summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/asymptote/smoothcontour3.asy
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/asymptote/smoothcontour3.asy')
-rw-r--r--Master/texmf-dist/asymptote/smoothcontour3.asy748
1 files changed, 383 insertions, 365 deletions
diff --git a/Master/texmf-dist/asymptote/smoothcontour3.asy b/Master/texmf-dist/asymptote/smoothcontour3.asy
index 216f3269d92..4fe26654283 100644
--- a/Master/texmf-dist/asymptote/smoothcontour3.asy
+++ b/Master/texmf-dist/asymptote/smoothcontour3.asy
@@ -19,69 +19,7 @@
import graph_settings; // for nmesh
import three;
-
-/***********************************************/
-/******** LINEAR ALGEBRA ROUTINES **************/
-/******** LEAST-SQUARES **************/
-/***********************************************/
-
-// Apply a matrix to a vector.
-real[] apply(real[][] matrix, real[] v) {
- real[] ans = new real[matrix.length];
- for (int r = 0; r < matrix.length; ++r) {
- ans[r] = 0;
- for (int c = 0; c < v.length; ++c) {
- ans[r] += matrix[r][c] * v[c];
- }
- }
- return ans;
-}
-
-// Apply the transpose of a matrix to a vector,
-// without actually forming the transpose.
-real[] applytranspose(real[][] matrix, real[] v) {
- real[] ans = new real[matrix[0].length];
- for (int r = 0; r < ans.length; ++r) ans[r] = 0;
- for (int c = 0; c < matrix.length; ++c) {
- for (int r = 0; r < ans.length; ++r) {
- ans[r] += matrix[c][r] * v[c];
- }
- }
- return ans;
-}
-
-// For a matrix A, returns the matrix product
-// (A transposed) * A.
-// The transpose of A is never actually formed.
-real[][] AtA(real[][] matrix) {
- real[][] toreturn = new real[matrix[0].length][matrix[0].length];
- for (int i = 0; i < toreturn.length; ++i) {
- for (int j = 0; j < toreturn.length; ++j) {
- toreturn [i][j] = 0;
- }
- }
- for (int k = 0; k < matrix.length; ++k) {
- for (int i = 0; i < toreturn.length; ++i) {
- for (int j = 0; j < toreturn.length; ++j) {
- toreturn[i][j] += matrix[k][i] * matrix[k][j];
- }
- }
- }
- return toreturn;
-}
-
-// Assuming A is a matrix with independent columns, returns
-// the unique vector y minimizing |Ay - b|^2 (the L2 norm).
-// If the columns of A are not linearly independent,
-// throws an error (if warn == true) or returns an empty array
-// (if warn == false).
-real[] leastsquares(real[][] A, real[] b, bool warn = true) {
- real[] solution = solve(AtA(A), applytranspose(A, b), warn=false);
- if (solution.length == 0 && warn)
- abort("Cannot compute least-squares approximation for " +
- "a matrix with linearly dependent columns.");
- return solution;
-}
+import math;
/***********************************************/
/******** CREATING BEZIER PATCHES **************/
@@ -126,7 +64,7 @@ function[] bernstein = new function[] {B03, B13, B23, B33};
// the specified boundary path. However, the entries in the array
// remain intact.
patch patchwithnormals(path3 external, triple[] u0normals, triple[] u1normals,
- triple[] v0normals, triple[] v1normals)
+ triple[] v0normals, triple[] v1normals)
{
assert(cyclic(external));
assert(length(external) == 4);
@@ -275,8 +213,8 @@ patch patchwithnormals(path3 external, triple[] u0normals, triple[] u1normals,
real[] solution = leastsquares(matrix, rightvector, warn=false);
if (solution.length == 0) { // if the matrix was singular
- write("Warning: unable to solve matrix for specifying normals "
- + "on bezier patch. Using standard method.");
+ write("Warning: unable to solve matrix for specifying edge normals "
+ + "on bezier patch. Using coons patch.");
return patch(external);
}
@@ -284,22 +222,95 @@ patch patchwithnormals(path3 external, triple[] u0normals, triple[] u1normals,
for (int j = 1; j <= 2; ++j) {
int position = 3 * (2 * (i-1) + (j-1));
controlpoints[i][j] = (solution[position],
- solution[position+1],
- solution[position+2]);
+ solution[position+1],
+ solution[position+2]);
}
}
return patch(controlpoints);
}
-// A wrapper for the previous function when the normal direction
+// This function attempts to produce a Bezier triangle
+// with the specified boundary path and normal directions at the
+// edge midpoints. The bezier triangle should be normal to
+// n1 at point(external, 0.5),
+// normal to n2 at point(external, 1.5), and
+// normal to n3 at point(external, 2.5).
+// The actual normal (as computed by the patch.normal() function)
+// may be parallel to the specified normal, antiparallel, or
+// even zero.
+//
+// A small amount of deviation is allowed in order to stabilize
+// the algorithm (by keeping the mixed partials at the corners from
+// growing too large).
+patch trianglewithnormals(path3 external, triple n1,
+ triple n2, triple n3) {
+ assert(cyclic(external));
+ assert(length(external) == 3);
+ // Use the formal symbols a3, a2b, abc, etc. to denote the control points,
+ // following the Wikipedia article on Bezier triangles.
+ triple a3 = point(external, 0), a2b = postcontrol(external, 0),
+ ab2 = precontrol(external, 1), b3 = point(external, 1),
+ b2c = postcontrol(external, 1), bc2 = precontrol(external, 2),
+ c3 = point(external, 2), ac2 = postcontrol(external, 2),
+ a2c = precontrol(external, 0);
+
+ // Use orthogonal projection to ensure that the normal vectors are
+ // actually normal to the boundary path.
