90\textdegree. For this option all other options from section~\ref{sec:printValue}
-for the macro \Lcs{psPrintValue} are valid, too. The only special option is \Lkeyword{barwidth},
+rotated by 90\textdegree. For this option all other options from section~1
+for the macro \Lcs{psPrintValue} are valid, too.~ \cite{pst-tools} Important is the keyword \Lkeyword{valuewidth}
+which is preset to 10. If your value has more characters when converting into a string, it will
+not be printed or cause an GhostScript error.
+
+The only special option is \Lkeyword{barwidth},
which is a factor (no dimension) and set by default to 1. This option is only valid for
the macro \Lcs{psBinomial} and not for the normalized one!
@@ -1273,7 +1277,7 @@ whether two observed samples have the same variance.
The $F$-distribution with parameters $\mu$ and $\nu$ has the probability function
\[
-f_{n,m}(x)=\frac{\Gamma[(\mu+\nu)/2]}{\Gamma(\mu/2)\Gamma(\nu/2)}\cdot
+f_{\mu,\nu}(x)=\frac{\Gamma[(\mu+\nu)/2]}{\Gamma(\mu/2)\Gamma(\nu/2)}\cdot
\left(\mu/\nu\right)^{\mu/2}\frac{x^{(\mu/2)-1}}{[1+(\mu x/\nu)]^{(\mu+\nu)/2}}\quad
\text{ for $x>0$ and $\mu$, $\nu>0$}\]
%