diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex | 395 |
1 files changed, 342 insertions, 53 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex b/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex index 430f66d6eb5..9103b7a2394 100644 --- a/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex +++ b/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex @@ -5,15 +5,57 @@ \usepackage{amsmath} \usepackage{graphicx} \usepackage{geometry,lmodern} -\usepackage{pstricks} -\usepackage{showexpl} -%\lstset{wide=true} +\usepackage{xcolor} +%\usepackage{pstricks} +\usepackage{listings} +%\usepackage{pst-pdf} + +\makeatletter +\def\img{\@ifnextchar[{\img@i}{\img@i[0]}} +\def\img@i[#1]{\@ifnextchar[{\img@ii[#1]}{\img@ii[0][#1]}} +\def\img@ii[#1][#2]#3{\begin{center} +\ifnum#1>0 \includegraphics[scale=0.5]{images/#1}\fi\quad +\ifnum#2>0 \includegraphics[scale=0.5]{images/#2}\fi\quad +\includegraphics[scale=0.5]{images/#3}\end{center}} +\makeatletter + +\definecolor{hellgelb}{rgb}{1,1,0.85} +\definecolor{colKeys}{rgb}{0,0,1} +\definecolor{colIdentifier}{rgb}{0,0,0} +\definecolor{colComments}{rgb}{1,0,0} +\definecolor{colString}{rgb}{0,0.5,0} +\lstset{ + language=PSTricks,% + basicstyle=\footnotesize\ttfamily,% + identifierstyle=\color{colIdentifier},% + keywordstyle=\color{colKeys},% + stringstyle=\color{colString},% + stringstyle=\itshape\color{colComments},% + commentstyle=\itshape\color{colComments},% + columns=fixed, + tabsize=4,% + frame=single,% + extendedchars=true,% + showspaces=false,% + showstringspaces=false,% + numbers=left,% + numberstyle=\tiny\ttfamily,% + numbersep=1em,% + breaklines=true,% + breakindent=10pt,% + backgroundcolor=\color{hellgelb},% + breakautoindent=true,% + captionpos=t,% + xleftmargin=1em,% +} + \usepackage{pst-fractal} \let\myFV\fileversion + \usepackage{url} \usepackage[bottom]{footmisc} \usepackage{fancyhdr} -\usepackage{abstract} +%\usepackage{abstract} \pagestyle{fancy} \usepackage{url} \def\UrlFont{\small\ttfamily} @@ -84,15 +126,15 @@ z_0 &= (x_0;y_0) $(x_0;y_0)$ is the starting value. -\begin{LTXexample}[width=3cm] +\img{1} +\begin{lstlisting} \psfractal -\end{LTXexample} +\end{lstlisting} -\begin{LTXexample}[width=5cm] -\psfractal[xWidth=5cm,yWidth=5cm, - baseColor=white, - dIter=20](-2,-2)(2,2) -\end{LTXexample} +\img{2} +\begin{lstlisting} +\psfractal[xWidth=4cm,yWidth=4cm, baseColor=white, dIter=20](-2,-2)(2,2) +\end{lstlisting} \subsection{Mandelbrot sets} @@ -107,17 +149,16 @@ C(x,y) &= (x_0;y_0) $(x_0;y_0)$ is the starting value. - -\begin{LTXexample}[width=3cm] +\img{3} +\begin{lstlisting} \psfractal[type=Mandel] -\end{LTXexample} +\end{lstlisting} + -\begin{LTXexample}[width=6.5cm] -\psfractal[type=Mandel, - xWidth=6cm,yWidth=4.8cm, - baseColor=white, - dIter=10](-2,-1.2)(1,1.2) -\end{LTXexample} +\img{4} +\begin{lstlisting} +\psfractal[type=Mandel, xWidth=6cm, yWidth=4.8cm, baseColor=white, dIter=10](-2,-1.2)(1,1.2) +\end{lstlisting} \subsection{Sierpinski triangle} @@ -130,11 +171,12 @@ The triangle must be given by three mandatory arguments: In difference to \verb|psfractal| it doesn't reserve any space, this is the reason why it should be part of a \verb|pspicture| environment. -\begin{LTXexample}[width=6.5cm] +\img{5} +\begin{lstlisting} \begin{pspicture}(5,5) \psSier(0,0)(2,5)(5,0) \end{pspicture} -\end{LTXexample} +\end{lstlisting} \section{The