+ triple tangent = dir(external, 0.5);
+ n1 -= dot(n1,tangent)*tangent;
+ n1 = unit(n1);
+
+ tangent = dir(external, 1.5);
+ n2 -= dot(n2,tangent)*tangent;
+ n2 = unit(n2);
+
+ tangent = dir(external, 2.5);
+ n3 -= dot(n3,tangent)*tangent;
+ n3 = unit(n3);
+
+ real wild = 2 * wildnessweight;
+ real[][] matrix = { {n1.x, n1.y, n1.z},
+ {n2.x, n2.y, n2.z},
+ {n3.x, n3.y, n3.z},
+ { wild, 0, 0},
+ { 0, wild, 0},
+ { 0, 0, wild} };
+ real[] rightvector =
+ { dot(n1, (a3 + 3a2b + 3ab2 + b3 - 2a2c - 2b2c)) / 4,
+ dot(n2, (b3 + 3b2c + 3bc2 + c3 - 2ab2 - 2ac2)) / 4,
+ dot(n3, (c3 + 3ac2 + 3a2c + a3 - 2bc2 - 2a2b)) / 4 };
+
+ // The inner control point that minimizes the sum of squares of
+ // the mixed partials on the corners.
+ triple tameinnercontrol =
+ ((a2b + a2c - a3) + (ab2 + b2c - b3) + (ac2 + bc2 - c3)) / 3;
+ rightvector.append(wild * new real[]
+ {tameinnercontrol.x, tameinnercontrol.y, tameinnercontrol.z});
+ real[] solution = leastsquares(matrix, rightvector, warn=false);
+ if (solution.length == 0) { // if the matrix was singular
+ write("Warning: unable to solve matrix for specifying edge normals "
+ + "on bezier triangle. Using coons triangle.");
+ return patch(external);
+ }
+ triple innercontrol = (solution[0], solution[1], solution[2]);
+ return patch(external, innercontrol);
+}
+
+// A wrapper for the previous functions when the normal direction
// is given as a function of direction. The wrapper can also
// accommodate cyclic boundary paths of between one and four
// segments, although the results are best by far when there
-// are four segments.
+// are three or four segments.
patch patchwithnormals(path3 external, triple normalat(triple)) {
assert(cyclic(external));
assert(1 <= length(external) && length(external) <= 4);
+ if (length(external) == 3) {
+ triple n1 = normalat(point(external, 0.5));
+ triple n2 = normalat(point(external, 1.5));
+ triple n3 = normalat(point(external, 2.5));
+ return trianglewithnormals(external, n1, n2, n3);
+ }
while (length(external) < 4) external = external -- cycle;
triple[] u0normals = new triple[3];
triple[] u1normals = new triple[3];
@@ -315,82 +326,6 @@ patch patchwithnormals(path3 external, triple normalat(triple)) {
}
/***********************************************/
-/*********** ROOT-FINDER UTILITY ***************/
-/***********************************************/
-
-// Namespace
-struct rootfinder_settings {
- static real roottolerance = 1e-4;
-}
-
-// Find a root for the specified continuous (but not
-// necessarily differentiable) function. Whatever
-// value t is returned, it is guaranteed that either
-// t is within tolerance of a sign change, or
-// abs(f(t)) <= 0.1 tolerance.
-// An error is thrown if fa and fb are both positive
-// or both negative.
-//
-// In the current implementation, binary search is interleaved
-// with a modified version of linear interpolation.
-real findroot(real f(real), real a, real b,
- real tolerance = rootfinder_settings.roottolerance,
- real fa = f(a), real fb = f(b))
-{
- if (fa == 0) return a;
- if (fb == 0) return b;
- real g(real);
- if (fa < 0) {
- assert(fb > 0);
- g = f;
- } else {
- assert(fb < 0);
- fa = -fa;
- fb = -fb;
- g = new real(real t) { return -f(t); };
- }
-
- real t = a;
- real ft = fa;
-
- while (b - a > tolerance && abs(ft) > 0.1*tolerance) {
- t = a + (b - a) / 2;
- ft = g(t);
- if (ft == 0) return t;
- else if (ft > 0) {
- b = t;
- fb = ft;
- } else if (ft < 0) {
- a = t;
- fa = ft;
- }
-
- // linear interpolation
- t = a - (b - a) / (fb - fa) * fa;
-
- // If the interpolated value is close to one edge of
- // the interval, move it farther away from the edge in
- // an effort to catch the root in the middle.
- if (t - a < (b-a)/8) t = a + 2*(t-a);
- else if (b - t < (b-a)/8) t = b - 2*(b-t);
-
- assert(t >= a && t <= b);
-
- ft = g(t);
- if (ft == 0) return t;
- else if (ft > 0) {
- b = t;
- fb = ft;
- } else if (ft < 0) {
- a = t;
- fa = ft;
- }
-
- }
- return a - (b - a) / (fb - fa) * fa;
-}
-
-/***********************************************/
/********* DUAL CUBE GRAPH UTILITY *************/
/***********************************************/
@@ -466,8 +401,8 @@ struct int_to_intset {
void add(int key, int value) {
for (int i = 0; i < keys.length; ++i) {
if (keys[i] == key) {
- values[i].add(value);
- return;
+ values[i].add(value);
+ return;
}
}
keys.push(key);
@@ -561,9 +496,9 @@ int[] makecircle(edge[] edges) {
if (adjacentvertices.length != 2) return null;
for (int v : adjacentvertices) {
if (v != lastvertex) {
- lastvertex = currentvertex;
- currentvertex = v;
- break;
+ lastvertex = currentvertex;
+ currentvertex = v;
+ break;
}
}
} while (currentvertex != startvertex);
@@ -597,9 +532,10 @@ string operator cast(positionedvector vv) {
// The angle, in degrees, between two vectors.
real angledegrees(triple a, triple b) {
- real lengthprod = abs(a) * abs(b);
+ real dotprod = dot(a,b);
+ real lengthprod = max(abs(a) * abs(b), abs(dotprod));
if (lengthprod == 0) return 0;
- return aCos(dot(a,b) / lengthprod);
+ return aCos(dotprod / lengthprod);
}
// A path (single curved segment) between two points. At each point
@@ -622,10 +558,10 @@ path3 pathbetween(positionedvector v1, positionedvector v2) {
// the span of v1 and v2. If v1 and v2 are dependent, returns an empty array
// (if warn==false) or throws an error (if warn==true).
