summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex')
-rw-r--r--Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex395
1 files changed, 342 insertions, 53 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex b/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex
index 430f66d6eb5..9103b7a2394 100644
--- a/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex
+++ b/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex
@@ -5,15 +5,57 @@
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{geometry,lmodern}
-\usepackage{pstricks}
-\usepackage{showexpl}
-%\lstset{wide=true}
+\usepackage{xcolor}
+%\usepackage{pstricks}
+\usepackage{listings}
+%\usepackage{pst-pdf}
+
+\makeatletter
+\def\img{\@ifnextchar[{\img@i}{\img@i[0]}}
+\def\img@i[#1]{\@ifnextchar[{\img@ii[#1]}{\img@ii[0][#1]}}
+\def\img@ii[#1][#2]#3{\begin{center}
+\ifnum#1>0 \includegraphics[scale=0.5]{images/#1}\fi\quad
+\ifnum#2>0 \includegraphics[scale=0.5]{images/#2}\fi\quad
+\includegraphics[scale=0.5]{images/#3}\end{center}}
+\makeatletter
+
+\definecolor{hellgelb}{rgb}{1,1,0.85}
+\definecolor{colKeys}{rgb}{0,0,1}
+\definecolor{colIdentifier}{rgb}{0,0,0}
+\definecolor{colComments}{rgb}{1,0,0}
+\definecolor{colString}{rgb}{0,0.5,0}
+\lstset{
+ language=PSTricks,%
+ basicstyle=\footnotesize\ttfamily,%
+ identifierstyle=\color{colIdentifier},%
+ keywordstyle=\color{colKeys},%
+ stringstyle=\color{colString},%
+ stringstyle=\itshape\color{colComments},%
+ commentstyle=\itshape\color{colComments},%
+ columns=fixed,
+ tabsize=4,%
+ frame=single,%
+ extendedchars=true,%
+ showspaces=false,%
+ showstringspaces=false,%
+ numbers=left,%
+ numberstyle=\tiny\ttfamily,%
+ numbersep=1em,%
+ breaklines=true,%
+ breakindent=10pt,%
+ backgroundcolor=\color{hellgelb},%
+ breakautoindent=true,%
+ captionpos=t,%
+ xleftmargin=1em,%
+}
+
\usepackage{pst-fractal}
\let\myFV\fileversion
+
\usepackage{url}
\usepackage[bottom]{footmisc}
\usepackage{fancyhdr}
-\usepackage{abstract}
+%\usepackage{abstract}
\pagestyle{fancy}
\usepackage{url}
\def\UrlFont{\small\ttfamily}
@@ -84,15 +126,15 @@ z_0 &= (x_0;y_0)
$(x_0;y_0)$ is the starting value.
-\begin{LTXexample}[width=3cm]
+\img{1}
+\begin{lstlisting}
\psfractal
-\end{LTXexample}
+\end{lstlisting}
-\begin{LTXexample}[width=5cm]
-\psfractal[xWidth=5cm,yWidth=5cm,
- baseColor=white,
- dIter=20](-2,-2)(2,2)
-\end{LTXexample}
+\img{2}
+\begin{lstlisting}
+\psfractal[xWidth=4cm,yWidth=4cm, baseColor=white, dIter=20](-2,-2)(2,2)
+\end{lstlisting}
\subsection{Mandelbrot sets}
@@ -107,17 +149,16 @@ C(x,y) &= (x_0;y_0)
$(x_0;y_0)$ is the starting value.
-
-\begin{LTXexample}[width=3cm]
+\img{3}
+\begin{lstlisting}
\psfractal[type=Mandel]
-\end{LTXexample}
+\end{lstlisting}
+
-\begin{LTXexample}[width=6.5cm]
-\psfractal[type=Mandel,
- xWidth=6cm,yWidth=4.8cm,
- baseColor=white,
- dIter=10](-2,-1.2)(1,1.2)
-\end{LTXexample}
+\img{4}
+\begin{lstlisting}
+\psfractal[type=Mandel, xWidth=6cm, yWidth=4.8cm, baseColor=white, dIter=10](-2,-1.2)(1,1.2)
+\end{lstlisting}
\subsection{Sierpinski triangle}
@@ -130,11 +171,12 @@ The triangle must be given by three mandatory arguments:
In difference to \verb|psfractal| it doesn't reserve any space, this is the
reason why it should be part of a \verb|pspicture| environment.
-\begin{LTXexample}[width=6.5cm]
+\img{5}
+\begin{lstlisting}
\begin{pspicture}(5,5)
\psSier(0,0)(2,5)(5,0)
\end{pspicture}
-\end{LTXexample}
+\end{lstlisting}
\section{The options}
@@ -142,84 +184,330 @@ reason why it should be part of a \verb|pspicture| environment.
