diff options
Diffstat (limited to 'Master/texmf-dist/doc/asymptote/examples/soccerball.asy')
-rw-r--r-- | Master/texmf-dist/doc/asymptote/examples/soccerball.asy | 91 |
1 files changed, 47 insertions, 44 deletions
diff --git a/Master/texmf-dist/doc/asymptote/examples/soccerball.asy b/Master/texmf-dist/doc/asymptote/examples/soccerball.asy index a37063dbb29..5cf0f015055 100644 --- a/Master/texmf-dist/doc/asymptote/examples/soccerball.asy +++ b/Master/texmf-dist/doc/asymptote/examples/soccerball.asy @@ -1,14 +1,14 @@ -import graph3; -size(400); +import graph3; +size(400); currentlight.background=palegreen; defaultrender=render(compression=Zero,merge=true); -real c=(1+sqrt(5))/2; +real c=(1+sqrt(5))/2; -triple[] z={(c,1,0),(-c,1,0),(-c,-1,0),(c,-1,0)}; -triple[] x={(0,c,1),(0,-c,1),(0,-c,-1),(0,c,-1)}; -triple[] y={(1,0,c),(1,0,-c),(-1,0,-c),(-1,0,c)}; +triple[] z={(c,1,0),(-c,1,0),(-c,-1,0),(c,-1,0)}; +triple[] x={(0,c,1),(0,-c,1),(0,-c,-1),(0,c,-1)}; +triple[] y={(1,0,c),(1,0,-c),(-1,0,-c),(-1,0,c)}; triple[][] Q={ {z[0],y[1],x[3],x[0],y[0],z[3]}, @@ -23,65 +23,68 @@ triple[][] Q={ {y[1],y[2],x[2],z[3],z[0],x[3]}, {y[2],y[1],x[3],z[1],z[2],x[2]}, {y[3],y[0],x[0],z[1],z[2],x[1]} -}; +}; -path3 p=arc(O,Q[0][0],Q[0][1]); -real R=abs(point(p,reltime(p,1/3))); +int nArc=4; + +path3 p=Arc(O,Q[0][0],Q[0][1],nArc); +real R=abs(point(p,reltime(p,1/3))); triple[][] P; -for(int i=0; i < Q.length; ++i){ - P[i]=new triple[] ; - for(int j=0; j < Q[i].length; ++j){ - P[i][j]=Q[i][j]/R; +for(int i=0;i < Q.length;++i){ + P[i]=new triple[] ; + for(int j=0;j < Q[i].length;++j){ + P[i][j]=Q[i][j]/R; } } +// FIXME: Use a baryicentric coordinate mesh surface sphericaltriangle(triple center, triple A, triple B, triple C, int nu=3, int nv=nu) { - path3 tri1=arc(center,A,B); - path3 tri2=arc(center,A,C); - path3 tri3=arc(center,B,C); + path3 tri1=Arc(center,A,B,nArc); + path3 tri2=Arc(center,A,C,nArc); + path3 tri3=Arc(center,B,C,nArc); triple tri(pair p) { - path3 cr=arc(O,relpoint(tri2,p.x),relpoint(tri3,p.x)); - return relpoint(cr,p.y); - }; + path3 cr=Arc(O,relpoint(tri2,p.x),relpoint(tri3,p.x),nArc); + return relpoint(cr,p.y); + }; - return surface(tri,(0,0),(1-sqrtEpsilon,1),nu,nv,Spline); + return surface(tri,(0,0),(1-sqrtEpsilon,1),nu,nv,Spline); } -for(int i=0; i < P.length; ++i){ +for(int i=0;i < P.length;++i){ triple[] pentagon=sequence(new triple(int k) { - path3 p=arc(O,P[i][0],P[i][k+1]); - return point(p,reltime(p,1/3)); - },5); - pentagon.cyclic=true; + path3 p=Arc(O,P[i][0],P[i][k+1],nArc); + return point(p,reltime(p,1/3)); + },5); + pentagon.cyclic=true; draw(sequence(new path3(int k) { - return arc(O,pentagon[k],pentagon[k+1]);},5),linewidth(2pt)); - triple M=unit(sum(pentagon)/5); - for(int i=0; i < 5; ++i){ - surface sf=sphericaltriangle(O,pentagon[i],M,pentagon[i+1]); - draw(sf,black); + return Arc(O,pentagon[k],pentagon[k+1],nArc);},5),linewidth(2pt)); + triple M=unit(sum(pentagon)/5); + for(int i=0;i < 5;++i){ + surface sf=sphericaltriangle(O,pentagon[i],M,pentagon[i+1]); + draw(sf,black); } } - -for(int i=0; i < P.length; ++i){ - for(int j=1; j <= 5; ++j){ - triple K=P[i][0]; - triple A=P[i][j]; - triple B=P[i][(j % 5)+1]; - path3[] p={arc(O,K,A),arc(O,A,B),arc(O,B,K)}; - draw(subpath(p[0],reltime(p[0],1/3),reltime(p[0],2/3)),linewidth(4pt)); + +for(int i=0;i < P.length;++i) { + for(int j=1;j <= 5;++j) { + triple K=P[i][0]; + triple A=P[i][j]; + triple B=P[i][(j % 5)+1]; + path3[] p={Arc(O,K,A,nArc),Arc(O,A,B,nArc),Arc(O,B,K,nArc)}; + draw(subpath(p[0],reltime(p[0],1/3),reltime(p[0],2/3)),linewidth(4pt)); triple[] hexagon={point(p[0],reltime(p[0],1/3)), point(p[0],reltime(p[0],2/3)), point(p[1],reltime(p[1],1/3)), point(p[1],reltime(p[1],2/3)), point(p[2],reltime(p[2],1/3)), - point(p[2],reltime(p[2],2/3))}; - hexagon.cyclic=true; - triple M=unit(sum(hexagon)/6); - for(int i=0; i < 6; ++i){ - surface sf=sphericaltriangle(O,hexagon[i],M,hexagon[i+1]); - draw(sf,white); + point(p[2],reltime(p[2],2/3))}; + hexagon.cyclic=true; + triple M=unit(sum(hexagon)/6); + for(int i=0;i < 6;++i) { + surface sf=sphericaltriangle(O,hexagon[i],M,hexagon[i+1]); + draw(sf,white); } } } |