real[] projecttospan_findcoeffs(triple toproject, triple v1, triple v2,
- bool warn=false) {
+ bool warn=false) {
real[][] matrix = {{v1.x, v2.x},
- {v1.y, v2.y},
- {v1.z, v2.z}};
+ {v1.y, v2.y},
+ {v1.z, v2.z}};
real[] desiredanswer = {toproject.x, toproject.y, toproject.z};
return leastsquares(matrix, desiredanswer, warn=warn);
}
@@ -635,7 +571,7 @@ real[] projecttospan_findcoeffs(triple toproject, triple v1, triple v2,
// a >= mincoeff and b >= mincoeff. If v1 and v2 are linearly dependent,
// return a random (positive) linear combination.
triple projecttospan(triple toproject, triple v1, triple v2,
- real mincoeff = 0.05) {
+ real mincoeff = 0.05) {
real[] coeffs = projecttospan_findcoeffs(toproject, v1, v2, warn=false);
real a, b;
if (coeffs.length == 0) {
@@ -701,25 +637,25 @@ path3 bisector(path3 edgecycle, int[] savevertices) {
int opposite = i + 3;
triple vec = unit(point(edgecycle, opposite) - point(edgecycle, i));
real[] coeffsbegin = projecttospan_findcoeffs(vec, forwarddirections[i],
- backwarddirections[i]);
+ backwarddirections[i]);
if (coeffsbegin.length == 0) continue;
coeffsbegin[0] = max(coeffsbegin[0], mincoeff);
coeffsbegin[1] = max(coeffsbegin[1], mincoeff);
real[] coeffsend = projecttospan_findcoeffs(-vec, forwarddirections[opposite],
- backwarddirections[opposite]);
+ backwarddirections[opposite]);
if (coeffsend.length == 0) continue;
coeffsend[0] = max(coeffsend[0], mincoeff);
coeffsend[1] = max(coeffsend[1], mincoeff);
real goodness = angles[i] * angles[opposite] * coeffsbegin[0] * coeffsend[0]
- * coeffsbegin[1] * coeffsend[1];
+ * coeffsbegin[1] * coeffsend[1];
if (goodness > maxgoodness) {
maxgoodness = goodness;
directionout = coeffsbegin[0] * forwarddirections[i] +
- coeffsbegin[1] * backwarddirections[i];
+ coeffsbegin[1] * backwarddirections[i];
directionin = -(coeffsend[0] * forwarddirections[opposite] +
- coeffsend[1] * backwarddirections[opposite]);
+ coeffsend[1] * backwarddirections[opposite]);
chosenindex = i;
}
}
@@ -738,7 +674,7 @@ path3 bisector(path3 edgecycle, int[] savevertices) {
// A path between two specified points (with specified normals) that lies
// within a specified face of a rectangular solid.
path3 pathinface(positionedvector v1, positionedvector v2,
- triple facenorm, triple edge1normout, triple edge2normout)
+ triple facenorm, triple edge1normout, triple edge2normout)
{
triple dir1 = cross(v1.direction, facenorm);
real dotprod = dot(dir1, edge1normout);
@@ -769,15 +705,16 @@ triple normalout(int face) {
// A path between two specified points (with specified normals) that lies
// within a specified face of a rectangular solid.
path3 pathinface(positionedvector v1, positionedvector v2,
- int face, int edge1face, int edge2face) {
+ int face, int edge1face, int edge2face) {
return pathinface(v1, v2, normalout(face), normalout(edge1face),
- normalout(edge2face));
+ normalout(edge2face));
}
/***********************************************/
/******** DRAWING IMPLICIT SURFACES ************/
/***********************************************/
+// DEPRECATED
// Quadrilateralization:
// Produce a surface (array of *nondegenerate* Bezier patches) with a
// specified three-segment boundary. The surface should approximate the
@@ -787,11 +724,12 @@ path3 pathinface(positionedvector v1, positionedvector v2,
// specified rectangular region, returns a length-zero array.
//
// Dividing a triangle into smaller quadrilaterals this way is opposite
-// the usual trend in mathematics. However, the pathwithnormals algorithm
-// does a poor job of choosing a good surface when the boundary path does
+// the usual trend in mathematics. However, *before the introduction of bezier
+// triangles,* the pathwithnormals algorithm
+// did a poor job of choosing a good surface when the boundary path did
// not consist of four positive-length segments.
patch[] triangletoquads(path3 external, real f(triple), triple grad(triple),
- triple a, triple b) {
+ triple a, triple b) {
static real epsilon = 1e-3;
assert(length(external) == 3);
assert(cyclic(external));
@@ -867,6 +805,65 @@ patch[] triangletoquads(path3 external, real f(triple), triple grad(triple),
patchwithnormals(quad2, grad)};
}
+// Attempts to fill the path external (which should by a cyclic path consisting of
+// three segments) with bezier triangle(s). Returns an empty array if it fails.
+//
+// In more detail: A single bezier triangle is computed using trianglewithnormals. The normals of
+// the resulting triangle at the midpoint of each edge are computed. If any of these normals
+// is in the negative f direction, the external triangle is subdivided into four external triangles
+// and the same procedure is applied to each. If one or more of them has an incorrectly oriented
+// edge normal, the function gives up and returns an empty array.
+//
+// Thus, the returned array consists of 0, 1, or 4 bezier triangles; no other array lengths
+// are possible.
+//
+// This function assumes that the path orientation is consistent with f (and its gradient)
+// -- i.e., that
+// at a corner, (tangent in) x (tangent out) is in the positive f direction.