options} @@ -142,84 +184,330 @@ reason why it should be part of a \verb|pspicture| environment. \subsection{\texttt{type}} Can be of "`Julia"' (default) or "`Mandel"'. -\begin{LTXexample}[width=4.5cm] -\psfractal\quad \psfractal[type=Mandel] -\end{LTXexample} - +\img[6]{7} +\begin{lstlisting} +\psfractal +\psfractal[type=Mandel] +\end{lstlisting} \subsection{\texttt{baseColor}} The color for the convergent part. -\begin{LTXexample}[pos=t] -\psfractal[xWidth=5cm,yWidth=5cm,dIter=10](-2,-2)(2,2)\quad -\psfractal[xWidth=5cm,yWidth=5cm,baseColor=white,dIter=10](-2,-2)(2,2) -\end{LTXexample} - +\img[8]{9} +\begin{lstlisting} +\psfractal[xWidth=4cm,yWidth=4cm,dIter=30](-2,-2)(2,2) +\psfractal[xWidth=4cm,yWidth=4cm,baseColor=yellow,dIter=30](-2,-2)(2,2) +\end{lstlisting} \subsection{\texttt{xWidth} and \texttt{yWidth}} These values define the physical width of the fractal. -\begin{LTXexample}[pos=t] +\img{10} +\begin{lstlisting} \psfractal[type=Mandel,xWidth=12.8cm,yWidth=10.8cm,dIter=5](-2.5,-1.3)(0.7,1.3) -\end{LTXexample} +\end{lstlisting} \subsection{\texttt{cx} and \texttt{cy}} Define the starting value for the complex constant number $C$. -\begin{LTXexample}[pos=t] +\img[11]{12} +\begin{lstlisting} \psset{xWidth=5cm,yWidth=5cm} -\psfractal[dIter=2](-2,-2)(2,2)\quad \psfractal[dIter=2,cx=-1.3,cy=0](-2,-2)(2,2) -\end{LTXexample} +\psfractal[dIter=2](-2,-2)(2,2) +\psfractal[dIter=2,cx=-1.3,cy=0](-2,-2)(2,2) +\end{lstlisting} \subsection{\texttt{dIter}} The color is set by wavelength to RGB conversion of the iteration number, where \verb+dIter+ is the step, predefined by 1. The wavelength is given by the value of iter added by 400. -\begin{LTXexample}[pos=t] +\img[13]{14} +\begin{lstlisting} \psset{xWidth=5cm,yWidth=5cm} -\psfractal[dIter=30](-2,-2)(2,2)\quad \psfractal[dIter=10,cx=-1.3,cy=0](-2,-2)(2,2) -\end{LTXexample} - +\psfractal[dIter=30](-2,-2)(2,2) +\psfractal[dIter=10,cx=-1.3,cy=0](-2,-2)(2,2) +\end{lstlisting} \subsection{\texttt{maxIter}} \verb+maxIter+ is the number of the maximum iteration until it leaves the loop. It is predefined by 255, but internally multiplied by \texttt{dIter}. -\begin{LTXexample}[pos=t] +\img[15]{16} +\begin{lstlisting} \psset{xWidth=5cm,yWidth=5cm} -\psfractal[maxIter=50,dIter=3](-2,-2)(2,2)\quad +\psfractal[maxIter=50,dIter=3](-2,-2)(2,2) \psfractal[maxIter=30,cx=-1.3,cy=0](-2,-2)(2,2) -\end{LTXexample} +\end{lstlisting} \subsection{\texttt{maxRadius}} -if the square of distance of $z_n$ to the origin of the complex coordinate system +If the square of distance of $z_n$ to the origin of the complex coordinate system is greater as \texttt{maxRadius} then the algorithm leaves the loop and sets the point. \texttt{maxRadius} should always be the square of the "`real"' value, it is preset by 100. -\begin{LTXexample}[pos=t] +\img[17]{18} +\begin{lstlisting} \psset{xWidth=5cm,yWidth=5cm} -\psfractal[maxRadius=30,dIter=10](-2,-2)(2,2)\quad +\psfractal[maxRadius=30,dIter=10](-2,-2)(2,2) \psfractal[maxRadius=30,dIter=30,cx=-1.3,cy=0](-2,-2)(2,2) -\end{LTXexample} +\end{lstlisting} \subsection{\texttt{plotpoints}} This option is only valid for the Sierpinski triangle and preset by 