diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic/pgf/text-en/pgfmanual-en-tikz-coordinates.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pgf/text-en/pgfmanual-en-tikz-coordinates.tex | 46 |
1 files changed, 23 insertions, 23 deletions
diff --git a/Master/texmf-dist/doc/generic/pgf/text-en/pgfmanual-en-tikz-coordinates.tex b/Master/texmf-dist/doc/generic/pgf/text-en/pgfmanual-en-tikz-coordinates.tex index c3921486e6d..047592f5c26 100644 --- a/Master/texmf-dist/doc/generic/pgf/text-en/pgfmanual-en-tikz-coordinates.tex +++ b/Master/texmf-dist/doc/generic/pgf/text-en/pgfmanual-en-tikz-coordinates.tex @@ -380,7 +380,7 @@ following coordinate system: \begin{key}{/tikz/anchor=\meta{anchor}} Specifies an anchor of the node. Here is an example: % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{arrows.meta}}] \begin{tikzpicture} \node (shape) at (0,2) [draw] {|class Shape|}; \node (rect) at (-2,0) [draw] {|class Rectangle|}; @@ -401,7 +401,7 @@ following coordinate system: This coordinate refers to a point of the node's border where a ray shot from the center in the given angle hits the border. Here is an example: % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{shapes.geometric}}] \begin{tikzpicture} \node (start) [draw,shape=ellipse] {start}; \foreach \angle in {-90, -80, ..., 90} @@ -415,7 +415,7 @@ following coordinate system: |angle=| option. In this case, \tikzname\ will calculate an appropriate border position for you. Here is an example: % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{shapes.geometric}}] \begin{tikzpicture} \path (0,0) node(a) [ellipse,rotate=10,draw] {An ellipse} (3,-1) node(b) [circle,draw] {A circle}; @@ -465,7 +465,7 @@ following coordinate system: Here is a more complete example: % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{shapes.geometric}}] \begin{tikzpicture}[fill=blue!20] \draw[help lines] (-1,-2) grid (6,3); \path (0,0) node(a) [ellipse,rotate=10,draw,fill] {An ellipse} @@ -621,7 +621,7 @@ following coordinate system: \item |circle| \end{itemize} % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{calc}}] \begin{tikzpicture} \draw[help lines] (0,0) grid (3,2); @@ -746,11 +746,11 @@ point $q$. For this situation there is a useful coordinate system. of the line from $A$ to~$B$ and vertically at the middle of the line from $C$ to~$D$: % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{calc}}] \begin{tikzpicture} - \node (A) at (0,1) {A}; - \node (B) at (1,1.5) {B}; - \node (C) at (2,0) {C}; + \node (A) at (0,1) {A}; + \node (B) at (1,1.5) {B}; + \node (C) at (2,0) {C}; \node (D) at (2.5,-2) {D}; \draw (A) -- (B) node [midway] {x}; @@ -805,7 +805,7 @@ To find the intersection of named paths, the following key is used: Optionally, the prefix |intersection| can be changed, and the total number of intersections stored in a \TeX-macro. % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{intersections}}] \begin{tikzpicture}[every node/.style={opacity=1, black, above left}] \draw [help lines] grid (3,2); \draw [name path=ellipse] (2,0.5) ellipse (0.75cm and 1cm); @@ -833,7 +833,7 @@ To find the intersection of named paths, the following key is used: stored in \meta{macro}. \end{key} -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{intersections}}] \begin{tikzpicture} \clip (-2,-2) rectangle (2,2); \draw [name path=curve 1] (-2,-1) .. controls (8,-1) and (-8,1) .. (2,1); @@ -854,7 +854,7 @@ To find the intersection of named paths, the following key is used: to the |\foreach| statement and for \meta{list member} a coordinate is created at the already-named intersection. % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{intersections}}] \begin{tikzpicture} \clip (-2,-2) rectangle (2,2); \draw [name path=curve 1] (-2,-1) .. controls (8,-1) and (-8,1) .. (2,1); @@ -874,7 +874,7 @@ To find the intersection of named paths, the following key is used: is created. A coordinate name can still, but need not, follow the options. This makes it easy to add labels to intersections: % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{intersections}}] \begin{tikzpicture} \clip (-2,-2) rectangle (2,2); \draw [name path=curve 1] (-2,-1) .. controls (8,-1) and (-8,1) .. (2,1); @@ -895,7 +895,7 @@ To find the intersection of named paths, the following key is used: should be one of the paths mentioned in the |/tikz/intersection/of| key. % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{intersections}}] \begin{tikzpicture} \clip (-0.5,-0.75) rectangle (3.25,2.25); \foreach \pathname/\shift in {line/0cm, curve/2cm}{ @@ -1074,7 +1074,7 @@ essence, you can add and subtract coordinates, scale them, compute midpoints, and do projections. For instance, |($(a) + 1/3*(1cm,0)$)| is the coordinate that is $1/3 \text{cm}$ to the right of the point |a|: % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{calc}}] \begin{tikzpicture} \draw [help lines] (0,0) grid (3,2); @@ -1141,7 +1141,7 @@ whenever it is unclear where the \meta{factor} would end. Here are some examples of coordinate specifications that consist of exactly one \meta{factor} and one \meta{coordinate}: % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{calc}}] \begin{tikzpicture} \draw [help lines] (0,0) grid (3,2); @@ -1180,7 +1180,7 @@ second coordinate, not the first. It is permissible to use a \meta{number} that is smaller than $0$ or larger than $1$. The \meta{number} is evaluated using the |\pgfmathparse| command and, thus, it can involve complicated computations. % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{calc}}] \begin{tikzpicture} \draw [help lines] (0,0) grid (3,2); @@ -1201,7 +1201,7 @@ computation, namely the partway computation.'' Here are two examples: % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{calc}}] \begin{tikzpicture} \draw [help lines] (0,0) grid (3,3); @@ -1218,7 +1218,7 @@ Here are two examples: \end{tikzpicture} \end{codeexample} -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{calc}}] \begin{tikzpicture} \draw [help lines] (0,0) grid (4,4); @@ -1230,7 +1230,7 @@ Here are two examples: You can repeatedly apply modifiers. That is, after any modifier you can add another (possibly different) modifier. % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{calc}}] \begin{tikzpicture} \draw [help lines] (0,0) grid (3,2); @@ -1255,7 +1255,7 @@ When you write \meta{a}|!|\meta{dimension}|!|\meta{b}, this means the following: Use the point that is distanced \meta{dimension} from \meta{a} on the straight line from \meta{a} to \meta{b}. Here is an example: % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{calc}}] \begin{tikzpicture} \draw [help lines] (0,0) grid (3,2); @@ -1275,7 +1275,7 @@ computed a point |(c)| that lies somewhere on a line from |(a)| to~|(b)| and you now wish to offset this point by |1cm| so that the distance from this offset point to the line is |1cm|. This can be achieved as follows: % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{calc}}] \begin{tikzpicture} \draw [help lines] (0,0) grid (3,2); @@ -1313,7 +1313,7 @@ The effect is the following: We project the \meta{projection coordinate} orthogonally onto the line from \meta{coordinate} to \meta{second coordinate}. This makes it easy to compute projected points: % -\begin{codeexample}[] +\begin{codeexample}[preamble={\usetikzlibrary{calc}}] \begin{tikzpicture} \draw [help lines] (0,0) grid (3,2); |