summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/fonts/qpx/01tst.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/fonts/qpx/01tst.tex')
-rw-r--r--Master/texmf-dist/doc/fonts/qpx/01tst.tex160
1 files changed, 0 insertions, 160 deletions
diff --git a/Master/texmf-dist/doc/fonts/qpx/01tst.tex b/Master/texmf-dist/doc/fonts/qpx/01tst.tex
deleted file mode 100644
index 232baf8ec6a..00000000000
--- a/Master/texmf-dist/doc/fonts/qpx/01tst.tex
+++ /dev/null
@@ -1,160 +0,0 @@
-%&mex --translate-file=il2-pl
-%% test of qpxmath.tex (09.03.2001, StaW)
-\def\PT{dd} %% skład 10dd ;-)
-\input qpxmath
-\parindent0pt
-%%======
-\def\TEST{Nieco zwykłego tekstu \bf półgrubo, \it a teraz kursyw±,
-a~może nawet \sc Kapitalikiem. \rm OK, wystarczy. Teraz matematyka
-w~tek¶cie $\sum_{\alpha\rightarrow\infty}{a+1\over a-b^4}$
-i~dalej ($f_m,f_n)=(f_{r_{k-1}}, f_{r_k})$. I~jeszcze $x^{4m}+y^{4m}=z^{4m}$,
-gdzie $m\xgeq 1$. $\cal A + \cal G$. ${\mit\Gamma}+\Phi$. Cyfry nautyczne
-$\oldstyle 1967$}
-
-\tenpoint 10pt. \TEST
-
-\smallskip\ninepoint 9pt. \TEST
-
-\smallskip\eightpoint 8pt. \TEST
-
-\medskip\tenpoint 10pt (albo czego¶tam)
-$$A,\dots,Z\quad a,\dots,z\quad \Gamma, \dots,\Omega\quad
- \varGamma, \dots, \varOmega\quad
- \alpha,\dots,\omega\quad \varg $$ % \varv \varw \vary not accesible
-\smallskip
-$$\aleph_\alpha\times\aleph_\beta=\aleph_\beta\iff \alpha\le \beta$$
-\smallskip
-$$\forall \varepsilon >\alpha, \Gamma_\alpha\hookrightarrow
- \Gamma_\varepsilon$$
-$$|x-a| < \delta \Rightarrow |f(x)-l| < \varepsilon$$
-\smallskip
-$$\underbrace {V \times \cdots \times V}_k \times
- \underbrace {V \times \cdots \times V}_l \rightarrow
- \underbrace {V \times \cdots \times V}_{k+l}$$
-\smallskip
-$$\{x\mid x \ne x\} = \emptyset\qquad (A\cap B)^\circ\subset A^\circ
- \cap B^\circ$$
-\medskip
-$$\eqalign{\omega &= \nu+v(x,y)\,dx + w(x,y)\,dy+d\varPsi\cr
- d\omega &=d\nu+ \left({\partial w\over \partial x}-
- {\partial v\over \partial y}\right) dx\wedge dy\cr}$$
-\medskip
-$$\hat x+\widehat X+\widehat{xy}+\widehat{xyz}+\vec A$$
-\smallskip
-$$R_{ijkl}=-R_{jikl}=-R_{ijlk}=R_{klij}$$
-\smallskip
-\smallskip
-$$f(x)=\cases{|x|&$x>a$\cr -|x|&$x\le a$\cr}$$
-\smallskip
-$$\int_{-\infty}^\infty e^{-x\cdot\,x}\,dx=\sqrt\pi$$
-\smallskip
-$$ X=\sum_i \xi^i {\partial\over\partial x^i}+\sum_j
- x^j{\partial\over\partial \dot x^j}$$
-\smallskip
-$$\prod_{j\ge0}\biggl(\sum_{k\ge0}a_{jk}z^k\biggr)
- =\sum_{n\ge0}z^n\,\Biggl(\sum_
- {\scriptstyle k_0,k_1,\ldots\ge0\atop
- \scriptstyle k_0+k_1+\cdots=n}
- a_{0k_0}a_{1k_1}\ldots\,\Biggr)$$
-\smallskip
-$$\def\\#1#2{(1-q^{#1_#2+n})} % to save typing
-\Pi_R{a_1,a_2,\ldots,a_M\atopwithdelims[]b_1,b_2,\ldots,b_N}
- =\prod_{n=0}^R{\\a1\\a2\ldots\\aM\over\\b1\\b2\ldots\\bN}$$
-\smallskip
-$$\int_0^\infty{t-ib\over t^2+b^2}e^{iat}\,dt=e^{ab}E_1(ab),\qquad a,b>0$$
-
-%%
-\smallskip\ninepoint 9pt (albo czego¶tam)
-$$A,\dots,Z\quad a,\dots,z\quad \Gamma, \dots,\Omega\quad
- \varGamma, \dots, \varOmega\quad
- \alpha,\dots,\omega\quad \varg$$ %\quad \varv\quad \varw\quad \vary
-\smallskip
-$$\aleph_\alpha\times\aleph_\beta=\aleph_\beta\iff \alpha\le \beta$$
-\smallskip
