summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-eucl/pst-eucl-doc.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-eucl/pst-eucl-doc.tex')
-rw-r--r--Master/texmf-dist/doc/generic/pst-eucl/pst-eucl-doc.tex2040
1 files changed, 2040 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-eucl/pst-eucl-doc.tex b/Master/texmf-dist/doc/generic/pst-eucl/pst-eucl-doc.tex
new file mode 100644
index 00000000000..76a3e17faee
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-eucl/pst-eucl-doc.tex
@@ -0,0 +1,2040 @@
+\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings
+ headexclude,footexclude,oneside,english]{pst-doc}
+\usepackage[utf8]{inputenc}
+\usepackage{pst-eucl}
+\usepackage{multicol}
+\let\pstEuclideFV\fileversion
+\usepackage{pst-plot,paralist}
+\usepackage[mathscr]{eucal}
+\lstset{pos=l,wide=false,language=PSTricks,
+ morekeywords={multidipole,parallel},basicstyle=\footnotesize\ttfamily}
+%
+\def\Argsans#1{$\langle$#1$\rangle$}
+\def\DefaultVal#1{(by default #1)}
+
+
+\title{\texttt{pst-euclide}}
+\subtitle{A PSTricks package for drawing geometric pictures; v.\pstEuclideFV}
+\author{Dominique Rodriguez\\Herbert Voß}
+\docauthor{Herbert Voß}
+\date{\today}
+\begin{document}
+\maketitle
+
+\begin{abstract}
+ The \LPack{pst-eucl} package allow the drawing of Euclidean
+ geometric figures using \LaTeX\ macros for specifying mathematical
+ constraints. It is thus possible to build point using common
+ transformations or intersections. The use of coordinates is limited
+ to points which controlled the figure.
+
+ \vfill
+ I would like to thanks the following persons for the help they gave
+ me for development of this package:
+
+ \begin{compactitem}
+ \item Denis Girou pour ses critiques pertinentes et ses
+ encouragement lors de la découverte de l'embryon initial et pour
+ sa relecture du présent manuel;
+ \item Michael Vulis for his fast testing of the documentation using
+ V\TeX\ which leads to the correction of a bug in the \PS\ code;
+ \item Manuel Luque and Olivier Reboux for their remarks and their examples.
+ \item Alain Delplanque for its modification propositions on automatic
+ placing of points name and the ability of giving a list of points in
+ \Lcs{pstGeonode}.
+ \end{compactitem}
+\end{abstract}
+
+
+\vfill
+\noindent
+Thanks to:
+Manuel Luque;
+Thomas Söll.
+
+
+
+\clearpage
+\tableofcontents
+
+
+\clearpage
+\part{The package}
+\section{Special specifications}
+
+\subsection{\PST Options}
+
+The package activates the \Lcs{SpecialCoor} mode. This mode extend the
+coordinates specification. Furthermore the plotting type is set to
+\Lkeyset{dimen=middle}, which indicates that the position of the
+drawing is done according to the middle of the line. Please look at
+the user manual for more information about these setting.
+
+At last, the working axes are supposed to be (ortho)normed.
+
+\subsection{Conventions}
+
+For this manual, I used the geometric French conventions for naming
+the points:
+
+\begin{compactitem}
+\item $O$ is a centre (circle, axes, symmetry, homothety, rotation);
+\item $I$ defined the unity of the abscissa axe, or a midpoint;
+\item $J$ defined the unity of the ordinate axe;
+\item $A$, $B$, $C$, $D$ are points ;
+\item $M'$ is the image of $M$ by a transformation ;
+\end{compactitem}
+
+At last, although these are nodes in \PST, I treat them
+intentionally as points.
+
+\section{Basic Objects}
+\subsection{Points}
+%\subsubsection{default axes}
+
+%\defcom[Creates a list of points using the common axis. \protect\ParamList{\param{PointName},
+% \param{PointNameSep}, \param{PosAngle}, \param{PointSymbol}, \param{PtNameMath}}]
+\begin{BDef}
+\Lcs{pstGeonode}\OptArgs\coord1\Largb{$A_1$}\coord2\Largb{$A_1$}\ldots\cAny\Largb{$A_n$}
+\end{BDef}
+This command defines one or more geometrical points associated with a node in the default cartesian coordinate system. Each
+point has a node name $A_i$ which defines the default label put on the
+picture. This label is managed by default in mathematical mode, the boolean parameter
+\Lkeyword{PtNameMath} (default \true) can modify this behavior and let manage the
+label in normal mode. It is placed at a distance of \Lkeyword{PointNameSep}
+(default 1em) of the center of the node with a angle of
+\Lkeyword{PosAngle} (default 0). It is possible to specify another label using the
+parameter \Lkeyset{PointName=default}, and an empty label can be specified
+by selecting the value \Lkeyval{none}, in that case the point will have no name on the
+picture.
+
+The point symbol is given by the parameter \Lkeyset{PointSymbol=*}. The
+symbol is the same as used by the macro \Lcs{psdot}. This parameter can be set to
+\texttt{none}, which means that the point will not be drawn on the picture.
+
+Here are the possible values for this parameter:
+
+\begin{multicols}{3}
+ \begin{compactitem}\psset{dotscale=2}
+ \item \Lkeyword{*}: \psdots(.5ex,.5ex)
+ \item \Lkeyword{o}: \psdots[dotstyle=o](.5ex,.5ex)
+ \item \Lkeyword{+}: \psdots[dotstyle=+](.5ex,.5ex)
+ \item \Lkeyword{x}: \psdots[dotstyle=x](.5ex,.5ex)
+ \item \Lkeyword{asterisk} : \psdots[dotstyle=asterisk](.5ex,.5ex)
+ \item \Lkeyword{oplus}: \psdots[dotstyle=oplus](.5ex,.5ex)
+ \item \Lkeyword{otimes}: \psdots[dotstyle=otimes](.5ex,.5ex)
+ \item \Lkeyword{triangle}: \psdots[dotstyle=triangle](.5ex,.5ex)
+ \item \Lkeyword{triangle*}: \psdots[dotstyle=triangle*](.5ex,.5ex)
+ \item \Lkeyword{square}: \psdots[dotstyle=square](.5ex,.5ex)
+ \item \Lkeyword{square*}: \psdots[dotstyle=square*](.5ex,.5ex)
+ \item \Lkeyword{diamond}: \psdots[dotstyle=diamond](.5ex,.5ex)
+ \item \Lkeyword{diamond*}: \psdots[dotstyle=diamond*](.5ex,.5ex)
+ \item \Lkeyword{pentagon}: \psdots[dotstyle=pentagon](.5ex,.5ex)
+ \item \Lkeyword{pentagon*}: \psdots[dotstyle=pentagon*](.5ex,.5ex)
+ \item \Lkeyword{|}: \psdots[dotstyle=|](.5ex,.5ex)
+ \end{compactitem}
+\end{multicols}
+
+Furthermore, these symbols can be controlled with some others \PST,
+several of these are :
+
+\begin{compactitem}
+\item their scale with \Lkeyword{dotscale}, the value of whom is either two numbers
+ defining the horizontal and vertical scale factor, or one single value being the
+ same for both,
+\item their angle with parameter \Lkeyword{dotangle}.
+\end{compactitem}
+
+Please consult the \PST documentation for further details.
+The
+parameters \Lkeyword{PosAngle}, \Lkeyword{PointSymbol}, \Lkeyword{PointName} and
+\Lkeyword{PointNameSep} can be set to :
+
+\begin{compactitem}
+\item either a single value, the same for all points ;
+\item or a list of values delimited by accolads \texttt{\{ ... \}} and
+ separated with comma \textit{without any blanks}, allowing to differenciate the
+ value for each point.
+\end{compactitem}
+
+In the later case, the list can have less values than point which means that the
+last value is used for all the remaining points.
+%
+At least, the parameter setting \Lkeyword{CurveType=none} can be used to
+draw a line between the points:
+
+\begin{compactitem}
+\item opened \verb$polyline$ ;
+\item closed \verb$polygon$ ;
+\item open and curved \verb$curve$.
+\end{compactitem}
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid=true](-2,-2)(3,3)
+\pstGeonode{A}
+\pstGeonode[PosAngle=-135, PointNameSep=1.3](0,3){B_1}
+\pstGeonode[PointSymbol=pentagon, dotscale=2, fillstyle=solid,
+ fillcolor=OliveGreen, PtNameMath=false,
+ PointName=$B_2$, linecolor=red](-2,1){B2}
+\pstGeonode[PosAngle={90,0,-90}, PointSymbol={*,o},
+ linestyle=dashed, CurveType=polygon,
+ PointNameSep={1em,2em,3mm}]
+ (1,2){M_1}(2,1){M_2}(1,0){M_3}
+\pstGeonode[PosAngle={50,100,90}, PointSymbol={*,x,default},
+ PointNameSep=3mm, CurveType=curve,
+ PointName={\alpha,\beta,\gamma,default}]
+ (-2,0){alpha}(-1,-2){beta}(0,-1){gamma}(2,-1.5){T}
+\end{pspicture}
+\end{LTXexample}
+
+Obviously, the nodes appearing in the picture can be used as normal
+\PST nodes. Thus, it is possible to reference a point from
+\rnode{ici}{here}.
+\nccurve[arrowscale=2]{->}{ici}{B_1}
+
+%\subsubsection{User defined axes}
+
+\Lcs{pstOIJGeonode} creates a list of points in the landmark $(O;I;J)$. Possible
+parameters are \Lkeyword{PointName}, \Lkeyword{PointNameSep}, \Lkeyword{PosAngle},
+ \Lkeyword{PointSymbol}, and \Lkeyword{PtNameMath}.
+\begin{BDef}
+\Lcs{pstOIJGeonode}\OptArgs\coord1\Largb{$A_1$}\Largb{$O$}\Largb{$I$}\Largb{$J$}
+ \coord2\Largb{$A_2$}\ldots\cAny\Largb{$A_n$}
+\end{BDef}
+
+\clearpage
+
+
+\begin{LTXexample}[width=5.6cm,pos=l]
+\psset{unit=.7}
+\begin{pspicture*}[showgrid=true](-4,-4)(4,4)
+ \pstGeonode[PosAngle={-135,-90,180}]{O}(1,0.5){I}(0.5,2){J}
+ \pstLineAB[nodesep=10]{O}{I}
+ \pstLineAB[nodesep=10]{O}{J}
+ \multips(-5,-2.5)(1,0.5){11}{\psline(0,-.15)(0,.15)}
+ \multips(-2,-8)(0.5,2){9}{\psline(-.15,0)(.15,0)}
+ \psset{linestyle=dotted}%
+ \multips(-5,-2.5)(1,0.5){11}{\psline(-10,-40)(10,40)}
+ \multips(-2,-8)(0.5,2){9}{\psline(-10,-5)(10,5)}
+ \psset{PointSymbol=x, linestyle=solid}
+ \pstOIJGeonode[PosAngle={-90,0}, CurveType=curve,
+ linecolor=red] (3,1){A}{O}{I}{J}(-2,1){B}(-1,-1.5){C}(2,-1){D}
+\end{pspicture*}
+\end{LTXexample}
+
+
+\subsection{Segment mark}
+
+A segment can be drawn using the \Lcs{ncline} command. However,
+for marking a segment there is the following command:
+
+\begin{BDef}
+\Lcs{pstMarkSegment}\OptArgs\Largb{A}\Largb{B}
+\end{BDef}
+
+
+
+
+The symbol drawn on the segment is given by the parameter
+\Lkeyword{SegmentSymbol}. Its value can be any valid command which can be
+used in math mode. Its default value is \Lkeyval{pstslashh},
+which produced two slashes on the segment. The segment is drawn.
+
+Several commands are predefined for marking the segment:
+
+\begingroup
+\psset{PointSymbol=none,PointName=none,unit=.8}
+ \newcommand\Seg[1]{%
+ \Lcs{#1} \begin{pspicture}[shift=*](1.75,1)
+ \pstGeonode(0.3,.5){A}(1.7,.5){B}\pstSegmentMark[SegmentSymbol=#1]{A}{B}
+ \end{pspicture}}%
+\begin{multicols}{3}
+ \begin{compactitem}
+ \item \Seg{pstslash}
+ \item \Seg{pstslashh}
+ \item \Seg{pstslashhh}
+ \item \Seg{MarkHash}
+ \item \Seg{MarkHashh}
+ \item \Seg{MarkHashhh}
+ \item \Seg{MarkCros}
+ \item \Seg{MarkCross}
+ \end{compactitem}
+\end{multicols}
+\endgroup
+
+The three commands of the family \nxLcs{MarkHash} draw a line whose inclination is
+controled by the parameter \Lkeyword{MarkAngle} (default is 45). Their width and colour
+depends of the width and color of the line when the drawing is done, ass shown is the
+next example.
+
+
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid=true](-2,-2)(2,2)
+ \rput{18}{%
+ \pstGeonode[PosAngle={0,90,180,-90}](2,0){A}(2;72){B}
+ (2;144){C}(2;216){D}(2;288){E}}
+ \pstSegmentMark{A}{B}
+ \pstSegmentMark[linecolor=green]{B}{C}
+ \psset{linewidth=2\pslinewidth}
+ \pstSegmentMark[linewidth=2\pslinewidth]{C}{D}
+ \pstSegmentMark{D}{E}
+ \pstSegmentMark{E}{A}
+\end{pspicture}
+\end{LTXexample}
+
+
+The length and the separation of multiple hases can be set by \Lkeyword{MarkHashLength} and \Lkeyword{MarkHashSep}.
+
+
+
+\subsection{Triangles}
+
+The more classical figure, it has its own macro for a quick definition:
+
+\begin{BDef}
+\Lcs{pstTriangle}\OptArgs\coord1\Largb{A}\coord2\Largb{B}\coord3\Largb{C}
+\end{BDef}
+
+
+\begin{sloppypar}
+Valid optional arguments are \Lkeyword{PointName},
+ \Lkeyword{PointNameSep}, \Lkeyword{PosAngle}, \Lkeyword{PointSymbol}, \Lkeyword{PointNameA},
+ \Lkeyword{PosAngleA}, \Lkeyword{PointSymbolA}, \Lkeyword{PointNameB},
+ \Lkeyword{PosAngleB}, \Lkeyword{PointSymbolB}, \Lkeyword{PointNameC},
+ \Lkeyword{PosAngleC}, and \Lkeyword{PointSymbolC}.