+patch[] maketriangle(path3 external, real f(triple),
+ triple grad(triple), bool allowsubdivide = true) {
+ assert(cyclic(external));
+ assert(length(external) == 3);
+ triple m1 = point(external, 0.5);
+ triple n1 = unit(grad(m1));
+ triple m2 = point(external, 1.5);
+ triple n2 = unit(grad(m2));
+ triple m3 = point(external, 2.5);
+ triple n3 = unit(grad(m3));
+ patch beziertriangle = trianglewithnormals(external, n1, n2, n3);
+ if (dot(n1, beziertriangle.normal(0.5, 0)) >= 0 &&
+ dot(n2, beziertriangle.normal(0.5, 0.5)) >= 0 &&
+ dot(n3, beziertriangle.normal(0, 0.5)) >= 0)
+ return new patch[] {beziertriangle};
+
+ if (!allowsubdivide) return new patch[0];
+
+ positionedvector m1 = positionedvector(m1, n1);
+ positionedvector m2 = positionedvector(m2, n2);
+ positionedvector m3 = positionedvector(m3, n3);
+ path3 p12 = pathbetween(m1, m2);
+ path3 p23 = pathbetween(m2, m3);
+ path3 p31 = pathbetween(m3, m1);
+ patch[] triangles = maketriangle(p12 & p23 & p31 & cycle, f, grad=grad,
+ allowsubdivide=false);
+ if (triangles.length < 1) return new patch[0];
+
+ triangles.append(maketriangle(subpath(external, -0.5, 0.5) & reverse(p31) & cycle,
+ f, grad=grad, allowsubdivide=false));
+ if (triangles.length < 2) return new patch[0];
+
+ triangles.append(maketriangle(subpath(external, 0.5, 1.5) & reverse(p12) & cycle,
+ f, grad=grad, allowsubdivide=false));
+ if (triangles.length < 3) return new patch[0];
+
+ triangles.append(maketriangle(subpath(external, 1.5, 2.5) & reverse(p23) & cycle,
+ f, grad=grad, allowsubdivide=false));
+ if (triangles.length < 4) return new patch[0];
+
+ return triangles;
+}
+
+
// Returns true if the point is "nonsingular" (in the sense that the magnitude
// of the gradient is not too small) AND very close to the zero locus of f
// (assuming f is locally linear).
@@ -891,14 +888,14 @@ bool checkptincube(triple pt, triple a, triple b) {
if (zmin > zmax) { real t = zmax; zmax=zmin; zmin=t; }
return ((xmin <= pt.x) && (pt.x <= xmax) &&
- (ymin <= pt.y) && (pt.y <= ymax) &&
- (zmin <= pt.z) && (pt.z <= zmax));
+ (ymin <= pt.y) && (pt.y <= ymax) &&
+ (zmin <= pt.z) && (pt.z <= zmax));
}
// A convenience function for combining the previous two tests.
bool checkpt(triple testpt, real f(triple), triple grad(triple),
- triple a, triple b) {
+ triple a, triple b) {
return checkptincube(testpt, a, b) &&
check_fpt_zero(testpt, f, grad);
}
@@ -910,8 +907,8 @@ bool checkpt(triple testpt, real f(triple), triple grad(triple),
// array, which merely indicates that the boundary cycle is too small
// to be worth filling in.
patch[] quadpatches(path3 edgecycle, positionedvector[] corners,
- real f(triple), triple grad(triple),
- triple a, triple b) {
+ real f(triple), triple grad(triple),
+ triple a, triple b, bool usetriangles) {
assert(corners.cyclic);
// The tolerance for considering two points "essentially identical."
@@ -924,8 +921,8 @@ patch[] quadpatches(path3 edgecycle, positionedvector[] corners,
if (corners.length == 2) return new patch[0];
corners.delete(i);
edgecycle = subpath(edgecycle, 0, i)
- & subpath(edgecycle, i+1, length(edgecycle))
- & cycle;
+ & subpath(edgecycle, i+1, length(edgecycle))
+ & cycle;
--i;
assert(length(edgecycle) == corners.length);
}
@@ -937,9 +934,9 @@ patch[] quadpatches(path3 edgecycle, positionedvector[] corners,
if (corners.length == 2) {
// If the area is too small, just ignore it; otherwise, subdivide.
real area0 = abs(cross(-dir(edgecycle, 0, sign=-1, normalize=false),
- dir(edgecycle, 0, sign=1, normalize=false)));
+ dir(edgecycle, 0, sign=1, normalize=false)));
real area1 = abs(cross(-dir(edgecycle, 1, sign=-1, normalize=false),
- dir(edgecycle, 1, sign=1, normalize=false)));
+ dir(edgecycle, 1, sign=1, normalize=false)));
if (area0 < areatolerance && area1 < areatolerance) return new patch[0];
else return null;
}
@@ -947,13 +944,14 @@ patch[] quadpatches(path3 edgecycle, positionedvector[] corners,
for (int i = 0; i < length(edgecycle); ++i) {
if (angledegrees(dir(edgecycle,i,sign=1),
- dir(edgecycle,i+1,sign=-1)) > 80) {
+ dir(edgecycle,i+1,sign=-1)) > 80) {
return null;
}
}
if (length(edgecycle) == 3) {
- patch[] toreturn = triangletoquads(edgecycle, f, grad, a, b);
+ patch[] toreturn = usetriangles ? maketriangle(edgecycle, f, grad)
+ : triangletoquads(edgecycle, f, grad, a, b);
if (toreturn.length == 0) return null;
else return toreturn;
}
@@ -974,8 +972,9 @@ patch[] quadpatches(path3 edgecycle, positionedvector[] corners,
& reverse(middleguide) & cycle;
if (length(edgecycle) == 5) {
path3 secondpatch = middleguide
- & subpath(edgecycle, bisectorindices[1], 5+bisectorindices[0]) & cycle;
- toreturn = triangletoquads(secondpatch, f, grad, a, b);
+ & subpath(edgecycle, bisectorindices[1], 5+bisectorindices[0]) & cycle;
+ toreturn = usetriangles ? maketriangle(secondpatch, f, grad)
+ : triangletoquads(secondpatch, f, grad, a, b);
if (toreturn.length == 0) return null;
toreturn.push(patchwithnormals(firstpatch, grad));
} else {
@@ -984,7 +983,7 @@ patch[] quadpatches(path3 edgecycle, positionedvector[] corners,
& subpath(edgecycle, bisectorindices[1], 6+bisectorindices[0])
& cycle;
toreturn = new patch[] {patchwithnormals(firstpatch, grad),
- patchwithnormals(secondpatch, grad)};
+ patchwithnormals(secondpatch, grad)};
}
return toreturn;
}
@@ -995,8 +994,8 @@ vectorfunction nGrad(real f(triple)) {
static real epsilon = 1e-3;
return new triple(triple v) {
return ( (f(v + epsilon*X) - f(v - epsilon*X)) / (2 epsilon),
- (f(v + epsilon*Y) - f(v - epsilon*Y)) / (2 epsilon),
- (f(v + epsilon*Z) - f(v - epsilon*Z)) / (2 epsilon) );
+ (f(v + epsilon*Y) - f(v - epsilon*Y)) / (2 epsilon),
+ (f(v + epsilon*Z) - f(v - epsilon*Z)) / (2 epsilon) );
};
}
@@ -1015,18 +1014,18 @@ triple operator cast(evaluatedpoint p) { return p.pt; }
// Compute the values of a function at every vertex of an nx by ny by nz
// array of rectangular solids.