\subsection{\texttt{type}}
Can be of "`Julia"' (default) or "`Mandel"'.
-\begin{LTXexample}[width=4.5cm]
-\psfractal\quad \psfractal[type=Mandel]
-\end{LTXexample}
-
+\img[6]{7}
+\begin{lstlisting}
+\psfractal
+\psfractal[type=Mandel]
+\end{lstlisting}
\subsection{\texttt{baseColor}}
The color for the convergent part.
-\begin{LTXexample}[pos=t]
-\psfractal[xWidth=5cm,yWidth=5cm,dIter=10](-2,-2)(2,2)\quad
-\psfractal[xWidth=5cm,yWidth=5cm,baseColor=white,dIter=10](-2,-2)(2,2)
-\end{LTXexample}
-
+\img[8]{9}
+\begin{lstlisting}
+\psfractal[xWidth=4cm,yWidth=4cm,dIter=30](-2,-2)(2,2)
+\psfractal[xWidth=4cm,yWidth=4cm,baseColor=yellow,dIter=30](-2,-2)(2,2)
+\end{lstlisting}
\subsection{\texttt{xWidth} and \texttt{yWidth}}
These values define the physical width of the fractal.
-\begin{LTXexample}[pos=t]
+\img{10}
+\begin{lstlisting}
\psfractal[type=Mandel,xWidth=12.8cm,yWidth=10.8cm,dIter=5](-2.5,-1.3)(0.7,1.3)
-\end{LTXexample}
+\end{lstlisting}
\subsection{\texttt{cx} and \texttt{cy}}
Define the starting value for the complex constant number $C$.
-\begin{LTXexample}[pos=t]
+\img[11]{12}
+\begin{lstlisting}
\psset{xWidth=5cm,yWidth=5cm}
-\psfractal[dIter=2](-2,-2)(2,2)\quad \psfractal[dIter=2,cx=-1.3,cy=0](-2,-2)(2,2)
-\end{LTXexample}
+\psfractal[dIter=2](-2,-2)(2,2)
+\psfractal[dIter=2,cx=-1.3,cy=0](-2,-2)(2,2)
+\end{lstlisting}
\subsection{\texttt{dIter}}
The color is set by wavelength to RGB conversion of the iteration number, where
\verb+dIter+ is the step, predefined by 1. The wavelength is given by
the value of iter added by 400.
-\begin{LTXexample}[pos=t]
+\img[13]{14}
+\begin{lstlisting}
\psset{xWidth=5cm,yWidth=5cm}
-\psfractal[dIter=30](-2,-2)(2,2)\quad \psfractal[dIter=10,cx=-1.3,cy=0](-2,-2)(2,2)
-\end{LTXexample}
-
+\psfractal[dIter=30](-2,-2)(2,2)
+\psfractal[dIter=10,cx=-1.3,cy=0](-2,-2)(2,2)
+\end{lstlisting}
\subsection{\texttt{maxIter}}
\verb+maxIter+ is the number of the maximum iteration until it leaves the loop.
It is predefined by 255, but internally multiplied by \texttt{dIter}.
-\begin{LTXexample}[pos=t]
+\img[15]{16}
+\begin{lstlisting}
\psset{xWidth=5cm,yWidth=5cm}
-\psfractal[maxIter=50,dIter=3](-2,-2)(2,2)\quad
+\psfractal[maxIter=50,dIter=3](-2,-2)(2,2)
\psfractal[maxIter=30,cx=-1.3,cy=0](-2,-2)(2,2)
-\end{LTXexample}
+\end{lstlisting}
\subsection{\texttt{maxRadius}}
-if the square of distance of $z_n$ to the origin of the complex coordinate system
+If the square of distance of $z_n$ to the origin of the complex coordinate system
is greater as \texttt{maxRadius} then the algorithm leaves the loop
and sets the point. \texttt{maxRadius} should always be the square of the "`real"'
value, it is preset by 100.
-\begin{LTXexample}[pos=t]
+\img[17]{18}
+\begin{lstlisting}
\psset{xWidth=5cm,yWidth=5cm}
-\psfractal[maxRadius=30,dIter=10](-2,-2)(2,2)\quad
+\psfractal[maxRadius=30,dIter=10](-2,-2)(2,2)
\psfractal[maxRadius=30,dIter=30,cx=-1.3,cy=0](-2,-2)(2,2)
-\end{LTXexample}
+\end{lstlisting}
\subsection{\texttt{plotpoints}}
This option is only valid for the Sierpinski triangle and preset by 2000.