+% $(x_A;y_A)$\Arg{$A$}$(x_B;y_B)$\Arg{$B$}$(x_C;y_C)$\Arg{$C$}}
+%
+In order to accurately put the name of the points, there are three parameters
+\Lkeyword{PosAngleA}, \Lkeyword{PosAngleB} and \Lkeyword{PosAngleC}, which are associated
+respectively to the nodes \Argsans{$A$}, \Argsans{$B$} and \Argsans{$C$}. Obviously
+they have the same meaning as the parameter \Lkeyword{PosAngle}. If one or more of such
+parameters is omitted, the value of \Lkeyword{PosAngle} is taken. If no angle
+is specified, points name are placed on the bissector line.
+\end{sloppypar}
+
+In the same way there are parameters for controlling the symbol used
+for each points: \Lkeyword{PointSymbolA}, \Lkeyword{PointSymbolB} and
+\Lkeyword{PointSymbolC}. They are equivalent to the parameter
+\Lkeyword{PointSymbol}. The management of the default value followed the
+same rule.
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid](-2,-2)(2,2)
+\pstTriangle[PointSymbol=square,PointSymbolC=o,
+ linecolor=blue,linewidth=1.5\pslinewidth]
+ (1.5,-1){A}(0,1){B}(-1,-.5){C}
+\end{pspicture}
+\end{LTXexample}
+
+
+\subsection{Angles}
+
+Each angle is defined with three points. The vertex is the second
+point. Their order is important because it is assumed that the angle is
+specified in the direct order. The first command is the marking of a
+right angle:
+
+
+\begin{BDef}
+\Lcs{pstRightAngle}\OptArgs\Largb{A}\Largb{B}\Largb{C}
+\end{BDef}
+
+
+\begin{sloppypar}
+Valid optional arguments are \Lkeyword{RightAngleType}, \Lkeyword{RightAngleSize}, and
+ \Lkeyword{RightAngleSize}
+\end{sloppypar}
+
+The symbol used is controlled by the parameter \Lkeyword{RightAngleType}
+\nxLkeyval{default}. Its possible values are :
+
+\begin{compactitem}
+\item \Lkeyval{default} : standard symbol ;
+\item \Lkeyval{german} : german symbol (given by U. Dirr) ;
+\item \Lkeyval{suisseromand} : swiss romand symbol (given P. Schnewlin).
+\end{compactitem}
+
+The only parameter controlling this command, excepting the ones which
+controlled the line, is \Lkeyword{RightAngleSize} which defines the size
+of the symbol \DefaultVal{0.28 unit}.
+
+For other angles, there is the command:
+
+\begin{BDef}
+\Lcs{pstMarkAngle}\OptArgs\Largb{A}\Largb{B}\Largb{C}
+\end{BDef}
+
+
+\begin{sloppypar}
+Valid optional arguments are \Lkeyword{MarkAngleRadius}, \Lkeyword{LabelAngleOffset}, and
+ \Lkeyword{Mark}
+%
+The \Lkeyword{label} can be any valid \TeX\ box, it is put at \Lkeyword{LabelSep}
+\DefaultVal{1 unit} of the node in the direction of the bisector of the angle
+modified by \Lkeyword{LabelAngleOffset}\DefaultVal{0} and positioned using
+\Lkeyword{LabelRefPt} \DefaultVal{c}. Furthermore the arc used for marking has a radius
+of \Lkeyword{MarkAngleRadius} \DefaultVal{.4~unit}. At least, it is possible to place
+an arrow using the parameter \Lkeyword{arrows}.Finally, it is possible to mark
+the angle by specifying a \TeX{} command as argument of parameter \Lkeyword{Mark}.
+\end{sloppypar}
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid](-2,-2)(2,2)
+\psset{PointSymbol=none}
+\pstTriangle(2;15){A}(2;85){B}(2;195){C}
+\psset{PointName=none}
+\pstTriangle[PointNameA=default](2;-130){B'}(2;15){A'}(2;195){C'}
+\pstTriangle[PointNameA=default](2;-55){B''}(2;15){A''}(2;195){C''}
+\pstRightAngle[linecolor=red]{C}{B}{A}
+\pstRightAngle[linecolor=blue, RightAngleType=suisseromand]{A}{B'}{C}
+\pstRightAngle[linecolor=magenta, RightAngleType=german]{A}{B''}{C}
+\psset{arcsep=\pslinewidth}
+\pstMarkAngle[linecolor=cyan, Mark=MarkHash]{A}{C}{B}{$\theta$}
+\pstMarkAngle[linecolor=red, arrows=->]{B}{A}{C}{$\gamma$}
+\end{pspicture}
+\end{LTXexample}
+
+
+
+\subsection{Lines, half-lines and segments}
+
+The classical line $(\overline{AB})$!
+
+\begin{BDef}
+\Lcs{pstLineAB}\OptArgs\Largb{A}\Largb{B}
+\end{BDef}
+
+In order to control its length\footnote{which is the comble for a
+line!}, the two parameters \Lkeyword{nodesepA} et \Lkeyword{nodesepB}
+specify the abscissa of the extremity of the drawing part of the line.
+A negative abscissa specify an outside point, while a positive
+abscissa specify an internal point. If these parameters have to be
+equal, \Lkeyword{nodesep} can be used instead. The default value of these
+parameters is equal to 0.
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid](-2,-2)(2,2)
+\pstGeonode(1,1){A}(-1,-1){B}
+\pstLineAB[nodesepA=-.4,nodesepB=-1,
+ linecolor=green]{A}{B}
+\pstLineAB[nodesep=.4,linecolor=red]{A}{B}
+\end{pspicture}
+\end{LTXexample}
+
+
+
+
+
+ \subsection{Circles}
+
+A circle can be defined either with its center and a point of its
+circumference, or with two diameterly opposed points. There is two
+commands :
+
+
+\begin{BDef}
+\Lcs{pstCircleOA}\OptArgs\Largb{O}\Largb{A}\\
+\Lcs{pstCircleAB}\OptArgs\Largb{O}\Largb{A}\\
+\Lcs{pstDistAB}\OptArgs\Largb{A}\Largb{B}\\
+\Lcs{pstDistVal}\OptArgs\Largb{x}
+\end{BDef}
+
+%\Lcs{pstCircleOA} draws the circle of center $O$ crossing $A$. Possible options are \Lkeyword{Radius} and
+% \Lkeyword{Diameter}.
+
+%\Lcs{pstCircleAB} draws the circle of diameter $AB$ with the same options.
+
+
+For the first macro, it is possible to omit the second point and then
+to specify a radius or a diameter using the parameters \Lkeyword{Radius}
+and \Lkeyword{Diameter}. The values of these parameters must be specified
+with one of the two following macros :
+
+%\Lcs{pstDistAB} Specifies distance $AB$ for the parameters
+% \Lkeyword{Radius}, \Lkeyword{Diameter} and \Lkeyword{DistCoef}.
+
+%\Lcs{pstDistVal} Specifies a numerical value for the parameters
+% \Lkeyword{Radius}, \Lkeyword{Diameter}, and \Lkeyword{DistCoef}.
+
+
+The first specifies a distance between two points. The parameter
+\Lkeyword{DistCoef} can be used to specify a coefficient to reduce or
+enlarge this distance. To be taken into account this last parameter
+must be specified before the distance. The second macro can be used to
+specify an explicit numeric value.
+%
+We will see later how to draw the circle crossing three points.
+%
+ With this package, it becomes possible to draw:
+ \begin{compactitem}
+ \item {\color{red} the circle of center $A$ crossing $B$;}
+ \item {\color{green} the circle of center $A$ whose radius is $AC$;}
+ \item {\color{blue} the circle of center $A$ whose radius is $BC$;}
+ \item {\color{Sepia} the circle of center $B$ whose radius is $AC$;}
+ \item {\color{Aquamarine} the circle of center $B$ of diameter $AC$;}
+ \item {\color{RoyalBlue} the circle whose diameter is $BC$.}
+ \end{compactitem}
+
+\enlargethispage{3\normalbaselineskip}
+
+\bigskip
+\begin{pspicture}[showgrid](-4,-3.3)(5,3)
+\psset{linewidth=2\pslinewidth}
+\pstGeonode[PosAngle={0,-135,90},PointSymbol={*,*,square}](1,0){A}(-2,-1){B}(0,1){C}
+\pstCircleOA[linecolor=red]{A}{B}
+\pstCircleOA[linecolor=green, DistCoef=2 3 div, Radius=\pstDistAB{A}{C}]{A}{}
+\pstCircleOA[linecolor=blue, Radius=\pstDistAB{B}{C}]{A}{}
+\pstCircleOA[linecolor=Sepia, Radius=\pstDistAB{A}{C}]{B}{}
+\pstCircleOA[linecolor=Aquamarine, Diameter=\pstDistAB{A}{C}]{B}{}
+\pstCircleAB[linecolor=RoyalBlue]{B}{C}
+\end{pspicture}
+
+
+\clearpage
+
+\begin{lstlisting}
+\begin{pspicture}[showgrid](-4,-4)(5,3)
+\psset{linewidth=2\pslinewidth}
+\pstGeonode[PosAngle={0,-135,90},PointSymbol={*,*,square}](1,0){A}(-2,-1){B}(0,1){C}
+\pstCircleOA[linecolor=red]{A}{B}
+\pstCircleOA[linecolor=green, DistCoef=2 3 div, Radius=\pstDistAB{A}{C}]{A}{}
+\pstCircleOA[linecolor=blue, Radius=\pstDistAB{B}{C}]{A}{}
+\pstCircleOA[linecolor=Sepia, Radius=\pstDistAB{A}{C}]{B}{}
+\pstCircleOA[linecolor=Aquamarine, Diameter=\pstDistAB{A}{C}]{B}{}
+\pstCircleAB[linecolor=RoyalBlue]{B}{C}
+\end{pspicture}
+\end{lstlisting}
+
+
+ \subsection{Circle arcs}
+
+
+
+\begin{BDef}
+\Lcs{pstArcOAB}\OptArgs\Largb{O}\Largb{A}\Largb{B}\\
+\Lcs{pstArcnOAB}\OptArgs\Largb{O}\Largb{A}\Largb{B}
+\end{BDef}
+
+
+These two macros draw circle arcs, $O$ is the center, the radius
+defined by $OA$, the beginning angle given by $A$ and the final angle
+by $B$. Finally, the first macro draws the arc in the direct way,
+whereas the second in the indirect way. It is not necessary that the
+two points are at the same distance of $O$.
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid](-2,-2)(2,2)
+\pstGeonode[PosAngle={180,0}](1.5;24){A}(1.8;-31){B}
+\pstGeonode{O}
+\psset{arrows=->,arrowscale=2}
+\pstArcOAB[linecolor=red,linewidth=1pt]{O}{A}{B}
+\pstArcOAB[linecolor=blue,linewidth=1pt]{O}{B}{A}
+\pstArcnOAB[linecolor=green]{O}{A}{B}
+\pstArcnOAB[linecolor=magenta]{O}{B}{A}
+\end{pspicture}
+\end{LTXexample}
+
+\subsection{Curved abscissa}
+
+A point can be positioned on a circle using its curved abscissa.
+
+
+
+
+\begin{BDef}
+\Lcs{pstCurvAbsNode}\OptArgs\Largb{O}\Largb{A}\Largb{B}\Largb{Abs}
+\end{BDef}
+
+\begin{sloppypar}
+Possible optional arguments are \Lkeyword{PointSymbol}, \Lkeyword{PosAngle},
+ \Lkeyword{PointName}, \Lkeyword{PointNameSep}, \Lkeyword{PtNameMath}, and \Lkeyword{CurvAbsNeg}.
+%
+The point \Argsans{$B$} is positioned on the circle of center
+\Argsans{$O$} crossing \Argsans{$A$}, with the curved abscissa
+\Argsans{Abs}. The origin is \Argsans{$A$} and the direction is
+anti-clockwise by default. The parameter \Lkeyword{CurvAbsNeg}
+\DefaultVal{false} can change this behavior.
+\end{sloppypar}
+
+If the parameter \Lkeyword{PosAngle} is not specified, the point label is put
+automatically in oirder to be alined with the circle center and the point.
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid](-2.5,-2.5)(2.5,2.5)
+\pstGeonode{O}(2,0){A}
+\pstCircleOA{O}{A}
+\pstCurvAbsNode{O}{A}{M_1}{\pstDistVal{5}}
+\pstCurvAbsNode[CurvAbsNeg=true]%
+ {O}{A}{M_2}{\pstDistAB{A}{M_1}}
+\end{pspicture}
+\end{LTXexample}
+
+\subsection{Generic curve}
+
+It is possible to generate a set of points using a loop, and to give
+them a generic name defined by a radical and a number. The following
+command can draw a interpolated curve crossing all such kind of
+points.
+
+\begin{BDef}
+\Lcs{pstGenericCurve}\OptArgs\Largb{Radical}\Largb{$n_1$}\Largb{$n_2$}
+\end{BDef}
+
+\begin{sloppypar}
+Possible optional arguments are \Lkeyword{GenCurvFirst}, \Lkeyword{GenCurvInc}, and
+ \Lkeyword{GenCurvLast}
+The curve is drawn on the points whose name is defined using the
+radical \Argsans{Radical} followed by a number from \Argsans{$n_1$} to
+\Argsans{$n_2$}. In order to manage side effect, the parameters
+\Lkeyword{GenCurvFirst} et \Lkeyword{GenCurvLast} can be used to specified
+special first or last point. The parameter \Lkeyword{GenCurvInc} can be
+used to modify the increment from a point to the next one
+\DefaultVal{1}.