evaluatedpoint[][][] make3dgrid(triple a, triple b, int nx, int ny, int nz,
- real f(triple), bool allowzero = false)
+ real f(triple), bool allowzero = false)
{
evaluatedpoint[][][] toreturn = new evaluatedpoint[nx+1][ny+1][nz+1];
for (int i = 0; i <= nx; ++i) {
for (int j = 0; j <= ny; ++j) {
for (int k = 0; k <= nz; ++k) {
- triple pt = (interp(a.x, b.x, i/nx),
- interp(a.y, b.y, j/ny),
- interp(a.z, b.z, k/nz));
- real value = f(pt);
- if (value == 0 && !allowzero) value = 1e-5;
- toreturn[i][j][k] = evaluatedpoint(pt, value);
+ triple pt = (interp(a.x, b.x, i/nx),
+ interp(a.y, b.y, j/ny),
+ interp(a.z, b.z, k/nz));
+ real value = f(pt);
+ if (value == 0 && !allowzero) value = 1e-5;
+ toreturn[i][j][k] = evaluatedpoint(pt, value);
}
}
}
@@ -1045,8 +1044,8 @@ T[][] slice(T[][] a, int start1, int end1, int start2, int end2) {
return toreturn;
}
T[][][] slice(T[][][] a, int start1, int end1,
- int start2, int end2,
- int start3, int end3) {
+ int start2, int end2,
+ int start3, int end3) {
T[][][] toreturn = new T[end1-start1][][];
for (int i = start1; i < end1; ++i) {
toreturn[i-start1] = slice(a[i], start2, end2, start3, end3);
@@ -1062,8 +1061,8 @@ T[][] slice(T[][] a, int start1, int end1, int start2, int end2) {
return toreturn;
}
T[][][] slice(T[][][] a, int start1, int end1,
- int start2, int end2,
- int start3, int end3) {
+ int start2, int end2,
+ int start3, int end3) {
T[][][] toreturn = new T[end1-start1][][];
for (int i = start1; i < end1; ++i) {
toreturn[i-start1] = slice(a[i], start2, end2, start3, end3);
@@ -1083,73 +1082,74 @@ struct gridwithzeros {
triple grad(triple);
real f(triple);
int maxdepth;
+ bool usetriangles;
// Populate the edges with zeros that have a sign change and are not already
// populated.
void fillzeros() {
for (int j = 0; j < ny+1; ++j) {
for (int k = 0; k < nz+1; ++k) {
- real y = corners[0][j][k].pt.y;
- real z = corners[0][j][k].pt.z;
- real f_along_x(real t) { return f((t, y, z)); }
- for (int i = 0; i < nx; ++i) {
- if (xdirzeros[i][j][k] != null) continue;
- evaluatedpoint start = corners[i][j][k];
- evaluatedpoint end = corners[i+1][j][k];
- if ((start.value > 0 && end.value > 0) || (start.value < 0 && end.value < 0))
- xdirzeros[i][j][k] = null;
- else {
- triple root = (0,y,z);
- root += X * findroot(f_along_x, start.pt.x, end.pt.x,
- fa=start.value, fb=end.value);
- triple normal = grad(root);
- xdirzeros[i][j][k] = positionedvector(root, normal);
- }
- }
+ real y = corners[0][j][k].pt.y;
+ real z = corners[0][j][k].pt.z;
+ real f_along_x(real t) { return f((t, y, z)); }
+ for (int i = 0; i < nx; ++i) {
+ if (xdirzeros[i][j][k] != null) continue;
+ evaluatedpoint start = corners[i][j][k];
+ evaluatedpoint end = corners[i+1][j][k];
+ if ((start.value > 0 && end.value > 0) || (start.value < 0 && end.value < 0))
+ xdirzeros[i][j][k] = null;
+ else {
+ triple root = (0,y,z);
+ root += X * findroot(f_along_x, start.pt.x, end.pt.x,
+ fa=start.value, fb=end.value);
+ triple normal = grad(root);
+ xdirzeros[i][j][k] = positionedvector(root, normal);
+ }
+ }
}
}
for (int i = 0; i < nx+1; ++i) {
for (int k = 0; k < nz+1; ++k) {
- real x = corners[i][0][k].pt.x;
- real z = corners[i][0][k].pt.z;
- real f_along_y(real t) { return f((x, t, z)); }
- for (int j = 0; j < ny; ++j) {
- if (ydirzeros[i][j][k] != null) continue;
- evaluatedpoint start = corners[i][j][k];
- evaluatedpoint end = corners[i][j+1][k];
- if ((start.value > 0 && end.value > 0) || (start.value < 0 && end.value < 0))
- ydirzeros[i][j][k] = null;
- else {
- triple root = (x,0,z);
- root += Y * findroot(f_along_y, start.pt.y, end.pt.y,
- fa=start.value, fb=end.value);
- triple normal = grad(root);
- ydirzeros[i][j][k] = positionedvector(root, normal);
- }
- }
+ real x = corners[i][0][k].pt.x;
+ real z = corners[i][0][k].pt.z;
+ real f_along_y(real t) { return f((x, t, z)); }
+ for (int j = 0; j < ny; ++j) {
+ if (ydirzeros[i][j][k] != null) continue;
+ evaluatedpoint start = corners[i][j][k];