-$$\forall \varepsilon >\alpha, \Gamma_\alpha\hookrightarrow
- \Gamma_\varepsilon$$
-$$|x-a| < \delta \Rightarrow |f(x)-l| < \varepsilon$$
-\smallskip
-$$\underbrace {V \times \cdots \times V}_k \times
- \underbrace {V \times \cdots \times V}_l \rightarrow
- \underbrace {V \times \cdots \times V}_{k+l}$$
-\smallskip
-$$\{x\mid x \ne x\} = \emptyset\qquad (A\cap B)^\circ\subset A^\circ
- \cap B^\circ$$
-\medskip
-$$\eqalign{\omega &= \nu+v(x,y)\,dx + w(x,y)\,dy+d\varPsi\cr
- d\omega &=d\nu+ \left({\partial w\over \partial x}-
- {\partial v\over \partial y}\right) dx\wedge dy\cr}$$
-\medskip
-$$\hat x+\widehat X+\widehat{xy}+\widehat{xyz}+\vec A$$
-\smallskip
-$$R_{ijkl}=-R_{jikl}=-R_{ijlk}=R_{klij}$$
-\smallskip
-\smallskip
-$$f(x)=\cases{|x|&$x>a$\cr -|x|&$x\le a$\cr}$$
-\smallskip
-$$\int_{-\infty}^\infty e^{-x\cdot\,x}\,dx=\sqrt\pi$$
-\smallskip
-$$ X=\sum_i \xi^i {\partial\over\partial x^i}+\sum_j
- x^j{\partial\over\partial \dot x^j}$$
-\smallskip
-$$\prod_{j\ge0}\biggl(\sum_{k\ge0}a_{jk}z^k\biggr)
- =\sum_{n\ge0}z^n\,\Biggl(\sum_
- {\scriptstyle k_0,k_1,\ldots\ge0\atop
- \scriptstyle k_0+k_1+\cdots=n}
- a_{0k_0}a_{1k_1}\ldots\,\Biggr)$$
-\smallskip
-$$\def\\#1#2{(1-q^{#1_#2+n})} % to save typing
-\Pi_R{a_1,a_2,\ldots,a_M\atopwithdelims[]b_1,b_2,\ldots,b_N}
- =\prod_{n=0}^R{\\a1\\a2\ldots\\aM\over\\b1\\b2\ldots\\bN}$$
-\smallskip
-$$\int_0^\infty{t-ib\over t^2+b^2}e^{iat}\,dt=e^{ab}E_1(ab),\qquad a,b>0$$
-
-%%
-\smallskip \eightpoint 8pt (albo czego¶tam)
-$$A,\dots,Z\quad a,\dots,z\quad \Gamma, \dots,\Omega\quad
- \varGamma, \dots, \varOmega\quad
- \alpha,\dots,\omega\quad \varg$$ %\varv \varw \vary
-\smallskip
-$$\aleph_\alpha\times\aleph_\beta=\aleph_\beta\iff \alpha\le \beta$$
-\smallskip
-$$\forall \varepsilon >\alpha, \Gamma_\alpha\hookrightarrow
- \Gamma_\varepsilon$$
-$$|x-a| < \delta \Rightarrow |f(x)-l| < \varepsilon$$
-\smallskip
-$$\underbrace {V \times \cdots \times V}_k \times
- \underbrace {V \times \cdots \times V}_l \rightarrow
- \underbrace {V \times \cdots \times V}_{k+l}$$
-\smallskip
-$$\{x\mid x \ne x\} = \emptyset\qquad (A\cap B)^\circ\subset A^\circ
- \cap B^\circ$$
-\medskip
-$$\eqalign{\omega &= \nu+v(x,y)\,dx + w(x,y)\,dy+d\varPsi\cr
- d\omega &=d\nu+ \left({\partial w\over \partial x}-
- {\partial v\over \partial y}\right) dx\wedge dy\cr}$$
-\medskip
-$$\hat x+\widehat X+\widehat{xy}+\widehat{xyz}+\vec A$$
-\smallskip
-$$R_{ijkl}=-R_{jikl}=-R_{ijlk}=R_{klij}$$
-\smallskip
-\smallskip
-$$f(x)=\cases{|x|&$x>a$\cr -|x|&$x\le a$\cr}$$
-\smallskip
-$$\int_{-\infty}^\infty e^{-x\cdot\,x}\,dx=\sqrt\pi$$
-\smallskip
-$$ X=\sum_i \xi^i {\partial\over\partial x^i}+\sum_j
- x^j{\partial\over\partial \dot x^j}$$
-\smallskip
-$$\prod_{j\ge0}\biggl(\sum_{k\ge0}a_{jk}z^k\biggr)
- =\sum_{n\ge0}z^n\,\Biggl(\sum_
- {\scriptstyle k_0,k_1,\ldots\ge0\atop
- \scriptstyle k_0+k_1+\cdots=n}
- a_{0k_0}a_{1k_1}\ldots\,\Biggr)$$
-\smallskip
-$$\def\\#1#2{(1-q^{#1_#2+n})} % to save typing
-\Pi_R{a_1,a_2,\ldots,a_M\atopwithdelims[]b_1,b_2,\ldots,b_N}
- =\prod_{n=0}^R{\\a1\\a2\ldots\\aM\over\\b1\\b2\ldots\\bN}$$
-\smallskip
-$$\int_0^\infty{t-ib\over t^2+b^2}e^{iat}\,dt=e^{ab}E_1(ab),\qquad a,b>0$$
-
-\bye