+\end{sloppypar}
+
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid](-2.5,-2.5)(2.5,1)
+\psset{unit=.00625}
+\pstGeonode{A}
+\multido{\n=20+20}{18}{%
+ \pstGeonode[PointName=M_{\n}](\n;\n){M_\n}}
+\pstGenericCurve[GenCurvFirst=A,GenCurvInc=20,
+ linecolor=blue,linewidth=.5\pslinewidth]{M_}{20}{360}
+ \end{pspicture}
+\end{LTXexample}
+
+\section{Geometric Transformations}
+
+The geometric transformations are the ideal tools to construct geometric figures. All
+the classical transformations are available with the following macros which
+share the same syntaxic scheme end two parameters.
+
+The common syntax put at the end two point lists whose second is optional or with a
+cardinal at least equal. These two lists contain the antecedent points and their
+respective images. In the case no image is given for some points the a default name
+is build appending a\verb$'$ to the antecedent name.
+
+The first shared parameter is \Lkeyword{CodeFig} which draws the specific
+constructions lines. Its default value is \Lkeyword{false}, and a
+\Lkeyword{true} value activates this optional drawing.
+The drawing is done using the line style \Lkeyword{CodeFigStyle}
+\DefaultVal{dashed}, with the color \Lkeyword{CodeFigColor}
+\DefaultVal{cyan}.
+
+Their second shared parameter is \Lkeyword{CurveType} which controls the drawing of a
+line crossing all images, and thus allow a quick description of a transformed figure.
+
+\subsection{Central symmetry}
+
+\begin{BDef}
+\Lcs{pstSymO}\OptArgs\Largb{$O$}\Largb{$M_1, M_2, \cdots, M_n$}\OptArg{$M'_1, M'_2, \cdots, M'_p$}
+\end{BDef}
+
+\begin{sloppypar}
+Possible optional arguments are
+ \Lkeyword{PointSymbol}, \Lkeyword{PosAngle},
+ \Lkeyword{PointName}, \Lkeyword{PointNameSep}, \Lkeyword{PtNameMath},
+ \Lkeyword{CodeFig}, \Lkeyword{CodeFigColor}, and \Lkeyword{CodeFigStyle}.
+Draw the symmetric point in relation to point $O$. The classical
+parameter of point creation are usable here, and also for all the
+following functions.
+\end{sloppypar}
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid](-2,-2)(2,2)
+\psset{CodeFig=true}
+\pstGeonode[PosAngle={20,90,0}]{O}(-.6,1.5){A}(1.6,-.5){B}
+\pstSymO[CodeFigColor=blue,
+ PosAngle={-90,180}]{O}{A, B}[C, D]
+\pstLineAB{A}{B}\pstLineAB{C}{D}
+\pstLineAB{A}{D}\pstLineAB{C}{B}
+\end{pspicture}
+\end{LTXexample}
+
+\subsection{Orthogonal (or axial) symmetry}
+
+\begin{BDef}
+\Lcs{pstOrtSym}\OptArgs\Largb{$A$}\Largb{$B$}\Largb{$M_1, M_2, \cdots, M_n$}\OptArg{$M'_1, M'_2, \cdots, M'_p$}
+\end{BDef}
+
+\begin{sloppypar}
+Possible optional arguments are
+\Lkeyword{PointSymbol}, \Lkeyword{PosAngle},
+ \Lkeyword{PointName}, \Lkeyword{PointNameSep}, \Lkeyword{PtNameMath},
+ \Lkeyword{CodeFig}, \Lkeyword{CodeFigColor}, and \Lkeyword{CodeFigStyle}.
+%
+Draws the symmetric point in relation to line $(AB)$.
+\end{sloppypar}
+
+\begin{LTXexample}[width=5cm,pos=l]
+\psset{unit=0.6}
+\begin{pspicture}[showgrid](0,-2)(8,7)
+\pstTriangle(1,3){B}(5,5){C}(4,1){A}
+\pstOrtSym{A}{B}{C}[D]
+\psset{CodeFig=true}
+\pstOrtSym[dash=2mm 2mm,CodeFigColor=red]%
+ {C}{B}{A}
+\pstOrtSym[SegmentSymbol=pstslash,
+ linestyle=dotted,dotsep=3mm,CodeFigColor=blue]%
+ {C}{A}{B}
+\end{pspicture}
+\end{LTXexample}
+
+
+\subsection{Rotation}
+
+
+\begin{BDef}
+\Lcs{pstRotation}\OptArgs\Largb{$O$}\Largb{$M_1, M_2, \cdots, M_n$}\OptArg{$M'_1, M'_2, \cdots, M'_p$}\\
+\Lcs{pstAngleAOB}\Largb{$A$}\Largb{$O$}\Largb{$B$}
+\end{BDef}
+
+\begin{sloppypar}
+Possible optional arguments are
+ \Lkeyword{PointSymbol}, \Lkeyword{PosAngle},
+ \Lkeyword{PointName}, \Lkeyword{PointNameSep}, \Lkeyword{PtNameMath}, and \Lkeyword{RotAngle}
+for \Lcs{pstRotation} and \Lkeyword{AngleCoef}, \Lkeyword{RotAngle} for \Lcs{pstAngleABC}.
+%
+Draw the image of $M_i$ by the rotation of center $O$ and angle given by
+the parameter \Lkeyword{RotAngle}. This later can be an angle specified
+by three points. In such a case, the following function must be used:
+\end{sloppypar}
+
+
+
+Never forget to use the rotation for drawing a square or an equilateral
+triangle. The parameter \Lkeyword{CodeFig} puts a bow with an arrow between the
+point and its image, and if \Lkeyword{TransformLabel} \DefaultVal{none}
+contain some text, it is put on the corresponding angle in mathematical mode.
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid](-2,-2)(2,2)
+\psset{arrowscale=2}
+\pstGeonode[PosAngle=-135](-1.5,-.2){A}%
+ (.5,.2){B}(0,-2){D}
+\pstRotation[PosAngle=90,RotAngle=60,
+ CodeFig,CodeFigColor=blue,
+ TransformLabel=\frac{\pi}{3}]{A}{B}[C]
+\pstRotation[AngleCoef=.5,
+ RotAngle=\pstAngleAOB{B}{A}{C},
+ CodeFigColor=red, CodeFig,
+ TransformLabel=\frac{1}{2}\widehat{BAC}]{A}{D}[E]
+\end{pspicture}
+\end{LTXexample}
+
+
+ \subsection{Translation}
+
+\begin{BDef}
+\Lcs{pstTranslation}\OptArgs\Largb{$A$}\Largb{$B$}\Largb{$M_1, M_2, \cdots, M_n$}\OptArg{$M'_1, M'_2, \cdots, M'_p$}
+\end{BDef}
+
+\begin{sloppypar}
+Possible optional arguments are
+\Lkeyword{PointSymbol}, \Lkeyword{PosAngle},
+ \Lkeyword{PointName}, \Lkeyword{PointNameSep}, \Lkeyword{PtNameMath}, and \Lkeyword{DistCoef}
+%
+Draws the translated $M'_i$ of $M_i$ using the vector $\vec{AB}$. Useful for drawing a
+parallel line.
+\end{sloppypar}
+
+The parameter \Lkeyword{DistCoef} can be used as a multiplicand
+coefficient to modify the translation vector. The parameter \Lkeyword{CodeFig}
+draws the translation vector le vecteur de translation between the
+point and its image, labeled in its middle defaultly with the vector name or by the
+text specified with \Lkeyword{TransformLabel} \DefaultVal{none}.
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid](-2,-2)(2,2)
+\psset{linecolor=green,nodesep=-1,
+ PosAngle=90,arrowscale=2}
+\pstGeonode(-1.5,-1.2){A}(.5,-.8){B}(.5,1){C}(-1,0){D}(-2,-2){E}
+\pstTranslation{B}{A}{C}
+\psset{CodeFig,TransformLabel=default}
+\pstTranslation{A}{B}{D}
+\pstTranslation[DistCoef=1.5]{A}{B}{E}
+\pstLineAB{A}{B}\pstLineAB{C}{C'}
+\end{pspicture}
+\end{LTXexample}
+
+
+
+\subsection{Homothetie}
+
+
+\begin{BDef}
+\Lcs{pstHomO}\OptArgs\Largb{$O$}\Largb{$M_1, M_2, \cdots, M_n$}\OptArg{$M'_1, M'_2, \cdots, M'_p$}
+\end{BDef}
+
+\begin{sloppypar}
+Possible optional arguments are
+\Lkeyword{HomCoef},
+ \Lkeyword{PointSymbol}, \Lkeyword{PosAngle},
+ \Lkeyword{PointName}, \Lkeyword{PointNameSep}, \Lkeyword{PtNameMath}, and \Lkeyword{HomCoef}.
+%
+Draws $M'_i$ the image of $M_i$ by the homotethy of center $O$ and
+coefficient specified with the parameter \Lkeyword{HomCoef}.
+\end{sloppypar}
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid](-2,-2)(2,2)
+\pstGeonode[PosAngle={0,-45}](.5,1){O}%
+ (-1.5,-1.2){A}(.5,-.8){B}
+\pstHomO[HomCoef=.62,PosAngle=-45]{O}{A,B}[C,D]
+\psset{linecolor=green,nodesep=-1}
+\pstLineAB{A}{O}\pstLineAB{B}{O}
+\psset{linecolor=red,nodesep=-.5}
+\pstLineAB{A}{B}\pstLineAB{C}{D}
+\end{pspicture}
+\end{LTXexample}
+
+
+\subsection{Orthogonal projection}
+
+
+\begin{BDef}
+\Lcs{pstProjection}\OptArgs\Largb{$A$}\Largb{$B$}\Largb{$M_1, M_2, \cdots, M_n$}\OptArg{$M'_1, M'_2, \cdots, M'_p$}
+\end{BDef}
+
+\begin{sloppypar}
+Possible optional arguments are
+ \Lkeyword{PointSymbol}, \Lkeyword{PosAngle},
+ \Lkeyword{PointName}, \Lkeyword{PointNameSep}, \Lkeyword{PtNameMath},
+ \Lkeyword{CodeFig}, \Lkeyword{CodeFigColor}, and\Lkeyword{CodeFigStyle}
+%
+Projects orthogonally the point $M_i$ on the line $(AB)$. Useful for the altitude of a
+triangle. The name is aligned with the point and the projected point as
+shown in the exemple.
+\end{sloppypar}
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid](-3,-2)(2,2)
+\psset{PointSymbol=none,CodeFig,CodeFigColor=red}
+\pstTriangle(1,1){A}(-2,1){C}(-1,-1){B}
+\pstProjection{A}{B}{C}[I]
+\pstProjection{A}{C}{B}[J]
+\pstProjection{C}{B}{A}[K]
+\end{pspicture}
+\end{LTXexample}
+
+\section{Special object}
+
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ \subsection{Midpoint}
+
+
+
+\begin{BDef}
+\Lcs{pstMiddleAB}\OptArgs\Largb{$A$}\Largb{$B$}\Largb{$I$}
+\end{BDef}
+
+\begin{sloppypar}
+\Lkeyword{PointSymbol}, \Lkeyword{PosAngle},
+ \Lkeyword{PointName}, \Lkeyword{PointNameSep}, \Lkeyword{PtNameMath}, \Lkeyword{SegmentSymbol},
+ \Lkeyword{CodeFig}, \Lkeyword{CodeFigColor}, and \Lkeyword{CodeFigStyle}
+%
+Draw the midpoint $I$ of segment $[AB]$. By default, the point name is
+automatically put below the segment.
+\end{sloppypar}
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid](-3,-2)(2,2)
+\pstTriangle[PointSymbol=none]%
+ (1,1){A}(-1,-1){B}(-2,1){C}
+\pstMiddleAB{A}{B}{C'}
+\pstMiddleAB{C}{A}{B'}
+\pstMiddleAB{B}{C}{A'}
+\end{pspicture}
+\end{LTXexample}
+
+
+ \subsection{Triangle center of gravity}
+
+
+\begin{BDef}
+\Lcs{pstCGravABC}\OptArgs\Largb{$A$}\Largb{$B$}\Largb{$C$}\Largb{$G$}
+\end{BDef}
+
+\begin{sloppypar}
+Possible optional arguments are
+\Lkeyword{PointName}, \Lkeyword{PointNameSep}, \Lkeyword{PosAngle},
+ \Lkeyword{PointSymbol}, and \Lkeyword{PtNameMath}
+%
+Draw the $ABC$ triangle centre of gravity $G$.
+\end{sloppypar}
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid](-3,-2)(2,2)
+\pstTriangle[PointSymbol=none]%
+ (1,1){A}(-1,-1){B}(-2,1){C}
+\pstCGravABC{A}{B}{C}{G}
+\end{pspicture}
+\end{LTXexample}
+
+
+ \subsection{Centre of the circumcircle of a triangle}
+
+
+
+\begin{BDef}
+\Lcs{pstCircleABC}\OptArgs\Largb{$A$}\Largb{$B$}\Largb{$C$}\Largb{$O$}
+\end{BDef}
+
+\begin{sloppypar}
+Possible optional arguments are
+\Lkeyword{PointName}, \Lkeyword{PointNameSep}, \Lkeyword{PosAngle},
+ \Lkeyword{PointSymbol}, \Lkeyword{PtNameMath}, \Lkeyword{DrawCirABC}, \Lkeyword{CodeFig},
+ \Lkeyword{CodeFigColor}, \Lkeyword{CodeFigStyle}, \Lkeyword{SegmentSymbolA},
+ \Lkeyword{SegmentSymbolB}, and \Lkeyword{SegmentSymbolC}.
+%
+Draws the circle crossing three points (the circum circle) and put its center $O$.
+The effective drawing is controlled by the boolean parameter \Lkeyword{DrawCirABC}
+\DefaultVal{true}. Moreover the intermediate constructs (mediator lines) can
+be drawn by setting the boolean parameter \Lkeyword{CodeFig}. In that case the middle
+points are marked on the segemnts using three different marks given by the parameters
+\Lkeyword{SegmentSymbolA}, \Lkeyword{SegmentSymbolB} et \Lkeyword{SegmentSymbolC}.