+ evaluatedpoint end = corners[i][j+1][k];
+ if ((start.value > 0 && end.value > 0) || (start.value < 0 && end.value < 0))
+ ydirzeros[i][j][k] = null;
+ else {
+ triple root = (x,0,z);
+ root += Y * findroot(f_along_y, start.pt.y, end.pt.y,
+ fa=start.value, fb=end.value);
+ triple normal = grad(root);
+ ydirzeros[i][j][k] = positionedvector(root, normal);
+ }
+ }
}
}
for (int i = 0; i < nx+1; ++i) {
for (int j = 0; j < ny+1; ++j) {
- real x = corners[i][j][0].pt.x;
- real y = corners[i][j][0].pt.y;
- real f_along_z(real t) { return f((x, y, t)); }
- for (int k = 0; k < nz; ++k) {
- if (zdirzeros[i][j][k] != null) continue;
- evaluatedpoint start = corners[i][j][k];
- evaluatedpoint end = corners[i][j][k+1];
- if ((start.value > 0 && end.value > 0) || (start.value < 0 && end.value < 0))
- zdirzeros[i][j][k] = null;
- else {
- triple root = (x,y,0);
- root += Z * findroot(f_along_z, start.pt.z, end.pt.z,
- fa=start.value, fb=end.value);
- triple normal = grad(root);
- zdirzeros[i][j][k] = positionedvector(root, normal);
- }
- }
+ real x = corners[i][j][0].pt.x;
+ real y = corners[i][j][0].pt.y;
+ real f_along_z(real t) { return f((x, y, t)); }
+ for (int k = 0; k < nz; ++k) {
+ if (zdirzeros[i][j][k] != null) continue;
+ evaluatedpoint start = corners[i][j][k];
+ evaluatedpoint end = corners[i][j][k+1];
+ if ((start.value > 0 && end.value > 0) || (start.value < 0 && end.value < 0))
+ zdirzeros[i][j][k] = null;
+ else {
+ triple root = (x,y,0);
+ root += Z * findroot(f_along_z, start.pt.z, end.pt.z,
+ fa=start.value, fb=end.value);
+ triple normal = grad(root);
+ zdirzeros[i][j][k] = positionedvector(root, normal);
+ }
+ }
}
}
}
@@ -1159,14 +1159,15 @@ struct gridwithzeros {
// maximum subdivision depth. When a cube at maxdepth cannot be resolved to
// patches, it is left empty.
void operator init(int nx, int ny, int nz,
- real f(triple), triple a, triple b,
- int maxdepth = 6) {
+ real f(triple), triple a, triple b,
+ int maxdepth = 6, bool usetriangles) {
this.nx = nx;
this.ny = ny;
this.nz = nz;
grad = nGrad(f);
this.f = f;
this.maxdepth = maxdepth;
+ this.usetriangles = usetriangles;
corners = make3dgrid(a, b, nx, ny, nz, f);
xdirzeros = new positionedvector[nx][ny+1][nz+1];
ydirzeros = new positionedvector[nx+1][ny][nz+1];
@@ -1174,11 +1175,11 @@ struct gridwithzeros {
for (int i = 0; i <= nx; ++i) {
for (int j = 0; j <= ny; ++j) {
- for (int k = 0; k <= nz; ++k) {
- if (i < nx) xdirzeros[i][j][k] = null;
- if (j < ny) ydirzeros[i][j][k] = null;
- if (k < nz) zdirzeros[i][j][k] = null;
- }
+ for (int k = 0; k <= nz; ++k) {
+ if (i < nx) xdirzeros[i][j][k] = null;
+ if (j < ny) ydirzeros[i][j][k] = null;
+ if (k < nz) zdirzeros[i][j][k] = null;
+ }
}
}
@@ -1206,18 +1207,18 @@ struct gridwithzeros {
corners = new evaluatedpoint[nx+1][ny+1][nz+1];
for (int i = 0; i <= nx; ++i) {
for (int j = 0; j <= ny; ++j) {
- for (int k = 0; k <= nz; ++k) {
- if (i % 2 == 0 && j % 2 == 0 && k % 2 == 0) {
- corners[i][j][k] = oldcorners[quotient(i,2)][quotient(j,2)][quotient(k,2)];
- } else {
- triple pt = (interp(a.x, b.x, i/nx),
- interp(a.y, b.y, j/ny),
- interp(a.z, b.z, k/nz));
- real value = f(pt);
- if (value == 0) value = 1e-5;
- corners[i][j][k] = evaluatedpoint(pt, value);
- }
- }
+ for (int k = 0; k <= nz; ++k) {
+ if (i % 2 == 0 && j % 2 == 0 && k % 2 == 0) {
+ corners[i][j][k] = oldcorners[quotient(i,2)][quotient(j,2)][quotient(k,2)];
+ } else {
+ triple pt = (interp(a.x, b.x, i/nx),
+ interp(a.y, b.y, j/ny),
+ interp(a.z, b.z, k/nz));
+ real value = f(pt);
+ if (value == 0) value = 1e-5;
+ corners[i][j][k] = evaluatedpoint(pt, value);
+ }
+ }
}
}
@@ -1225,23 +1226,23 @@ struct gridwithzeros {
xdirzeros = new positionedvector[nx][ny+1][nz+1];
for (int i = 0; i < nx; ++i) {
for (int j = 0; j < ny + 1; ++j) {
- for (int k = 0; k < nz + 1; ++k) {
- if (j % 2 != 0 || k % 2 != 0) {
- xdirzeros[i][j][k] = null;
- } else {
- positionedvector zero = oldxdir[quotient(i,2)][quotient(j,2)][quotient(k,2)];
- if (zero == null) {