-\begin{LTXexample}[pos=t]
+\img[19]{20}
+\begin{lstlisting}
\begin{pspicture}(5,5)
\psSier(0,0)(2.5,5)(5,0)
-\end{pspicture}\quad
+\end{pspicture}
\begin{pspicture}(5,5)
\psSier[plotpoints=10000](0,0)(2.5,5)(5,0)
\end{pspicture}
-\end{LTXexample}
+\end{lstlisting}
+
+
+\section{Phyllotaxis}
+The beautiful arrangement of leaves in some plants, called phyllotaxis,
+obeys a number of subtle mathematical relationships. For instance, the florets
+in the head of a sunflower form two oppositely directed spirals: 55 of them clockwise
+and 34 counterclockwise. Surprisingly, these numbers are consecutive Fibonacci numbers.
+The Phyllotaxis is like a Lindenmayer system.
+
+\begin{verbatim}
+\psPhyllotaxis[settings](x,y)
+\end{verbatim}
+
+The coordinates of the center are optional, if they are missing, then $(0,0)$
+is assumed.
+
+
+\img{21}
+\begin{lstlisting}
+\psframebox{\begin{pspicture}(-3,-3)(3,3)
+ \psPhyllotaxis
+\end{pspicture}}
+\end{lstlisting}
+
+
+
+\img{22}
+\begin{lstlisting}
+\psframebox{\begin{pspicture}(-3,-3)(4,4)
+ \psPhyllotaxis(1,1)
+\end{pspicture}}
+\end{lstlisting}
+
+\subsection{\texttt{angle}}
+
+\img{23}
+\begin{lstlisting}
+\psframebox{\begin{pspicture}(-2.5,-2.5)(2.5,2.5)
+ \psPhyllotaxis[angle=99]
+\end{pspicture}}
+\end{lstlisting}
+
+\subsection{\texttt{c}}
+This is the length of one element in the unit pt.
+\img{24}
+\begin{lstlisting}
+\psframebox{\begin{pspicture}(8,8)
+ \psPhyllotaxis[c=7](4,4)
+\end{pspicture}}
+\end{lstlisting}
+
+\img{25}
+\begin{lstlisting}
+\psframebox{\begin{pspicture}(-3,-3)(3,3)
+ \psPhyllotaxis[c=4,angle=111]
+\end{pspicture}}
+\end{lstlisting}
+
+\subsection{\texttt{maxIter}}
+This is the number for the iterations.
+
+\img{26}
+\begin{lstlisting}
+\psframebox{\begin{pspicture}(-3,-3)(3,3)
+ \psPhyllotaxis[c=6,angle=111,maxIter=100]
+\end{pspicture}}
+\end{lstlisting}
+
+
+
+\section{Fern}
+
+\begin{verbatim}
+\psFern[settings](x,y)
+\end{verbatim}
+
+The coordinates of the starting point are optional, if they are missing, then $(0,0)$
+is assumed.
+
+\img{27}
+\begin{lstlisting}
+\psframebox{\begin{pspicture}(-1,0)(1,4)
+ \psFern
+\end{pspicture}}
+\end{lstlisting}
+
+\img{28}
+\begin{lstlisting}
+\psframebox{\begin{pspicture}(-1,0)(2,5)
+ \psFern(1,1)
+\end{pspicture}}
+\end{lstlisting}
+
+\img{29}
+\begin{lstlisting}
+\psframebox{\begin{pspicture}(-3,0)(3,11)
+ \psFern[scale=3,maxIter=100000,linecolor=green]
+\end{pspicture}}
+\end{lstlisting}
+
+
+\section{Koch flake}
+
+\begin{verbatim}
+\psKochflake[settings](x,y)
+\end{verbatim}
+
+The coordinates of the starting point are optional, if they are missing, then $(0,0)$
+is assumed. The origin is the lower left point of the flake, marked as red
+or black point
+in the following example:
+\clearpage
+
+\img{30}
+\begin{lstlisting}
+\begin{pspicture}[showgrid=true](-2.4,-0.4)(5,5)
+ \psKochflake[scale=10]
+ \psdot[linecolor=red,dotstyle=*](0,0)
+\end{pspicture}
+\end{lstlisting}
+
+\img{31}
+\begin{lstlisting}
+\begin{pspicture}(-0.4,-0.4)(12,4)
+ \psset{fillcolor=lime,fillstyle=solid}
+ \multido{\iA=0+1,\iB=0+2}{6}{%
+ \psKochflake[angle=-30,scale=3,maxIter=\iA](\iB,2.5)\psdot*(\iB,2.5)
+ \psKochflake[scale=3,maxIter=\iA](\iB,0)\psdot*(\iB,0)}
+\end{pspicture}
+\end{lstlisting}
+
+Optional arguments are \verb+scale+, \verb+maxIter+ (iteration depth) and \verb+angle+
+for the first rotation angle.