+\end{sloppypar}
+
+\begin{LTXexample}[width=6cm,pos=l]
+\begin{pspicture}[showgrid](6,6)
+\pstTriangle[PointSymbol=none]%
+ (4,1){A}(1,3){B}(5,5){C}
+\pstCircleABC[CodeFig,CodeFigColor=blue,
+ linecolor=red,PointSymbol=none]{A}{B}{C}{O}
+\end{pspicture}
+\end{LTXexample}
+
+
+ \subsection{Perpendicular bisector of a segment}
+
+\begin{BDef}
+\Lcs{pstMediatorAB}\OptArgs\Largb{$A$}\Largb{$B$}\Largb{$I$}\Largb{$M$}
+\end{BDef}
+
+\begin{sloppypar}
+Possible optional arguments are
+\Lkeyword{PointName}, \Lkeyword{PointNameSep}, \Lkeyword{PosAngle},
+ \Lkeyword{PointSymbol}, \Lkeyword{PtNameMath}, \Lkeyword{CodeFig},
+ \Lkeyword{CodeFigColor}, \Lkeyword{CodeFigStyle}, and \Lkeyword{SegmentSymbol}.
+%
+The perpendicular bisector of a segment is a line perpendicular to
+this segment in its midpoint. The segment is $[AB]$, the midpoint $I$,
+and $M$ is a point belonging to the perpendicular bisector line. It is
+build by a rotation of $B$ of 90 degrees around $I$. This mean
+that the order of $A$ and $B$ is important, it controls the position
+of $M$. The command creates the two points $M$ end $I$. The
+construction is controlled by the following parameters:
+\end{sloppypar}
+
+\begin{compactitem}
+\item \Lkeyword{CodeFig}, \Lkeyword{CodeFigColor} and \Lkeyword{SegmentSymbol}
+ for marking the right angle ;
+\item \Lkeyword{PointSymbol} et \Lkeyword{PointName} for controlling the
+ drawing of the two points, each of them can be specified
+ separately with the parameters \Lkeyword{...A} and \Lkeyword{...B} ;
+\item parameters controlling the line drawing.
+\end{compactitem}
+
+
+\begin{LTXexample}[width=6cm,pos=l]
+\begin{pspicture}[showgrid](6,6)
+\pstTriangle[PointSymbol=none](3.5,1){A}(1,4){B}(5,4.2){C}
+\psset{linecolor=red,CodeFigColor=red,nodesep=-1}
+\pstMediatorAB[PointSymbolA=none]{A}{B}{I}{M_I}
+\psset{PointSymbol=none,PointNameB=none}
+\pstMediatorAB[CodeFig=true]{A}{C}{J}{M_J}
+\pstMediatorAB[PosAngleA=45,linecolor=blue]
+ {C}{B}{K}{M_K}
+\end{pspicture}
+\end{LTXexample}
+
+
+
+ \subsection{Bisectors of angles}
+
+
+
+\begin{BDef}
+\Lcs{pstBissectBAC}\OptArgs\Largb{$B$}\Largb{$A$}\Largb{$C$}\Largb{$N$}\\
+\Lcs{pstOutBissectBAC}\OptArgs\Largb{$B$}\Largb{$A$}\Largb{$C$}\Largb{$N$}
+\end{BDef}
+
+\begin{sloppypar}
+Possible optional arguments are
+\Lkeyword{PointSymbol}, \Lkeyword{PosAngle},
+ \Lkeyword{PointName}, \Lkeyword{PointNameSep}, and \Lkeyword{PtNameMath}.
+%
+There are two bisectors for a given geometric angle: the inside one and
+the outside one; this is why there is two commands. The angle is
+specified by three points specified in the trigonometric direction
+(anti-clockwise). The result of the commands is the specific line and
+a point belonging to this line. This point is built by a rotation of
+point $B$.
+\end{sloppypar}
+
+
+\begin{LTXexample}[width=6cm,pos=l]
+\begin{pspicture}[showgrid](6,6)
+\psset{CurveType=polyline,linecolor=red}
+\pstGeonode[PosAngle={180,-75,45}]%
+ (1,4){B}(4,1){A}(5,4){C}
+\pstBissectBAC[linecolor=blue]{C}{A}{B}{A'}
+\pstOutBissectBAC[linecolor=green,PosAngle=180]%
+ {C}{A}{B}{A''}
+\end{pspicture}
+\end{LTXexample}
+
+
+\section{Intersections}
+
+Points can be defined by intersections. Six intersection types are
+managed:
+
+\begin{compactitem}
+\item line-line;
+\item line-circle;
+\item circle-circle;
+\item function-function;
+\item function-line;
+\item function-circle.
+\end{compactitem}
+
+An intersection can not exist: case of parallel lines. In such a case,
+the point(s) are positioned at the origin. In fact, the user has to
+manage the existence of these points.
+
+ \subsection{Line-Line}
+
+
+
+\begin{BDef}
+\Lcs{pstInterLL}\OptArgs\Largb{$A$}\Largb{$B$}\Largb{$C$}\Largb{$D$}\Largb{$M$}
+\end{BDef}
+
+\begin{sloppypar}
+Possible optional arguments are
+\Lkeyword{PointSymbol}, \Lkeyword{PosAngle},
+ \Lkeyword{PointName}, \Lkeyword{PointNameSep}, and \Lkeyword{PtNameMath}.
+%
+Draw the intersection point between lines $(AB)$ and $(CD)$.
+\end{sloppypar}
+
+\begin{description}
+\item[basique]
+
+
+\begin{LTXexample}[width=6cm,pos=l]
+\begin{pspicture}[showgrid](-1,-2)(4,3)
+\pstGeonode(0,-1){A}(3,2){B}(3,0){C}(1,2){D}
+\pstInterLL[PointSymbol=square]{A}{B}{C}{D}{E}
+\psset{linecolor=blue, nodesep=-1}
+\pstLineAB{A}{B}\pstLineAB{C}{D}
+\end{pspicture}
+\end{LTXexample}
+
+
+\item[Horthocentre]
+
+\begin{LTXexample}[width=6cm,pos=l]
+\begin{pspicture}[showgrid](-2,-2)(3,3)
+\psset{CodeFig,PointSymbol=none}
+\pstTriangle[PosAngleA=180](-1,0){A}(3,-1){B}(3,2){C}
+\pstProjection[PosAngle=-90]{B}{A}{C}
+\pstProjection{B}{C}{A}
+\pstProjection[PosAngle=90]{A}{C}{B}
+\pstInterLL[PosAngle=135,PointSymbol=square]{A}{A'}{B}{B'}{H}
+\end{pspicture}
+\end{LTXexample}
+
+\end{description}
+
+ \subsection{Circle--Line}
+
+\begin{BDef}
+\Lcs{pstInterLC}\OptArgs\Largb{$A$}\Largb{$B$}\Largb{$O$}\Largb{$C$}\Largb{$M_1$}\Largb{$M_2$}
+\end{BDef}
+
+\begin{sloppypar}
+Possible optional arguments are
+\Lkeyword{PointSymbol}, \Lkeyword{PosAngle},
+ \Lkeyword{PointName}, \Lkeyword{PointNameSep}, \Lkeyword{PtNameMath},
+ \Lkeyword{PointSymbolA}, \Lkeyword{PosAngleA}, \Lkeyword{PointNameA},
+ \Lkeyword{PointSymbolB}, \Lkeyword{PosAngleB}, \Lkeyword{PointNameB},
+ \Lkeyword{Radius}, and \Lkeyword{Diameter}.
+%
+Draw the one or two intersection point(s) between the line $(AB)$ and
+the circle of centre $O$ and with radius $OC$.
+\end{sloppypar}
+
+The circle is specified with its center and either a point of its
+circumference or with a radius specified with parameter \Lkeyword{radius}
+or its diameter specified with parameter \Lkeyword{Diameter}. These two
+parameters can be modify by coefficient \Lkeyword{DistCoef}.
+
+
+The position of the wo points is such that the vectors $\vec{AB}$ abd
+$\vec{M_1M_2}$ are in the same direction. Thus, if the points
+definig the line are switch, then the resulting points will be also
+switched. If the intersection is void, then the points are positionned
+at the center of the circle.
+
+
+\begin{LTXexample}[width=6cm,pos=l]
+\psset{unit=0.8}
+\begin{pspicture}[showgrid](-3,-2)(4,4)
+\pstGeonode[PosAngle={-135,80,0}](-1,0){B}(3,-1){C}(-.9,.5){O}(0,2){A}
+\pstGeonode(-2,3){I}
+\pstCircleOA[linecolor=red]{O}{A}
+\pstInterLC[PosAngle=-80]{C}{B}{O}{A}{D}{E}
+\pstInterLC[PosAngleB=60, Radius=\pstDistAB{O}{D}]{I}{C}{O}{}{F}{G}
+\pstInterLC[PosAngleB=180,DistCoef=1.3,Diameter=\pstDistAB{O}{D}]
+ {I}{B}{O}{}{H}{J}
+\pstCircleOA[linecolor=red,DistCoef=1.3,Diameter=\pstDistAB{O}{D}]{O}{}
+\psset{nodesep=-1}
+\pstLineAB[linecolor=green]{E}{C}
+\pstLineAB[linecolor=cyan]{I}{C}
+\pstLineAB[linecolor=magenta]{J}{I}
+\end{pspicture}
+\end{LTXexample}
+
+
+
+\subsection{Circle--Circle}
+
+\begin{BDef}
+\Lcs{pstInterCC}\OptArgs\Largb{$O_1$}\Largb{$B$}\Largb{$O_2$}\Largb{$C$}\Largb{$M_1$}\Largb{$M_2$}
+\end{BDef}
+
+
+This function is similar to the last one. The boolean parameters
+\Lkeyword{CodeFigA} et \Lkeyword{CodeFigB} allow the drawing of the arcs
+at the intersection. In order to get a coherence \Lkeyword{CodeFig} allow
+the drawing of both arcs. The boolean parameters \Lkeyword{CodeFigAarc} and
+\Lkeyword{CodeFigBarc} specified the direction of these optional arcs:
+trigonometric (by default) or clockwise. Here is a first example.
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid](0,-1)(4,3)
+\psset{dash=2mm 2mm}
+\rput{10}{%
+ \pstGeonode[PosAngle={0,-90,-90,90}]
+ (1,-1){O}(2,1){A}(2,0.1){B}(2.5,1){C}}
+\pstCircleOA[linecolor=red]{C}{B}
+\pstInterCC[PosAngleA=135, CodeFigA=true, CodeFigAarc=false,
+ CodeFigColor=magenta]{O}{A}{C}{B}{D}{E}
+\pstInterCC[PosAngleA=170, CodeFigA=true,
+ CodeFigAarc=false,
+ CodeFigColor=green]{B}{E}{C}{B}{F}{G}
+\end{pspicture}
+\end{LTXexample}
+
+
+And a more complete one, which includes the special circle
+specification using radius and diameter. For such specifications it
+exists the parameters \Lkeyword{RadiusA}, \Lkeyword{RadiusB},
+\Lkeyword{DiameterA} and \Lkeyword{DiameterB}.
+
+\begin{LTXexample}
+\begin{pspicture}[showgrid](-3,-4)(7,3)
+\pstGeonode[PointName={\Omega,O}](3,-1){Omega}(1,-1){O}
+\pstGeonode[PointSymbol=square, PosAngle={-90,90}](0,3){A}(2,2){B}
+\psset{PointSymbol=o}
+\pstCircleOA[linecolor=red, DistCoef=1 3 10 div add, Radius=\pstDistAB{A}{B}]{O}{}
+\pstCircleOA[linecolor=Orange, Diameter=\pstDistAB{A}{B}]{O}{}
+\pstCircleOA[linecolor=Violet, Radius=\pstDistAB{A}{B}]{Omega}{}
+\pstCircleOA[linecolor=Purple, Diameter=\pstDistAB{A}{B}]{Omega}{}
+\pstInterCC[DistCoef=1 3 10 div add, RadiusA=\pstDistAB{A}{B},
+ DistCoef=none, RadiusB=\pstDistAB{A}{B}]{O}{}{Omega}{}{D}{E}
+\pstInterCC[DiameterA=\pstDistAB{A}{B}, RadiusB=\pstDistAB{A}{B}]{O}{}{Omega}{}{F}{G}
+\pstInterCC[DistCoef=1 3 10 div add, RadiusA=\pstDistAB{A}{B},
+ DistCoef=none, DiameterB=\pstDistAB{A}{B}]{O}{}{Omega}{}{H}{I}
+\pstInterCC[DiameterA=\pstDistAB{A}{B}, DiameterB=\pstDistAB{A}{B}]{O}{}{Omega}{}{J}{K}
+\end{pspicture}
+\end{LTXexample}
+
+ \subsection{Function--function}
+
+
+\begin{BDef}
+\Lcs{pstInterFF}\OptArgs\Largb{$f$}\Largb{$g$}\Largb{$x_0$}\Largb{$M$}
+\end{BDef}
+
+This function put a point at the intersection between two curves
+defined by a function. $x_0$ is an intersection approximated value of
+the abscissa. It is obviously possible to ise this function several
+time if more than one intersection is present. Each function is
+describerd in \PS in the same way as the description used by
+the \Lcs{psplot} macro of \PST. A constant function can be
+specified, and then seaching function root is possible.
+
+The Newton algorithm is used for the research, and the intersection
+may not to be found. In such a case the point is positionned at the
+origin. On the other hand, the research can be trapped (in a local
+extremum near zero).
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid](-3,-1)(2,4)
+\psaxes{->}(0,0)(-2,0)(2,4)
+\psset{linewidth=1.5pt,algebraic}
+\psplot[linecolor=gray]{-2}{2}{x^2}
+\psplot{-2}{2}{2-x/2}
+\psset{PointSymbol=o}
+\pstInterFF{2-x/2}{x^2}{1}{M_1}
+\pstInterFF{2-x/2}{x^2}{-2}{M_0}
+\end{pspicture}
+\end{LTXexample}
+
+\subsection{Function--line}
+
+\begin{BDef}
+\Lcs{pstInterFL}\OptArgs\Largb{$f$}\Largb{$A$}\Largb{$B$}\Largb{$x_0$}\Largb{$M$}
+\end{BDef}
+
+Puts a point at the intersection between the function $f$ and the line
+$(AB)$.