- xdirzeros[i][j][k] = null;
- continue;
- }
- real x = zero.position.x;
- if (x > interp(a.x, b.x, i/nx) && x < interp(a.x, b.x, (i+1)/nx)) {
- xdirzeros[i][j][k] = zero;
- } else {
- xdirzeros[i][j][k] = null;
- }
- }
- }
+ for (int k = 0; k < nz + 1; ++k) {
+ if (j % 2 != 0 || k % 2 != 0) {
+ xdirzeros[i][j][k] = null;
+ } else {
+ positionedvector zero = oldxdir[quotient(i,2)][quotient(j,2)][quotient(k,2)];
+ if (zero == null) {
+ xdirzeros[i][j][k] = null;
+ continue;
+ }
+ real x = zero.position.x;
+ if (x > interp(a.x, b.x, i/nx) && x < interp(a.x, b.x, (i+1)/nx)) {
+ xdirzeros[i][j][k] = zero;
+ } else {
+ xdirzeros[i][j][k] = null;
+ }
+ }
+ }
}
}
@@ -1249,23 +1250,23 @@ struct gridwithzeros {
ydirzeros = new positionedvector[nx+1][ny][nz+1];
for (int i = 0; i < nx+1; ++i) {
for (int j = 0; j < ny; ++j) {
- for (int k = 0; k < nz + 1; ++k) {
- if (i % 2 != 0 || k % 2 != 0) {
- ydirzeros[i][j][k] = null;
- } else {
- positionedvector zero = oldydir[quotient(i,2)][quotient(j,2)][quotient(k,2)];
- if (zero == null) {
- ydirzeros[i][j][k] = null;
- continue;
- }
- real y = zero.position.y;
- if (y > interp(a.y, b.y, j/ny) && y < interp(a.y, b.y, (j+1)/ny)) {
- ydirzeros[i][j][k] = zero;
- } else {
- ydirzeros[i][j][k] = null;
- }
- }
- }
+ for (int k = 0; k < nz + 1; ++k) {
+ if (i % 2 != 0 || k % 2 != 0) {
+ ydirzeros[i][j][k] = null;
+ } else {
+ positionedvector zero = oldydir[quotient(i,2)][quotient(j,2)][quotient(k,2)];
+ if (zero == null) {
+ ydirzeros[i][j][k] = null;
+ continue;
+ }
+ real y = zero.position.y;
+ if (y > interp(a.y, b.y, j/ny) && y < interp(a.y, b.y, (j+1)/ny)) {
+ ydirzeros[i][j][k] = zero;
+ } else {
+ ydirzeros[i][j][k] = null;
+ }
+ }
+ }
}
}
@@ -1273,23 +1274,23 @@ struct gridwithzeros {
zdirzeros = new positionedvector[nx+1][ny+1][nz];
for (int i = 0; i < nx + 1; ++i) {
for (int j = 0; j < ny + 1; ++j) {
- for (int k = 0; k < nz; ++k) {
- if (i % 2 != 0 || j % 2 != 0) {
- zdirzeros[i][j][k] = null;
- } else {
- positionedvector zero = oldzdir[quotient(i,2)][quotient(j,2)][quotient(k,2)];
- if (zero == null) {
- zdirzeros[i][j][k] = null;
- continue;
- }
- real z = zero.position.z;
- if (z > interp(a.z, b.z, k/nz) && z < interp(a.z, b.z, (k+1)/nz)) {
- zdirzeros[i][j][k] = zero;
- } else {
- zdirzeros[i][j][k] = null;
- }
- }
- }
+ for (int k = 0; k < nz; ++k) {
+ if (i % 2 != 0 || j % 2 != 0) {
+ zdirzeros[i][j][k] = null;
+ } else {
+ positionedvector zero = oldzdir[quotient(i,2)][quotient(j,2)][quotient(k,2)];
+ if (zero == null) {
+ zdirzeros[i][j][k] = null;
+ continue;
+ }
+ real z = zero.position.z;
+ if (z > interp(a.z, b.z, k/nz) && z < interp(a.z, b.z, (k+1)/nz)) {
+ zdirzeros[i][j][k] = zero;
+ } else {
+ zdirzeros[i][j][k] = null;
+ }
+ }
+ }
}
}
@@ -1316,14 +1317,14 @@ struct gridwithzeros {
void pushifnonnull(positionedvector v) {
if (v != null) {
- zeroedges.push(edge(currentface, nextface));
- zeros.push(v);
+ zeroedges.push(edge(currentface, nextface));
+ zeros.push(v);
}
}
positionedvector findzero(int face1, int face2) {
edge e = edge(face1, face2);
for (int i = 0; i < zeroedges.length; ++i) {
- if (zeroedges[i] == e) return zeros[i];
+ if (zeroedges[i] == e) return zeros[i];
}
return null;
}
@@ -1365,7 +1366,7 @@ struct gridwithzeros {
patch[] subdividecube() {
if (!subdivide()) {
- return new patch[0];
+ return new patch[0];
}
return draw(reportactive);
}
@@ -1386,19 +1387,31 @@ struct gridwithzeros {
path3 edgecycle;
for (int i = 0; i < faceorder.length; ++i) {
path3 currentpath = pathinface(patchcorners[i], patchcorners[i+1],
- faceorder[i+1], faceorder[i],
- faceorder[i+2]);
+ faceorder[i+1], faceorder[i],
+ faceorder[i+2]);
triple testpoint = point(currentpath, 0.5);
if (!checkpt(testpoint, f, grad, corners[0][0][0], corners[1][1][1])) {
- return subdividecube();
+ return subdividecube();
}
edgecycle = edgecycle & currentpath;
}
edgecycle = edgecycle & cycle;
+
+ { // Ensure the outward normals are pointing in the same direction as the gradient.