+
+
+\section{Apollonius circles}
+
+\begin{verbatim}
+\psAppolonius[settings](x,y)
+\end{verbatim}
+
+The coordinates of the starting point are optional, if they are missing, then $(0,0)$
+is assumed. The origin is the center of the circle:
+
+\img{32}
+\begin{lstlisting}
+\begin{pspicture}[showgrid=true](-4,-4)(4,4)
+ \psAppolonius[Radius=4cm]
+\end{pspicture}
+\end{lstlisting}
+
+
+\img{33}
+\begin{lstlisting}
+\begin{pspicture}(-5,-5)(5,5)
+ \psAppolonius[Radius=5cm,Color]
+\end{pspicture}
+\end{lstlisting}
+
+
+\section{Trees}
+
+\begin{verbatim}
+\psPTree[settings](x,y)
+\psFArrow[settings](x,y){fraction}
+\end{verbatim}
+
+The coordinates of the starting point are optional, if they are missing, then $(0,0)$
+is assumed. The origin is the center of the lower line, shown in the following examples
+by the dot. Special parameters are the width of the lower basic line for the tree and the
+height and angle for the arrow and for both the color option. The color step is given by \verb+dIter+
+and the depth by \verb+maxIter+.
+
+\img{34}
+\begin{lstlisting}
+\begin{pspicture}[showgrid=true](-3,0)(3,4)
+ \psPTree
+ \psdot*(0,0)
+\end{pspicture}
+\end{lstlisting}
+
+
+\img{35}
+\begin{lstlisting}
+\begin{pspicture}[showgrid=true](-6,0)(6,7)
+ \psPTree[xWidth=1.75cm,Color=true]
+ \psdot*[linecolor=white](0,0)
+\end{pspicture}
+\end{lstlisting}
+
+
+\img[36][37]{38}
+\begin{lstlisting}
+\begin{pspicture}[showgrid=true](-1,0)(1,3)
+ \psFArrow{0.5}
+\end{pspicture}
+\quad
+\begin{pspicture}[showgrid=true](-2,0)(2,3)
+ \psFArrow{0.6}
+\end{pspicture}
+\quad
+\begin{pspicture*}[showgrid=true](-3,0)(3,3.5)
+ \psFArrow[linewidth=3pt]{0.65}
+\end{pspicture*}
+\end{lstlisting}
+
+
+\img[39][40]{41}
+\begin{lstlisting}
+\begin{pspicture}(-1,0)(1,3)
+ \psFArrow[Color]{0.5}
+\end{pspicture}
+\quad
+\begin{pspicture}(-2,0)(2,3)
+ \psFArrow[Color]{0.6}
+\end{pspicture}
+\quad
+\begin{pspicture*}(-3,0)(3,3.5)
+ \psFArrow[Color]{0.65}
+\end{pspicture*}
+\end{lstlisting}
+
+
+\img[0][42]{43}
+\begin{lstlisting}
+\begin{pspicture}(-3,-3)(2,3)
+ \psFArrow[Color]{0.6}
+ \psFArrow[angle=90,Color]{0.6}
+\end{pspicture}
+\quad
+\begin{pspicture*}(-4,-3)(3,3)
+ \psFArrow[Color]{0.7}
+ \psFArrow[angle=90,Color]{0.7}
+\end{pspicture*}
+\end{lstlisting}
\section{PDF output}
-\verb|pst-fractal| is based on the popular \verb|pstricks| package and writes pure \PS code\cite{PostScript}, so it is not possible to run \TeX{} files with pdf\LaTeX{} when there are pstricks macros in the document. If you still need a PDF output use one of the following possibilities:
+\verb|pst-fractal| is based on the popular \verb|pstricks|
+package and writes pure \PS code\cite{PostScript}, so it is not
+possible to run \TeX{} files with pdf\LaTeX{} when there are
+pstricks macros in the document. If you still need a PDF output use one of the following possibilities:
\begin{itemize}
\item package \verb|pdftricks.sty|\cite{pdftricks}
\item the for Linux free available program VTeX/Lnx\footnote{\url{http://www.micropress-inc.com/linux/}}
@@ -249,8 +537,9 @@ Be sure that you have the ''newest`` \verb|pstricks-add.tex| file
\section{Credits}
\nocite{*}
-
+\bgroup
+\raggedright
\bibliographystyle{plain}
\bibliography{pst-fractal-doc}
-
+\egroup
\end{document}