+
+\begin{LTXexample}[width=6cm,pos=l]
+\begin{pspicture}[showgrid](-3,-1.5)(3,4)
+\def\F{x^3/3 - x + 2/3 }
+\psaxes{->}(0,0)(-3,-1)(3,4)
+\psplot[linewidth=1.5pt,algebraic]{-2.5}{2.5}{\F}
+\psset{PointSymbol=*}
+\pstGeonode[PosAngle={-45,0}](0,-.2){N}(2.5,1){M}
+\pstLineAB[nodesepA=-3cm]{N}{M}
+\psset{PointSymbol=o,algebraic}
+\pstInterFL{\F}{N}{M}{2}{A}
+\pstInterFL[PosAngle=90]{\F}{N}{M}{0}{A'}
+\pstInterFL{\F}{N}{M}{-2}{A''}
+\end{pspicture}
+\end{LTXexample}
+
+
+\vspace{1cm}
+\subsection{Function--Circle}
+
+\begin{BDef}
+\Lcs{pstInterFC}\OptArgs\Largb{$f$}\Largb{$O$}\Largb{$A$}\Largb{$x_0$}\Largb{$M$}
+\end{BDef}
+
+Puts a point at the intersection between the function $f$ and the circle
+of centre $O$ and radius $OA$.
+
+\begin{LTXexample}[width=6cm,pos=l]
+\begin{pspicture}[showgrid](-3,-4)(3,4)
+\def\F{2*cos(x)}
+\psset{algebraic}
+\pstGeonode(0.3,-1){O}(2,.5){M}
+\ncline[linecolor=blue, arrowscale=2]{->}{O}{M}
+\psaxes{->}(0,0)(-3,-3)(3,4)
+\psplot[linewidth=1.5pt]{-3.14}{3.14}{\F}
+\pstCircleOA[PointSymbol=*]{O}{M}
+\psset{PointSymbol=o}
+\pstInterFC{\F}{O}{M}{1}{N0}
+\pstInterFC{\F}{O}{M}{-1}{N1}
+\pstInterFC{\F}{O}{M}{-2}{N2}
+\pstInterFC{\F}{O}{M}{2}{N3}
+\end{pspicture}
+\end{LTXexample}
+
+
+
+\section{Helper Macros}
+
+\begin{BDef}
+\Lcs{psGetDistanceAB}\OptArgs\coord1\coord2\Largb{<name>}\\
+\Lcs{psGetAngleABC}\OptArgs\coord1\coord2\coord3\Largb{<symbol>}
+\end{BDef}
+
+
+Calculates and prints the values. This is only possible on PostScript level!
+
+
+\begin{pspicture}[showgrid](-1,0)(11,8)
+\def\sideC{6} \def\sideA{7} \def\sideB{8}
+\psset{PointSymbol=none,linejoin=1,linewidth=0.4pt,PtNameMath=false,labelsep=0.07,MarkAngleRadius=1.1,decimals=1,comma}
+\pstGeonode[PosAngle={90,90}](0,0){A}(\sideC;10){B}
+\psset{PointName=}
+\pstInterCC[RadiusA=\pstDistVal{\sideB},RadiusB=\pstDistVal{\sideA},PosAngle=-90,PointNameA=C]{A}{}{B}{}{C}{C-}
+\pstInterCC[RadiusA=\pstDistAB{A}{B},RadiusB=\pstDistAB{B}{C}]{C}{}{A}{}{D-}{D}
+\pstInterLC[Radius=\pstDistAB{A}{C}]{C}{D}{C}{}{A'-}{A'}
+\pstInterCC[RadiusA=\pstDistAB{A}{B},RadiusB=\pstDistAB{B}{C}]{A'}{}{C}{}{B'}{B'-}
+\pstInterLL[PosAngle=90,PointName=default]{B'}{C}{A}{B}{E}
+\pspolygon(A)(B)(C)
+\pspolygon[fillstyle=solid,fillcolor=magenta,opacity=0.1](C)(E)(B)
+%
+\psGetAngleABC[ArcColor=blue,AngleValue=true,LabelSep=0.7,arrows=->,decimals=0,PSfont=Palatino-Roman](B)(A)(C){}
+\psGetAngleABC[AngleValue=true,ArcColor=red,arrows=->,WedgeOpacity=0.6,WedgeColor=yellow!30,LabelSep=0.5](C)(B)(A){$\beta$}
+\psGetAngleABC[LabelSep=0.7,WedgeColor=green,xShift=-6,yShift=-10](A)(C)(B){$\gamma$}
+\psGetAngleABC[LabelSep=0.7,AngleArc=false,WedgeColor=green,arrows=->,xShift=-15,yShift=0](C)(E)(B){\color{blue}$\gamma$}
+\psGetAngleABC[AngleValue=true,MarkAngleRadius=1.0,LabelSep=0.5,ShowWedge=false,xShift=-5,yShift=7,arrows=->](E)(B)(C){}
+%
+\pcline[linestyle=none](A)(B)\nbput{\sideC}
+\pcline[linestyle=none](C)(B)\naput{\sideA}
+\psGetDistanceAB[xShift=-8,yShift=4](B)(E){MW}
+\psGetDistanceAB[fontscale=15,xShift=4,decimals=0](A)(C){MAC}
+\psGetDistanceAB[xShift=-17,decimals=2](E)(C){MEC}
+\end{pspicture}
+
+
+
+
+
+\begin{lstlisting}
+\begin{pspicture}(-1,0)(11,8)
+\psgrid[gridlabels=0pt,subgriddiv=2,gridwidth=0.4pt,subgridwidth=0.2pt,gridcolor=black!60,subgridcolor=black!40]
+\def\sideC{6} \def\sideA{7} \def\sideB{8}
+\psset{PointSymbol=none,linejoin=1,linewidth=0.4pt,PtNameMath=false,labelsep=0.07,MarkAngleRadius=1.1,decimals=1,comma}
+\pstGeonode[PosAngle={90,90}](0,0){A}(\sideC;10){B}
+% \pstGeonode[PosAngle={225,-75}](0,0){A}(\sideC;10){B}
+\psset{PointName=}
+\pstInterCC[RadiusA=\pstDistVal{\sideB},RadiusB=\pstDistVal{\sideA},PosAngle=-90,PointNameA=C]{A}{}{B}{}{C}{C-}
+\pstInterCC[RadiusA=\pstDistAB{A}{B},RadiusB=\pstDistAB{B}{C}]{C}{}{A}{}{D-}{D}
+\pstInterLC[Radius=\pstDistAB{A}{C}]{C}{D}{C}{}{A'-}{A'}
+\pstInterCC[RadiusA=\pstDistAB{A}{B},RadiusB=\pstDistAB{B}{C}]{A'}{}{C}{}{B'}{B'-}
+\pstInterLL[PosAngle=90,PointName=default]{B'}{C}{A}{B}{E}
+\pspolygon(A)(B)(C)
+\pspolygon[fillstyle=solid,fillcolor=magenta,opacity=0.1](C)(E)(B)
+%
+\psGetAngleABC[ArcColor=blue,AngleValue=true,LabelSep=0.7,arrows=->,decimals=0,PSfont=Palatino-Roman](B)(A)(C){}
+\psGetAngleABC[AngleValue=true,ArcColor=red,arrows=->,WedgeOpacity=0.6,WedgeColor=yellow!30,LabelSep=0.5](C)(B)(A){$\beta$}
+\psGetAngleABC[LabelSep=0.7,WedgeColor=green,xShift=-6,yShift=-10](A)(C)(B){$\gamma$}
+\psGetAngleABC[LabelSep=0.7,AngleArc=false,WedgeColor=green,arrows=->,xShift=-15,yShift=0](C)(E)(B){\color{blue}$\gamma$}
+\psGetAngleABC[AngleValue=true,MarkAngleRadius=1.0,LabelSep=0.5,ShowWedge=false,xShift=-5,yShift=7,arrows=->](E)(B)(C){}
+%
+\pcline[linestyle=none](A)(B)\nbput{\sideC}
+\pcline[linestyle=none](C)(B)\naput{\sideA}
+\psGetDistanceAB[xShift=-8,yShift=4](B)(E){MW}
+\psGetDistanceAB[fontscale=15,xShift=4,decimals=0](A)(C){MAC}
+\psGetDistanceAB[xShift=-17,decimals=2](E)(C){MEC}
+\end{pspicture}
+\end{lstlisting}
+
+\clearpage
+
+
+
+\addtocontents{toc}{\protect\newpage}
+
+\part{Examples gallery}
+\appendix
+\section{Basic geometry}
+
+\subsection{Drawing of the bissector}
+
+\begin{LTXexample}[width=5cm,pos=l]
+\begin{pspicture}[showgrid](-1,-1)(4.4,5)
+\psset{PointSymbol=none,PointName=none}
+\pstGeonode[PosAngle={180,130,-90},PointSymbol={default,none},
+ PointName=default](2,0){B}(0,1){O}(1,4){A}
+\pstLineAB[nodesepB=-1,linecolor=red]{O}{A}
+\pstLineAB[nodesepB=-1,linecolor=red]{O}{B}
+\pstInterLC[PosAngleB=-45]{O}{B}{O}{A}{G}{C}
+\psset{arcsepA=-1, arcsepB=-1}
+\pstArcOAB[linecolor=green,linestyle=dashed]{O}{C}{A}
+\pstInterCC[PosAngleA=100]{A}{O}{C}{O}{O'}{OO}
+\pstArcOAB[linecolor=blue,linestyle=dashed]{A}{O'}{O'}
+\pstArcOAB[linecolor=blue,linestyle=dashed]{C}{O'}{O'}
+\pstLineAB[nodesepB=-1,linecolor=cyan]{O}{O'}
+\psset{arcsep=1pt,linecolor=magenta,Mark=MarkHash}
+\pstMarkAngle{C}{O}{O'}{}
+\pstMarkAngle[MarkAngleRadius=.5]{O'}{O}{A}{}
+\end{pspicture}
+\end{LTXexample}
+
+
+\newpage
+
+\subsection{Transformation de polygones et courbes}
+
+Here is an example of the use of \Lkeyword{CurveType} with transformation.
+
+\begin{LTXexample}
+\begin{pspicture}(-5,-5)(10,5)
+\pstGeonode{O}
+\rput(-3,0){\pstGeonode[CurveType=polygon](1,0){A}(1;51.43){B}(1;102.86){C}
+ (1;154.29){D}(1;205.71){E}(1;257.14){F}(1;308.57){G}}
+\rput(-4,-1){\pstGeonode[CurveType=curve](1,3){M}(4,5){N}(6,2){P}(8,5){Q}}
+\pstRotation[linecolor=green, RotAngle=100, CurveType=polygon]{O}{A, B, C, D, E, F, G}
+\pstHomO[linecolor=red, HomCoef=.3, CurveType=curve]{O}{M,N,P,Q}
+\pstTranslation[linecolor=blue, CurveType=polygon]{C}{O}{A', B', C', D', E', F', G'}
+\pstSymO[linecolor=yellow, CurveType=curve]{O}{M',N',P',Q'}
+\pstOrtSym[linecolor=magenta, CurveType=polygon]{Q}{F''}
+ {A', B', C', D', E', F', G'}[A''', B''', C''', D''', E''', F''', G''']
+\end{pspicture}
+\end{LTXexample}
+
+\newpage
+
+
+\subsection{Triangle lines}
+
+
+\begin{LTXexample}
+\psset{unit=2}
+\begin{pspicture}(-3,-2)(3,3)
+\psset{PointSymbol=none}
+\pstTriangle[PointSymbol=none](-2,-1){A}(1,2){B}(2,0){C}
+{ \psset{linestyle=none, PointNameB=none}
+ \pstMediatorAB{A}{B}{K}{KP}
+ \pstMediatorAB[PosAngleA=-40]{C}{A}{J}{JP}
+ \pstMediatorAB[PosAngleA=75]{B}{C}{I}{IP}
+}% fin
+\pstInterLL[PointSymbol=square, PosAngle=-170]{I}{IP}{J}{JP}{O}
+{% encapsulation de modif parametres
+ \psset{nodesep=-.8, linecolor=green}
+ \pstLineAB{O}{I}\pstLineAB{O}{J}\pstLineAB{O}{K}
+}% fin
+\pstCircleOA[linecolor=red]{O}{A}
+% pour que le symbol de O soit sur et non sous les droites
+\psdot[dotstyle=square](O)
+% les hauteurs et l'orthocentre
+\pstProjection{B}{A}{C}
+\pstProjection{B}{C}{A}
+\pstProjection{A}{C}{B}
+\psset{linecolor=blue}\ncline{A}{A'}\ncline{C}{C'}\ncline{B}{B'}
+\pstInterLL[PointSymbol=square]{A}{A'}{B}{B'}{H}
+% les medianes et le centre de gravite
+\psset{linecolor=magenta}\ncline{A}{I}\ncline{C}{K}\ncline{B}{J}
+\pstCGravABC[PointSymbol=square, PosAngle=95]{A}{B}{C}{G}
+\end{pspicture}
+\end{LTXexample}
+
+
+\newpage
+\subsection{Euler circle}
+
+
+\begin{LTXexample}
+\psset{unit=2}
+\begin{pspicture}(-3,-1.5)(3,2.5)
+\psset{PointSymbol=none}
+\pstTriangle(-2,-1){A}(1,2){B}(2,-1){C}
+{% encapsulation de modif parametres
+ \psset{linestyle=none, PointSymbolB=none, PointNameB=none}
+ \pstMediatorAB{A}{B}{K}{KP}
+ \pstMediatorAB{C}{A}{J}{JP}
+ \pstMediatorAB{B}{C}{I}{IP}
+}% fin
+\pstInterLL[PointSymbol=square, PosAngle=-170]{I}{IP}{J}{JP}{O}
+{% encapsulation de modif parametres
+ \psset{nodesep=-.8, linecolor=green}
+ \pstLineAB{O}{I}\pstLineAB{O}{J}\pstLineAB{O}{K}
+}% fin
+\psdot[dotstyle=square](O)
+\pstProjection{B}{A}{C}
+\pstProjection{B}{C}{A}
+\pstProjection{A}{C}{B}
+\psset{linecolor=blue}\ncline{A}{A'}\ncline{C}{C'}\ncline{B}{B'}
+\pstInterLL[PointSymbol=square]{A}{A'}{B}{B'}{H}
+% le cercle d'Euler (centre au milieu de [OH])
+\pstMiddleAB[PointSymbol=o, PointName=\omega]{O}{H}{omega}
+\pstCircleOA[linecolor=Orange, linestyle=dashed, dash=5mm 1mm]{omega}{B'}
+\psset{PointName=none}
+% il passe par le milieu des segments joignant l'orthocentre et les sommets
+\pstMiddleAB{H}{A}{AH}\pstMiddleAB{H}{B}{BH}\pstMiddleAB{H}{C}{CH}
+\pstSegmentMark{H}{AH}\pstSegmentMark{AH}{A}
+\psset{SegmentSymbol=wedge}\pstSegmentMark{H}{BH}\pstSegmentMark{BH}{B}
+\psset{SegmentSymbol=cup}\pstSegmentMark{H}{CH}\pstSegmentMark{CH}{C}
+\end{pspicture}
+\end{LTXexample}
+
+\newpage
+\subsection{Orthocenter and hyperbola}
+
+The orthocenter of a triangle whose points are on the branches of the
+hyperbola ${\mathscr H} : y=a/x$ belong to this hyperbola.