2000. -\begin{LTXexample}[pos=t] +\img[19]{20} +\begin{lstlisting} \begin{pspicture}(5,5) \psSier(0,0)(2.5,5)(5,0) -\end{pspicture}\quad +\end{pspicture} \begin{pspicture}(5,5) \psSier[plotpoints=10000](0,0)(2.5,5)(5,0) \end{pspicture} -\end{LTXexample} +\end{lstlisting} + + +\section{Phyllotaxis} +The beautiful arrangement of leaves in some plants, called phyllotaxis, +obeys a number of subtle mathematical relationships. For instance, the florets +in the head of a sunflower form two oppositely directed spirals: 55 of them clockwise +and 34 counterclockwise. Surprisingly, these numbers are consecutive Fibonacci numbers. +The Phyllotaxis is like a Lindenmayer system. + +\begin{verbatim} +\psPhyllotaxis[settings](x,y) +\end{verbatim} + +The coordinates of the center are optional, if they are missing, then $(0,0)$ +is assumed. + + +\img{21} +\begin{lstlisting} +\psframebox{\begin{pspicture}(-3,-3)(3,3) + \psPhyllotaxis +\end{pspicture}} +\end{lstlisting} + + + +\img{22} +\begin{lstlisting} +\psframebox{\begin{pspicture}(-3,-3)(4,4) + \psPhyllotaxis(1,1) +\end{pspicture}} +\end{lstlisting} + +\subsection{\texttt{angle}} + +\img{23} +\begin{lstlisting} +\psframebox{\begin{pspicture}(-2.5,-2.5)(2.5,2.5) + \psPhyllotaxis[angle=99] +\end{pspicture}} +\end{lstlisting} + +\subsection{\texttt{c}} +This is the length of one element in the unit pt. +\img{24} +\begin{lstlisting} +\psframebox{\begin{pspicture}(8,8) + \psPhyllotaxis[c=7](4,4) +\end{pspicture}} +\end{lstlisting} + +\img{25} +\begin{lstlisting} +\psframebox{\begin{pspicture}(-3,-3)(3,3) + \psPhyllotaxis[c=4,angle=111] +\end{pspicture}} +\end{lstlisting} + +\subsection{\texttt{maxIter}} +This is the number for the iterations. + +\img{26} +\begin{lstlisting} +\psframebox{\begin{pspicture}(-3,-3)(3,3) + \psPhyllotaxis[c=6,angle=111,maxIter=100] +\end{pspicture}} +\end{lstlisting} + + + +\section{Fern} + +\begin{verbatim} +\psFern[settings](x,y) +\end{verbatim} + +The coordinates of the starting point are optional, if they are missing, then $(0,0)$ +is assumed. + +\img{27} +\begin{lstlisting} +\psframebox{\begin{pspicture}(-1,0)(1,4) + \psFern +\end{pspicture}} +\end{lstlisting} + +\img{28} +\begin{lstlisting} +\psframebox{\begin{pspicture}(-1,0)(2,5) + \psFern(1,1) +\end{pspicture}} +\end{lstlisting} + +\img{29} +\begin{lstlisting} +\psframebox{\begin{pspicture}(-3,0)(3,11) + \psFern[scale=3,maxIter=100000,linecolor=green] +\end{pspicture}} +\end{lstlisting} + + +\section{Koch flake} + +\begin{verbatim} +\psKochflake[settings](x,y) +\end{verbatim} + +The coordinates of the starting point are optional, if they are missing, then $(0,0)$ +is assumed. The origin is the lower left point of the flake, marked as red +or black point +in the following example: +\clearpage + +\img{30} +\begin{lstlisting} +\begin{pspicture}[showgrid=true](-2.4,-0.4)(5,5) + \psKochflake[scale=10] + \psdot[linecolor=red,dotstyle=*](0,0) +\end{pspicture} +\end{lstlisting} + +\img{31} +\begin{lstlisting} +\begin{pspicture}(-0.4,-0.4)(12,4) + \psset{fillcolor=lime,fillstyle=solid} + \multido{\iA=0+1,\iB=0+2}{6}{% + \psKochflake[angle=-30,scale=3,maxIter=\iA](\iB,2.5)\psdot*(\iB,2.5) + \psKochflake[scale=3,maxIter=\iA](\iB,0)\psdot*(\iB,0)} +\end{pspicture} +\end{lstlisting} + +Optional arguments are \verb+scale+, \verb+maxIter+ (iteration depth) and \verb+angle+ +for the first rotation angle. + + +\section{Apollonius circles} + +\begin{verbatim} +\psAppolonius[settings](x,y) +\end{verbatim} + +The coordinates of the starting point are optional, if they are missing, then $(0,0)$ +is assumed. The origin is the center of the circle: + +\img{32} +\begin{lstlisting} +\begin{pspicture}[showgrid=true](-4,-4)(4,4) + \psAppolonius[Radius=4cm] +\end{pspicture} +\end{lstlisting} + + +\img{33} +\begin{lstlisting} +\begin{pspicture}(-5,-5)(5,5) + \psAppolonius[Radius=5cm,Color] +\end{pspicture} +\end{lstlisting} + + +\section{Trees} + +\begin{verbatim} +\psPTree[settings](x,y) +\psFArrow[settings](x,y){fraction} +\end{verbatim} + +The coordinates of the starting point are optional, if they are missing, then $(0,0)$ +is assumed. The origin is the center of the lower line, shown in the following examples +by the dot. Special parameters are the width of the lower basic line for the tree and the +height and angle for the arrow and for both the color option. The color step is given by \verb+dIter+ +and the depth by \verb+maxIter+. + +\img{34} +\begin{lstlisting} +\begin{pspicture}[showgrid=true](-3,0)(3,4) + \psPTree + \psdot*(0,0) +\end{pspicture} +\end{lstlisting} + + +\img{35} +\begin{lstlisting} +\begin{pspicture}[showgrid=true](-6,0)(6,7) + \psPTree[xWidth=1.75cm,Color=true] + \psdot*[linecolor=white](0,0) +\end{pspicture} +\end{lstlisting} + + +\img[36][37]{38} +\begin{lstlisting} +\begin{pspicture}[showgrid=true](-1,0)(1,3) + \psFArrow{0.5} +\end{pspicture} +\quad +\begin{pspicture}[showgrid=true](-2,0)(2,3) + \psFArrow{0.6} +\end{pspicture} +\quad +\begin{pspicture*}[showgrid=true](-3,0)(3,3.5) + \psFArrow[linewidth=3pt]{0.65} +\end{pspicture*} +\end{lstlisting} + + +\img[39][40]{41} +\begin{lstlisting} +\begin{pspicture}(-1,0)(1,3) + \psFArrow[Color]{0.5} +\end{pspicture} +\quad +\begin{pspicture}(-2,0)(2,3) + \psFArrow[Color]{0.6} +\end{pspicture} +\quad +\begin{pspicture*}(-3,0)(3,3.5) + \psFArrow[Color]{0.65} +\end{pspicture*} +\end{lstlisting} + + +\img[0][42]{43} +\begin{lstlisting} +\begin{pspicture}(-3,-3)(2,3) + \psFArrow[Color]{0.6} + \psFArrow[angle=90,Color]{0.6} +\end{pspicture} +\quad +\begin{pspicture*}(-4,-3)(3,3) + \psFArrow[Color]{0.7} + \psFArrow[angle=90,Color]{0.7} +\end{pspicture*} +\end{lstlisting} \section{PDF output} -\verb|pst-fractal| is based on the popular \verb|pstricks| package and writes pure \PS code\cite{PostScript}, so it is not possible to run \TeX{} files with pdf\LaTeX{} when there are pstricks macros in the document. If you still need a PDF output use one of the following possibilities: +\verb|pst-fractal| is based on the popular \verb|pstricks| +package and writes pure \PS code\cite{PostScript}, so it is not +possible to run \TeX{} files with pdf\LaTeX{} when there are +pstricks macros in the document. If you still need a PDF output use one of the following possibilities: \begin{itemize} \item package \verb|pdftricks.sty|\cite{pdftricks} \item the for Linux free available program VTeX/Lnx\footnote{\url{http://www.micropress-inc.com/linux/}} @@ -249,8 +537,9 @@ Be sure that you have the ''newest`` \verb|pstricks-add.tex| file \section{Credits} \nocite{*} - +\bgroup +\raggedright \bibliographystyle{plain} \bibliography{pst-fractal-doc} - +\egroup \end{document} |