+
+\begin{LTXexample}
+\psset{unit=0.7}
+\begin{pspicture}(-11,-5)(11,7)
+\psset{linecolor=blue, linewidth=2\pslinewidth}
+\psplot[yMaxValue=6,plotpoints=500]{-10}{-.1}{1 x div}
+\psplot[yMaxValue=6,plotpoints=500]{.1}{10}{1 x div}
+\psset{%PointSymbol=none,
+linewidth=.5\pslinewidth}
+\pstTriangle[linecolor=magenta, PosAngleB=-85, PosAngleC=-90](.2,5){A}(1,1){B}(10,.1){C}
+\psset{linecolor=magenta,CodeFig=true, CodeFigColor=red}
+\pstProjection{B}{A}{C}
+\ncline[nodesepA=-1,linestyle=dashed,linecolor=magenta]{C'}{B}
+\pstProjection{B}{C}{A}
+\ncline[nodesepA=-1,linestyle=dashed,linecolor=magenta]{A'}{B}
+\pstProjection{A}{C}{B}
+\pstInterLL[PosAngle=135,PointSymbol=square]{A}{A'}{B}{B'}{H}
+\psset{linecolor=green, nodesep=-1}
+\pstLineAB{A}{H}\pstLineAB{B'}{H}\pstLineAB{C}{H}
+\psdot[dotstyle=square](H)
+\end{pspicture}
+\end{LTXexample}
+
+
+\resetEUCLvalues
+
+
+\newpage
+\subsection{17 sides regular polygon}
+
+Striking picture created by K. F. Gauss.
+he also prooved that it is possible to build the regular polygons which
+have $2^{2^p}+1$ sides, the following one has 257 sides!
+
+
+\begin{pspicture}(-5.5,-5.5)(5.5,6)
+ \psset{CodeFig, RightAngleSize=.14, CodeFigColor=red,
+ CodeFigB=true, linestyle=dashed, dash=2mm 2mm}
+ \pstGeonode[PosAngle={-90,0}]{O}(5;0){P_1}
+ \pstCircleOA{O}{P_1}
+ \pstSymO[PointSymbol=none, PointName=none, CodeFig=false]{O}{P_1}[PP_1]
+ \ncline[linestyle=solid]{PP_1}{P_1}
+ \pstRotation[RotAngle=90, PosAngle=90]{O}{P_1}[B]
+ \pstRightAngle[linestyle=solid]{B}{O}{PP_1}\ncline[linestyle=solid]{O}{B}
+ \pstHomO[HomCoef=.25]{O}{B}[J] \ncline{J}{P_1}
+ \pstBissectBAC[PointSymbol=none, PointName=none]{O}{J}{P_1}{PE1}
+ \pstBissectBAC[PointSymbol=none, PointName=none]{O}{J}{PE1}{PE2}
+ \pstInterLL[PosAngle=-90]{O}{P_1}{J}{PE2}{E}
+ \pstRotation[PosAngle=-90, RotAngle=-45, PointSymbol=none, PointName=none]{J}{E}[PF1]
+ \pstInterLL[PosAngle=-90]{O}{P_1}{J}{PF1}{F}
+ \pstMiddleAB[PointSymbol=none, PointName=none]{F}{P_1}{MFP1} \pstCircleOA{MFP1}{P_1}
+ \pstInterLC[%PointSymbolA=none, PointNameA=none
+ ]{O}{B}{MFP1}{P_1}{H}{K}
+ \pstCircleOA{E}{K} \pstInterLC{O}{P_1}{E}{K}{N_6}{N_4}
+ \pstRotation[RotAngle=90,PointSymbol=none, PointName=none]{N_6}{E}[PP_6]
+ \pstInterLC[PosAngleA=90,PosAngleB=-90, PointNameB=P_{13}]{PP_6}{N_6}{O}{P_1}{P_6}{P_13}
+ \pstSegmentMark[SegmentSymbol=wedge]{N_6}{P_6}
+ \pstSegmentMark[SegmentSymbol=wedge]{P_13}{N_6}
+ \pstRotation[RotAngle=90,PointSymbol=none, PointName=none]{N_4}{E}[PP_4]
+ \pstInterLC[PosAngleA=90,PosAngleB=-90,PointNameB=P_{15}]{N_4}{PP_4}{O}{P_1}{P_4}{P_15}
+ \pstSegmentMark[SegmentSymbol=cup]{N_4}{P_4}
+ \pstSegmentMark[SegmentSymbol=cup]{P_15}{N_4}
+ \pstRightAngle[linestyle=solid]{P_1}{N_6}{P_6}
+ \pstRightAngle[linestyle=solid]{P_1}{N_4}{P_4}
+ \pstBissectBAC[PosAngle=90, linestyle=none]{P_4}{O}{P_6}{P_5}
+ \pstInterCC[PosAngleB=90, PointSymbolA=none, PointNameA=none]{O}{P_1}{P_4}{P_5}{H}{P_3}
+ \pstInterCC[PosAngleB=90, PointSymbolA=none, PointNameA=none]{O}{P_1}{P_3}{P_4}{H}{P_2}
+ \pstInterCC[PosAngleA=90, PointSymbolB=none, PointNameB=none]{O}{P_1}{P_6}{P_5}{P_7}{H}
+ \pstInterCC[PosAngleA=100, PointSymbolB=none, PointNameB=none]{O}{P_1}{P_7}{P_6}{P_8}{H}
+ \pstInterCC[PosAngleA=135, PointSymbolB=none, PointNameB=none]{O}{P_1}{P_8}{P_7}{P_9}{H}
+ \pstOrtSym[PosAngle={-90,-90,-90,-100,-135},PointName={P_{17},P_{16},P_{14},P_{12},P_{11},P_{10}}]
+ {O}{P_1}{P_2,P_3,P_5,P_7,P_8,P_9}[P_17,P_16,P_14,P_12,P_11,P_10]
+ \pspolygon[linecolor=green, linestyle=solid, linewidth=2\pslinewidth]
+ (P_1)(P_2)(P_3)(P_4)(P_5)(P_6)(P_7)(P_8)(P_9)(P_10)(P_11)(P_12)(P_13)(P_14)(P_15)(P_16)(P_17)
+\end{pspicture}
+
+
+\begin{lstlisting}
+\begin{pspicture}(-5.5,-5.5)(5.5,6)
+ \psset{CodeFig, RightAngleSize=.14, CodeFigColor=red,
+ CodeFigB=true, linestyle=dashed, dash=2mm 2mm}
+ \pstGeonode[PosAngle={-90,0}]{O}(5;0){P_1}
+ \pstCircleOA{O}{P_1}
+ \pstSymO[PointSymbol=none, PointName=none, CodeFig=false]{O}{P_1}[PP_1]
+ \ncline[linestyle=solid]{PP_1}{P_1}
+ \pstRotation[RotAngle=90, PosAngle=90]{O}{P_1}[B]
+ \pstRightAngle[linestyle=solid]{B}{O}{PP_1}\ncline[linestyle=solid]{O}{B}
+ \pstHomO[HomCoef=.25]{O}{B}[J] \ncline{J}{P_1}
+ \pstBissectBAC[PointSymbol=none, PointName=none]{O}{J}{P_1}{PE1}
+ \pstBissectBAC[PointSymbol=none, PointName=none]{O}{J}{PE1}{PE2}
+ \pstInterLL[PosAngle=-90]{O}{P_1}{J}{PE2}{E}
+ \pstRotation[PosAngle=-90, RotAngle=-45, PointSymbol=none, PointName=none]{J}{E}[PF1]
+ \pstInterLL[PosAngle=-90]{O}{P_1}{J}{PF1}{F}
+ \pstMiddleAB[PointSymbol=none, PointName=none]{F}{P_1}{MFP1} \pstCircleOA{MFP1}{P_1}
+ \pstInterLC[PointSymbolA=none, PointNameA=none]{O}{B}{MFP1}{P_1}{H}{K}
+ \pstCircleOA{E}{K} \pstInterLC{O}{P_1}{E}{K}{N_6}{N_4}
+ \pstRotation[RotAngle=90,PointSymbol=none, PointName=none]{N_6}{E}[PP_6]
+ \pstInterLC[PosAngleA=90,PosAngleB=-90, PointNameB=P_{13}]{PP_6}{N_6}{O}{P_1}{P_6}{P_13}
+ \pstSegmentMark[SegmentSymbol=wedge]{N_6}{P_6}
+ \pstSegmentMark[SegmentSymbol=wedge]{P_13}{N_6}
+ \pstRotation[RotAngle=90,PointSymbol=none, PointName=none]{N_4}{E}[PP_4]
+ \pstInterLC[PosAngleA=90,PosAngleB=-90,PointNameB=P_{15}]{N_4}{PP_4}{O}{P_1}{P_4}{P_15}
+ \pstSegmentMark[SegmentSymbol=cup]{N_4}{P_4}
+ \pstSegmentMark[SegmentSymbol=cup]{P_15}{N_4}
+ \pstRightAngle[linestyle=solid]{P_1}{N_6}{P_6}
+ \pstRightAngle[linestyle=solid]{P_1}{N_4}{P_4}
+ \pstBissectBAC[PosAngle=90, linestyle=none]{P_4}{O}{P_6}{P_5}
+ \pstInterCC[PosAngleB=90, PointSymbolA=none, PointNameA=none]{O}{P_1}{P_4}{P_5}{H}{P_3}
+ \pstInterCC[PosAngleB=90, PointSymbolA=none, PointNameA=none]{O}{P_1}{P_3}{P_4}{H}{P_2}
+ \pstInterCC[PosAngleA=90, PointSymbolB=none, PointNameB=none]{O}{P_1}{P_6}{P_5}{P_7}{H}
+ \pstInterCC[PosAngleA=100, PointSymbolB=none, PointNameB=none]{O}{P_1}{P_7}{P_6}{P_8}{H}
+ \pstInterCC[PosAngleA=135, PointSymbolB=none, PointNameB=none]{O}{P_1}{P_8}{P_7}{P_9}{H}
+ \pstOrtSym[PosAngle={-90,-90,-90,-100,-135},PointName={P_{17},P_{16},P_{14},P_{12},P_{11},P_{10}}]
+ {O}{P_1}{P_2,P_3,P_5,P_7,P_8,P_9}[P_17,P_16,P_14,P_12,P_11,P_10]
+ \pspolygon[linecolor=green, linestyle=solid, linewidth=2\pslinewidth]
+ (P_1)(P_2)(P_3)(P_4)(P_5)(P_6)(P_7)(P_8)(P_9)(P_10)(P_11)(P_12)(P_13)(P_14)(P_15)(P_16)(P_17)
+\end{pspicture}
+\end{lstlisting}
+
+
+\newpage
+\subsection{Circles \& tangents}
+
+The drawing of the circle tangents which crosses a given point.
+
+\begin{LTXexample}
+\begin{pspicture}(15,10)
+\pstGeonode(5, 5){O}(14,2){M}
+\pstCircleOA[Radius=\pstDistVal{4}]{O}{}
+\pstMiddleAB[PointSymbol=none, PointName=none]{O}{M}{O'}
+\pstInterCC[RadiusA=\pstDistVal{4}, DiameterB=\pstDistAB{O}{M},
+ CodeFigB=true, CodeFigColor=magenta, PosAngleB=45]{O}{}{O'}{}{A}{B}
+\psset{linecolor=red, linewidth=1.3\pslinewidth, nodesep=-2}
+\pstLineAB{M}{A}\pstLineAB{M}{B}
+\end{pspicture}
+\end{LTXexample}
+
+
+\begin{LTXexample}
+\begin{pspicture}(-2,0)(13,9)
+\pstGeonode(9,3){O}(3,6){O'}\psset{PointSymbol=none, PointName=none}
+\pstCircleOA[Radius=\pstDistVal{3}]{O}{}\pstCircleOA[Radius=\pstDistVal{1}]{O'}{}
+\pstInterLC[Radius=\pstDistVal{3}]{O}{O'}{O}{}{M}{toto}
+\pstInterLC[Radius=\pstDistVal{1}]{O}{O'}{O'}{}{M'}{toto}
+\pstRotation[RotAngle=30]{O}{M}[N]
+\pstRotation[RotAngle=30]{O'}{M'}[N']
+\pstInterLL[PointSymbol=default, PointName=\Omega]{O}{O'}{N}{N'}{Omega}
+\pstMiddleAB{O}{Omega}{I} \pstInterCC{I}{O}{O}{M}{A}{B}
+\psset{nodesepA=-1, nodesepB=-3, linecolor=blue, linewidth=1.3\pslinewidth}
+\pstLineAB[nodesep=-2]{A}{Omega}\pstLineAB[nodesep=-2]{B}{Omega}
+\pstRotation[RotAngle=-150]{O'}{M'}[N'']
+\pstInterLL[PointSymbol=default, PointName=\Omega']{O}{O'}{N}{N''}{Omega'}
+\pstMiddleAB{O}{Omega'}{J}
+\pstInterCC{J}{O}{O}{M}{A'}{B'}
+\psset{nodesepA=-1, nodesepB=-3, linecolor=red}
+\pstLineAB{A'}{Omega'}\pstLineAB{B'}{Omega'}
+\end{pspicture}
+\end{LTXexample}
+
+
+\newpage
+\subsection{Fermat's point}
+
+Drawing of Manuel Luque.
+
+\begin{LTXexample}
+\begin{pspicture}(-7,-6)(5,5)
+\psset{PointSymbol=none, PointName=none}
+\pstTriangle[PosAngleA=-160,PosAngleB=90,PosAngleC=-25](-3,-2){B}(0,3){A}(2,-1){C}%
+\psset{RotAngle=-60}
+\pstRotation[PosAngle=-90]{B}{C}[A']
+\pstRotation{C}{A}[B']
+\pstRotation[PosAngle=160]{A}{B}[C']
+\pstLineAB{A}{B'}
+\pstLineAB{C}{B'}
+\pstLineAB{B}{A'}
+\pstLineAB{C}{A'}
+\pstLineAB{B}{C'}
+\pstLineAB{A}{C'}
+\pstCircleABC[linecolor=red]{A}{B}{C'}{O_1}
+\pstCircleABC[linecolor=blue]{A}{C}{B'}{O_2}
+\pstCircleABC[linecolor=Aquamarine]{A'}{C}{B}{O_3}
+\pstInterCC[PointSymbolA=none]{O_1}{A}{O_2}{A}{E}{F}
+\end{pspicture}
+\end{LTXexample}
+
+\newpage
+\subsection{Escribed and inscribed circles of a triangle}
+
+%% cercles inscrit et exinscrits d'un triangle
+
+
+\begin{pspicture}(-6,-5)(11,15)
+\psset{PointSymbol=none}
+\pstTriangle[linewidth=2\pslinewidth,linecolor=red](4,1){A}(0,3){B}(5,5){C}
+\psset{linecolor=blue}
+\pstBissectBAC[PointSymbol=none,PointName=none]{C}{A}{B}{AB}
+\pstBissectBAC[PointSymbol=none,PointName=none]{A}{B}{C}{BB}
+\pstBissectBAC[PointSymbol=none,PointName=none]{B}{C}{A}{CB}
+\pstInterLL{A}{AB}{B}{BB}{I}
+\psset{linecolor=magenta, linestyle=dashed} \pstProjection{A}{B}{I}[I_C]
+\pstLineAB{I}{I_C}\pstRightAngle[linestyle=solid]{A}{I_C}{I}
+\pstProjection{A}{C}{I}[I_B]
+\pstLineAB{I}{I_B}\pstRightAngle[linestyle=solid]{C}{I_B}{I}
+\pstProjection[PosAngle=80]{C}{B}{I}[I_A]
+\pstLineAB{I}{IA}\pstRightAngle[linestyle=solid]{B}{I_A}{I}
+\pstCircleOA[linecolor=yellow, linestyle=solid]{I}{I_A}
+\psset{linecolor=magenta, linestyle=none}
+\pstOutBissectBAC[PointSymbol=none,PointName=none]{C}{A}{B}{AOB}
+\pstOutBissectBAC[PointSymbol=none,PointName=none]{A}{B}{C}{BOB}
+\pstOutBissectBAC[PointSymbol=none,PointName=none]{B}{C}{A}{COB}
+\pstInterLL[PosAngle=-90]{A}{AOB}{B}{BOB}{I_1} \pstInterLL{A}{AOB}{C}{COB}{I_2}
+\pstInterLL[PosAngle=90]{C}{COB}{B}{BOB}{I_3} \psset{linecolor=magenta, linestyle=dashed}
+\pstProjection[PointName=I_{1C}]{A}{B}{I_1}[I1C]
+\pstLineAB{I_1}{I1C}\pstRightAngle[linestyle=solid]{I_1}{I1C}{A}
+\pstProjection[PointName=I_{1B}]{A}{C}{I_1}[I1B]
+\pstLineAB{I_1}{I1B}\pstRightAngle[linestyle=solid]{A}{I1B}{I_1}
+\pstProjection[PointName=I_{1A}]{C}{B}{I_1}[I1A]
+\pstLineAB{I_1}{I1A}\pstRightAngle[linestyle=solid]{I_1}{I1A}{C}
+\pstProjection[PointName=I_{2B}]{A}{C}{I_2}[I2B]
+\pstLineAB{I_2}{I2B}\pstRightAngle[linestyle=solid]{A}{I2B}{I_2}
+\pstProjection[PointName=I_{2C}]{A}{B}{I_2}[I2C]
+\pstLineAB{I_2}{I2C}\pstRightAngle[linestyle=solid]{I_2}{I2C}{A}
+\pstProjection[PointName=I_{2A}]{B}{C}{I_2}[I2A]
+\pstLineAB{I_2}{I2A}\pstRightAngle[linestyle=solid]{C}{I2A}{I_2}
+\pstProjection[PointName=I_{3A}]{C}{B}{I_3}[I3A]
+\pstLineAB{I_3}{I3A}\pstRightAngle[linestyle=solid]{C}{I3A}{I_3}
+\pstProjection[PointName=I_{3C}]{A}{B}{I_3}[I3C]
+\pstLineAB{I_3}{I3C}\pstRightAngle[linestyle=solid]{A}{I3C}{I_3}
+\pstProjection[PointName=I_{3B}]{C}{A}{I_3}[I3B]
+\pstLineAB{I_3}{I3B}\pstRightAngle[linestyle=solid]{I_3}{I3B}{A}
+\psset{linecolor=black!40, linestyle=dashed}
+\pstCircleOA{I_1}{I1C} \pstCircleOA{I_2}{I2B} \pstCircleOA{I_3}{I3A}
+\psset{linecolor=red, linestyle=solid, nodesepA=-1, nodesepB=-1}
+\pstLineAB{I1B}{I3B}\pstLineAB{I1A}{I2A}\pstLineAB{I2C}{I3C}
+\end{pspicture}
+
+
+\begin{lstlisting}
+\begin{pspicture}(-6,-5)(11,15)
+\psset{PointSymbol=none}
+\pstTriangle[linewidth=2\pslinewidth,linecolor=red](4,1){A}(0,3){B}(5,5){C}
+\psset{linecolor=blue}
+\pstBissectBAC[PointSymbol=none,PointName=none]{C}{A}{B}{AB}
+\pstBissectBAC[PointSymbol=none,PointName=none]{A}{B}{C}{BB}
+\pstBissectBAC[PointSymbol=none,PointName=none]{B}{C}{A}{CB}
+\pstInterLL{A}{AB}{B}{BB}{I}
+\psset{linecolor=magenta, linestyle=dashed}
+\pstProjection{A}{B}{I}[I_C]
+\pstLineAB{I}{I_C}\pstRightAngle[linestyle=solid]{A}{I_C}{I}
+\pstProjection{A}{C}{I}[I_B]
+\pstLineAB{I}{I_B}\pstRightAngle[linestyle=solid]{C}{I_B}{I}
+\pstProjection[PosAngle=80]{C}{B}{I}[I_A]
+\pstLineAB{I}{IA}\pstRightAngle[linestyle=solid]{B}{I_A}{I}
+\pstCircleOA[linecolor=yellow, linestyle=solid]{I}{I_A}
+\psset{linecolor=magenta, linestyle=none}
+\pstOutBissectBAC[PointSymbol=none,PointName=none]{C}{A}{B}{AOB}
+\pstOutBissectBAC[PointSymbol=none,PointName=none]{A}{B}{C}{BOB}
+\pstOutBissectBAC[PointSymbol=none,PointName=none]{B}{C}{A}{COB}
+\pstInterLL[PosAngle=-90]{A}{AOB}{B}{BOB}{I_1}
+\pstInterLL{A}{AOB}{C}{COB}{I_2}
+\pstInterLL[PosAngle=90]{C}{COB}{B}{BOB}{I_3}
+\psset{linecolor=magenta, linestyle=dashed}
+\pstProjection[PointName=I_{1C}]{A}{B}{I_1}[I1C]
+\pstLineAB{I_1}{I1C}\pstRightAngle[linestyle=solid]{I_1}{I1C}{A}
+\pstProjection[PointName=I_{1B}]{A}{C}{I_1}[I1B]
+\pstLineAB{I_1}{I1B}\pstRightAngle[linestyle=solid]{A}{I1B}{I_1}
+\pstProjection[PointName=I_{1A}]{C}{B}{I_1}[I1A]
+\pstLineAB{I_1}{I1A}\pstRightAngle[linestyle=solid]{I_1}{I1A}{C}
+\pstProjection[PointName=I_{2B}]{A}{C}{I_2}[I2B]
+\pstLineAB{I_2}{I2B}\pstRightAngle[linestyle=solid]{A}{I2B}{I_2}
+\pstProjection[PointName=I_{2C}]{A}{B}{I_2}[I2C]
+\pstLineAB{I_2}{I2C}\pstRightAngle[linestyle=solid]{I_2}{I2C}{A}
+\pstProjection[PointName=I_{2A}]{B}{C}{I_2}[I2A]
+\pstLineAB{I_2}{I2A}\pstRightAngle[linestyle=solid]{C}{I2A}{I_2}
+\pstProjection[PointName=I_{3A}]{C}{B}{I_3}[I3A]
+\pstLineAB{I_3}{I3A}\pstRightAngle[linestyle=solid]{C}{I3A}{I_3}
+\pstProjection[PointName=I_{3C}]{A}{B}{I_3}[I3C]
+\pstLineAB{I_3}{I3C}\pstRightAngle[linestyle=solid]{A}{I3C}{I_3}
+\pstProjection[PointName=I_{3B}]{C}{A}{I_3}[I3B]
+\pstLineAB{I_3}{I3B}\pstRightAngle[linestyle=solid]{I_3}{I3B}{A}
+\psset{linecolor=yellow, linestyle=solid}
+\pstCircleOA{I_1}{I1C} \pstCircleOA{I_2}{I2B} \pstCircleOA{I_3}{I3A}
+\psset{linecolor=red, linestyle=solid, nodesepA=-1, nodesepB=-1}
+\pstLineAB{I1B}{I3B}\pstLineAB{I1A}{I2A}\pstLineAB{I2C}{I3C}
+\end{pspicture}
+\end{lstlisting}
+
+
+
+\newpage
+\section{Some locus points}
+
+\subsection{Parabola}
+
+The parabola is the set of points which are at the same distance
+between a point and a line.
+
+
+\begin{LTXexample}
+\def\NbPt{11}
+\begin{pspicture}(-0.5,0)(11,10)
+\psset{linewidth=1.2\pslinewidth}\renewcommand{\NbPt}{11}
+\pstGeonode[PosAngle={0,-90}](5,4){O}(1,2){A}(9,1.5){B}
+\newcommand\Parabole[1][100]{%
+ \pstLineAB[nodesep=-.9, linecolor=green]{A}{B}
+ \psset{RotAngle=90, PointSymbol=none, PointName=none}
+ \multido{\n=1+1}{\NbPt}{%
+ \pstHomO[HomCoef=\n\space \NbPt\space 1 add div]{A}{B}[M\n]
+ \pstMediatorAB[linestyle=none]{M\n}{O}{M\n_I}{M\n_IP}
+ \pstRotation{M\n}{A}[M\n_P]
+ \pstInterLL[PointSymbol=square, PointName=none]{M\n_I}{M\n_IP}{M\n}{M\n_P}{P_\n}
+ \ifnum\n=#1 \bgroup
+ \pstRightAngle{A}{M\n}{M\n_P}
+ \psset{linewidth=.5\pslinewidth, nodesep=-1, linecolor=blue}
+ \pstLineAB{M\n_I}{P_\n}\pstLineAB{M\n}{P_\n}
+ \pstRightAngle{P_\n}{M\n_I}{M\n}
+ \psset{linecolor=red}\pstSegmentMark{M\n}{M\n_I}\pstSegmentMark{M\n_I}{O}
+ \egroup \fi}}
+\Parabole[2]\pstGenericCurve[linecolor=magenta]{P_}{1}{\NbPt}
+\pstGeonode[PointSymbol=*, PosAngle=-90](10,3.5){B}
+\Parabole\pstGenericCurve[linecolor=magenta,linestyle=dashed]{P_}{1}{\NbPt}
+\end{pspicture}
+\end{LTXexample}
+
+\newpage
+\subsection{Hyperbola}
+
+The hyperbola is the set of points whose difference between their
+distance of two points (the focus) is constant.
+
+\iffalse
+\begin{verbatim}
+%% QQ RAPPELS : a=\Sommet, c=\PosFoyer,
+%% b^2=c^2-a^2, e=c/a
+%% pour une hyperbole -> e>1, donc c>a,
+%% ici on choisi a=\sqrt{2}, c=2, e=\sqrt{2}
+%% M est sur H <=> |MF-MF'|=2a
+\end{verbatim}
+\fi
+
+\begin{LTXexample}
+\begin{pspicture}[showgrid](-4,-4)(4,4)
+\newcommand\Sommet{1.4142135623730951 } \newcounter{i} \setcounter{i}{1}
+\newcommand\PosFoyer{2 } \newcommand\HypAngle{0}
+\newcounter{CoefDiv}\setcounter{CoefDiv}{20}
+\newcounter{Inc}\setcounter{Inc}{2} \newcounter{n}\setcounter{n}{2}
+\newcommand\Ri{ \PosFoyer \Sommet sub \arabic{i}\space\arabic{CoefDiv}\space div add }
+\newcommand\Rii{\Ri \Sommet 2 mul add }
+\pstGeonode[PosAngle=90]{O}(\PosFoyer;\HypAngle){F}
+\pstSymO[PosAngle=180]{O}{F}\pstLineAB{F}{F'} \pstCircleOA{O}{F}
+\pstGeonode[PosAngle=-135](\Sommet;\HypAngle){S}
+\pstGeonode[PosAngle=-45](-\Sommet;\HypAngle){S'}
+\pstRotation[RotAngle=90, PointSymbol=none]{S}{O}[B]
+\pstInterLC[PosAngleA=90, PosAngleB=-90]{S}{B}{O}{F}{A_1}{A_2}
+\pstLineAB[nodesepA=-3,nodesepB=-5]{A_1}{O}\pstLineAB[nodesepA=-3,nodesepB=-5]{A_2}{O}
+\pstMarkAngle[LabelSep=.8,MarkAngleRadius=.7,arrows=->,LabelSep=1.1]{F}{O}{A_1}{$\Psi$}
+\ncline[linecolor=red]{A_1}{A_2} \pstRightAngle[RightAngleSize=.15]{A_1}{S}{O}
+\psset{PointName=none}
+\whiledo{\value{n}<8}{%
+ \psset{RadiusA=\pstDistVal{\Ri},RadiusB=\pstDistVal{\Rii},PointSymbol=none}
+ \pstInterCC{F}{}{F'}{}{M\arabic{n}}{P\arabic{n}}
+ \pstInterCC{F'}{}{F}{}{M'\arabic{n}}{P'\arabic{n}}
+ \stepcounter{n}\addtocounter{i}{\value{Inc}}
+ \addtocounter{Inc}{\value{Inc}}}%% fin de whiledo
+\psset{linecolor=blue}
+\pstGenericCurve[GenCurvFirst=S]{M}{2}{7}
+\pstGenericCurve[GenCurvFirst=S]{P}{2}{7}
+\pstGenericCurve[GenCurvFirst=S']{M'}{2}{7}
+\pstGenericCurve[GenCurvFirst=S']{P'}{2}{7}
+\end{pspicture}
+\end{LTXexample}
+
+
+
+ \subsection{Cycloid}
+
+The wheel rolls from $M$ to $A$. The circle points are on a
+cycloid.
+
+
+\begin{LTXexample}
+\begin{pspicture}[showgrid](-2,-1)(13,3)
+\providecommand\NbPt{11}
+\psset{linewidth=1.2\pslinewidth}
+\pstGeonode[PointSymbol={*,none}, PointName={default,none}, PosAngle=180]{M}(0,1){O}
+\pstGeonode(12.5663706144,0){A}
+\pstTranslation[PointSymbol=none, PointName=none]{M}{A}{O}[B]
+\multido{\nA=1+1}{\NbPt}{%
+ \pstHomO[HomCoef=\nA\space\NbPt\space 1 add div,PointSymbol=none,PointName=none]{O}{B}[O\nA]
+ \pstProjection[PointSymbol=none, PointName=none]{M}{A}{O\nA}[P\nA]
+ \pstCurvAbsNode[PointSymbol=square, PointName=none,CurvAbsNeg=true]%
+ {O\nA}{P\nA}{M\nA}{\pstDistAB{O}{O\nA}}
+ \ifnum\nA=2 \bgroup
+ \pstCircleOA{O\nA}{M\nA}
+ \psset{linecolor=magenta, linewidth=1.5\pslinewidth}
+ \pstArcnOAB{O\nA}{P\nA}{M\nA}
+ \ncline{O\nA}{M\nA}\ncline{P\nA}{M}
+ \egroup \fi
+ }% fin du multido
+\psset{linecolor=blue, linewidth=1.5\pslinewidth}
+\pstGenericCurve[GenCurvFirst=M]{M}{1}{6} \pstGenericCurve[GenCurvLast=A]{M}{6}{\NbPt}
+\end{pspicture}
+\end{LTXexample}
+
+\newpage
+\subsection{Hypocycloids (Astroid and Deltoid)}
+
+A wheel rolls inside a circle, and depending of the radius ratio, it
+is an astroid, a deltoid and in the general case hypo-cycloids.
+
+
+
+\begin{LTXexample}
+\newcommand\HypoCyclo[4][100]{%
+ \def\R{#2}\def\petitR{#3}\def\NbPt{#4}
+ \def\Anglen{\n\space 360 \NbPt\space 1 add div mul}
+ \psset{PointSymbol=none,PointName=none}
+ \pstGeonode[PointSymbol={*,none},PointName={default,none}, PosAngle=0]{O}(\R;0){P}
+ \pstCircleOA{O}{P}
+ \pstHomO[HomCoef=\petitR\space\R\space div]{P}{O}[M]
+ \multido{\n=1+1}{\NbPt}{%
+ \pstRotation[RotAngle=\Anglen]{O}{M}[M\n]
+ \rput(M\n){\pstGeonode(\petitR;0){Q}}
+ \pstRotation[RotAngle=\Anglen]{M\n}{Q}[N]
+ \pstRotation[RotAngle=\n\space -360 \NbPt\space 1 add div
+ mul \R\space\petitR\space div mul,PointSymbol=*,PointName=none]{M\n}{N}[N\n]
+ \ifnum\n=#1
+ \pstCircleOA{M\n}{N\n}\ncline{M\n}{N\n}%
+ {\psset{linecolor=red, linewidth=2\pslinewidth}
+ \pstArcOAB{M\n}{N\n}{N}\pstArcOAB{O}{P}{N}}
+ \fi}}%fin multido-newcommand
+\begin{pspicture}[showgrid](-3.5,-3.4)(3.5,4)
+\HypoCyclo[3]{3}{1}{17}
+\psset{linecolor=blue,linewidth=1.5\pslinewidth}
+\pstGenericCurve[GenCurvFirst=P]{N}{1}{6}
+\pstGenericCurve{N}{6}{12}
+\pstGenericCurve[GenCurvLast=P]{N}{12}{17}
+\end{pspicture}
+\end{LTXexample}
+
+
+
+\begin{LTXexample}
+\newcommand\HypoCyclo[4][100]{%
+ \def\R{#2}\def\petitR{#3}\def\NbPt{#4}
+ \def\Anglen{\n\space 360 \NbPt\space 1 add div mul}
+ \psset{PointSymbol=none,PointName=none}
+ \pstGeonode[PointSymbol={*,none},PointName={default,none}, PosAngle=0]{O}(\R;0){P}
+ \pstCircleOA{O}{P}
+ \pstHomO[HomCoef=\petitR\space\R\space div]{P}{O}[M]
+ \multido{\n=1+1}{\NbPt}{%
+ \pstRotation[RotAngle=\Anglen]{O}{M}[M\n]
+ \rput(M\n){\pstGeonode(\petitR;0){Q}}
+ \pstRotation[RotAngle=\Anglen]{M\n}{Q}[N]
+ \pstRotation[RotAngle=\n\space -360 \NbPt\space 1 add div
+ mul \R\space\petitR\space div mul, PointSymbol=*, PointName=none]{M\n}{N}[N\n]
+ \ifnum\n=#1
+ \pstCircleOA{M\n}{N\n}\ncline{M\n}{N\n}%
+ {\psset{linecolor=red, linewidth=2\pslinewidth}
+ \pstArcOAB{M\n}{N\n}{N}\pstArcOAB{O}{P}{N}}
+ \fi}}%fin multido-newcommand
+\begin{pspicture}(-4.5,-4)(4.5,4.5)
+\HypoCyclo[4]{4}{1}{27}
+\psset{linecolor=blue, linewidth=1.5\pslinewidth}
+\pstGenericCurve[GenCurvFirst=P]{N}{1}{7}
+\pstGenericCurve{N}{7}{14}\pstGenericCurve{N}{14}{21}
+\pstGenericCurve[GenCurvLast=P]{N}{21}{27}
+\end{pspicture}
+\end{LTXexample}
+
+
+\newpage
+ \section{Lines and circles envelope}
+
+\subsection{Conics}
+
+Let's consider a circle and a point $A$ not on the circle. The
+set of all the mediator lines of segments defined by $A$ and the
+circle points, create two conics depending of the position of $A$:
+
+\begin{compactitem}
+\item inside the circle: an hyperbola;
+\item outside the circle: an ellipse.
+\end{compactitem}
+
+(figure of O. Reboux).
+
+\begin{LTXexample}
+\begin{pspicture}(-6,-6)(6,6)
+\psset{linewidth=0.4\pslinewidth,PointSymbol=none, PointName=none}
+\pstGeonode[PosAngle=-90, PointSymbol={none,*,none}, PointName={none,default,none}]
+ {O}(4;132){A}(5,0){O'}
+\pstCircleOA{O}{O'}
+\multido{\n=5+5}{72}{%
+ \pstGeonode(5;\n){M_\n}
+ \pstMediatorAB[nodesep=-15,linecolor=magenta]
+ {A}{M_\n}{I}{J}}% fin multido
+\end{pspicture}
+\end{LTXexample}
+
+\newpage
+\subsection{Cardioid}
+
+The cardioid is defined by the circles centered on a circle and
+crossing a given point.
+
+\begin{LTXexample}
+\begin{pspicture}(-6,-6)(3,5)
+\psset{linewidth=0.4\pslinewidth,PointSymbol=x,nodesep=0,linecolor=magenta}
+\pstGeonode[PointName=none]{O}(2,0){O'}
+\pstCircleOA[linecolor=black]{O}{O'}
+\multido{\n=5+5}{72}{%
+ \pstGeonode[PointSymbol=none, PointName=none](2;\n){M_\n}
+ \pstCircleOA{M_\n}{O'}}
+ \end{pspicture}
+\end{LTXexample}
+
+
+\newpage
+ \section{Homotethy and fractals}
+
+\begin{LTXexample}[width=6cm.pos=l]
+\begin{pspicture}(-2.8,-3)(2.8,3)
+\pstGeonode[PosAngle={0,90}](2,2){A_0}(-2,2){B_0}%
+\psset{RotAngle=90}
+\pstRotation[PosAngle=270]{A_0}{B_0}[D_0]
+\pstRotation[PosAngle=180]{D_0}{A_0}[C_0]
+\pspolygon(A_0)(B_0)(C_0)(D_0)%
+\psset{PointSymbol=none, PointName=none, HomCoef=.2}
+\multido{\n=1+1,\i=0+1}{20}{%
+ \pstHomO[PosAngle=0]{B_\i}{A_\i}[A_\n]
+ \pstHomO[PosAngle=90]{C_\i}{B_\i}[B_\n]
+ \pstHomO[PosAngle=180]{D_\i}{C_\i}[C_\n]
+ \pstHomO[PosAngle=270]{A_\i}{D_\i}[D_\n]
+ \pspolygon(A_\n)(B_\n)(C_\n)(D_\n)}% fin multido
+\end{pspicture}
+\end{LTXexample}
+
+\newpage
+\section{hyperbolic geometry: a triangle and its altitudes}
+
+\begin{LTXexample}
+\begin{pspicture}(-5,-5)(5,5)
+\psclip{\pscircle(0,0){4}}
+ \pstGeonode(1, 2){M}\pstGeonode(-2,2){N}\pstGeonode(0,-2){P}
+ \psset{DrawCirABC=false, PointSymbol=none, PointName=none}%
+ \pstGeonode(0,0){O}\pstGeonode(4,0){A}\pstCircleOA{O}{A}
+ \pstHomO[HomCoef=\pstDistAB{O}{A} 2 mul \pstDistAB{O}{M} sub
+ \pstDistAB{O}{M} div]{O}{M}[M']%
+ \pstHomO[HomCoef=\pstDistAB{O}{A} 2 mul \pstDistAB{O}{P} sub
+ \pstDistAB{O}{P} div]{O}{P}[P']%
+ \pstHomO[HomCoef=\pstDistAB{O}{A} 2 mul \pstDistAB{O}{N} sub
+ \pstDistAB{O}{N} div]{O}{N}[N']%
+ \psset{linecolor=green, linewidth=1.5pt}%
+ \pstCircleABC{M}{N}{M'}{OmegaMN}\pstArcOAB{OmegaMN}{N}{M}
+ \pstCircleABC{M}{P}{M'}{OmegaMP}\pstArcOAB{OmegaMP}{M}{P}
+ \pstCircleABC{N}{P}{P'}{OmegaNP}\pstArcOAB{OmegaNP}{P}{N}
+ \psset{linecolor=blue}
+ \pstHomO[HomCoef=\pstDistAB{OmegaNP}{N} 2 mul \pstDistAB{OmegaNP}{M} sub %% M
+ \pstDistAB{OmegaNP}{M} div]{OmegaNP}{M}[MH']
+ \pstCircleABC{M}{M'}{MH'}{OmegaMH}\pstArcOAB{OmegaMH}{MH'}{M} %% N
+ \pstHomO[HomCoef=\pstDistAB{OmegaMP}{M} 2 mul \pstDistAB{OmegaMP}{N} sub
+ \pstDistAB{OmegaMP}{N} div]{OmegaMP}{N}[NH']
+ \pstCircleABC{N}{N'}{NH'}{OmegaNH}\pstArcOAB{OmegaNH}{N}{NH'} %% P
+ \pstHomO[HomCoef=\pstDistAB{OmegaMN}{M} 2 mul \pstDistAB{OmegaMN}{P} sub
+ \pstDistAB{OmegaMN}{P} div]{OmegaMN}{P}[PH']
+ \pstCircleABC{P}{P'}{PH'}{OmegaPH}\pstArcOAB{OmegaPH}{P}{PH'}
+\endpsclip
+\end{pspicture}
+\end{LTXexample}
+
+
+
+
+\clearpage
+\section{List of all optional arguments for \texttt{pst-eucl}}
+
+\xkvview{family=pst-eucl,columns={key,type,default}}
+
+\nocite{*}
+\bgroup
+\RaggedRight
+\bibliographystyle{plain}
+\bibliography{pst-eucl-doc}
+\egroup
+
+\printindex
+
+
+\end{document}
+
+