+ triple tangentin = patchcorners[0].position - precontrol(edgecycle, 0);
+ triple tangentout = postcontrol(edgecycle, 0) - patchcorners[0].position;
+ triple normal = cross(tangentin, tangentout);
+ if (dot(normal, patchcorners[0].direction) < 0) {
+ edgecycle = reverse(edgecycle);
+ patchcorners = patchcorners[-sequence(patchcorners.length)];
+ patchcorners.cyclic = true;
+ }
+ }
+
patch[] toreturn = quadpatches(edgecycle, patchcorners, f, grad,
- corners[0][0][0], corners[1][1][1]);
+ corners[0][0][0], corners[1][1][1], usetriangles);
if (alias(toreturn, null)) return subdividecube();
return toreturn;
}
@@ -1413,6 +1426,7 @@ struct gridwithzeros {
cube.ny = 1;
cube.nz = 1;
cube.maxdepth = maxdepth;
+ cube.usetriangles = usetriangles;
cube.corners = slice(corners,i,i+2,j,j+2,k,k+2);
cube.xdirzeros = slice(xdirzeros,i,i+1,j,j+2,k,k+2);
cube.ydirzeros = slice(ydirzeros,i,i+2,j,j+1,k,k+2);
@@ -1434,6 +1448,7 @@ struct gridwithzeros {
// grid will subdivide all the way to maxdepth if necessary to find points
// on the surface.
draw = new patch[](bool[] reportactive = null) {
+ if (alias(reportactive, null)) progress(true);
// A list of all the patches not already drawn but known
// to contain part of the surface. This "queue" is
// actually implemented as stack for simplicity, since
@@ -1444,49 +1459,49 @@ struct gridwithzeros {
bool[][][] enqueued = new bool[nx][ny][nz];
for (int i = 0; i < enqueued.length; ++i) {
for (int j = 0; j < enqueued[i].length; ++j) {
- for (int k = 0; k < enqueued[i][j].length; ++k) {
- enqueued[i][j][k] = false;
- }
+ for (int k = 0; k < enqueued[i][j].length; ++k) {
+ enqueued[i][j][k] = false;
+ }
}
}
void enqueue(int i, int j, int k) {
if (i >= 0 && i < nx
- && j >= 0 && j < ny
- && k >= 0 && k < nz
- && !enqueued[i][j][k]) {
- queue.push((i,j,k));
- enqueued[i][j][k] = true;
+ && j >= 0 && j < ny
+ && k >= 0 && k < nz
+ && !enqueued[i][j][k]) {
+ queue.push((i,j,k));
+ enqueued[i][j][k] = true;
}
if (!alias(reportactive, null)) {
- if (i < 0) reportactive[XLOW] = true;
- if (i >= nx) reportactive[XHIGH] = true;
- if (j < 0) reportactive[YLOW] = true;
- if (j >= ny) reportactive[YHIGH] = true;
- if (k < 0) reportactive[ZLOW] = true;
- if (k >= nz) reportactive[ZHIGH] = true;
+ if (i < 0) reportactive[XLOW] = true;
+ if (i >= nx) reportactive[XHIGH] = true;
+ if (j < 0) reportactive[YLOW] = true;
+ if (j >= ny) reportactive[YHIGH] = true;
+ if (k < 0) reportactive[ZLOW] = true;
+ if (k >= nz) reportactive[ZHIGH] = true;
}
}
for (int i = 0; i < nx+1; ++i) {
for (int j = 0; j < ny+1; ++j) {
- for (int k = 0; k < nz+1; ++k) {
- if (i < nx && xdirzeros[i][j][k] != null) {
- for (int jj = j-1; jj <= j; ++jj)
- for (int kk = k-1; kk <= k; ++kk)
- enqueue(i, jj, kk);
- }
- if (j < ny && ydirzeros[i][j][k] != null) {
- for (int ii = i-1; ii <= i; ++ii)
- for (int kk = k-1; kk <= k; ++kk)
- enqueue(ii, j, kk);
- }
- if (k < nz && zdirzeros[i][j][k] != null) {
- for (int ii = i-1; ii <= i; ++ii)
- for (int jj = j-1; jj <= j; ++jj)
- enqueue(ii, jj, k);
- }
- }
+ for (int k = 0; k < nz+1; ++k) {
+ if (i < nx && xdirzeros[i][j][k] != null) {
+ for (int jj = j-1; jj <= j; ++jj)
+ for (int kk = k-1; kk <= k; ++kk)
+ enqueue(i, jj, kk);
+ }
+ if (j < ny && ydirzeros[i][j][k] != null) {
+ for (int ii = i-1; ii <= i; ++ii)
+ for (int kk = k-1; kk <= k; ++kk)
+ enqueue(ii, j, kk);
+ }
+ if (k < nz && zdirzeros[i][j][k] != null) {
+ for (int ii = i-1; ii <= i; ++ii)
+ for (int jj = j-1; jj <= j; ++jj)
+ enqueue(ii, jj, k);
+ }
+ }
}
}
@@ -1510,9 +1525,9 @@ struct gridwithzeros {
if (reportface[ZLOW]) enqueue(i,j,k-1);
if (reportface[ZHIGH]) enqueue(i,j,k+1);
surface.append(toappend);
- if (settings.verbose > 1 && alias(reportactive, null)) write(stdout, '.');
+ if (alias(reportactive, null)) progress();
}
- if (settings.verbose > 1 && alias(reportactive, null)) write(stdout, '\n');
+ if (alias(reportactive, null)) progress(false);
return surface;
};
}
@@ -1540,22 +1555,25 @@ struct gridwithzeros {
// maxdepth - the maximum depth to which the algorithm will subdivide in
// an effort to find patches that closely approximate the true surface.
surface implicitsurface(real f(triple) = null, real ff(real,real,real) = null,
- triple a, triple b,
- int n = nmesh,
- bool keyword overlapedges = false,
- int keyword nx=n, int keyword ny=n,
- int keyword nz=n,
- int keyword maxdepth = 8) {
+ triple a, triple b,
+ int n = nmesh,
+ bool keyword overlapedges = false,
+ int keyword nx=n, int keyword ny=n,
+ int keyword nz=n,
+ int keyword maxdepth = 8,
+ bool keyword usetriangles=true) {
if (f == null && ff == null)
abort("implicitsurface called without specifying a function.");
if (f != null && ff != null)
abort("Only specify one function when calling implicitsurface.");
if (f == null) f = new real(triple w) { return ff(w.x, w.y, w.z); };
- gridwithzeros grid = gridwithzeros(nx, ny, nz, f, a, b, maxdepth=maxdepth);
+ gridwithzeros grid = gridwithzeros(nx, ny, nz, f, a, b, maxdepth=maxdepth,
+ usetriangles=usetriangles);
patch[] patches = grid.draw();
if (overlapedges) {
for (int i = 0; i < patches.length; ++i) {
- triple center = patches[i].point(1/2,1/2);
+ triple center = (patches[i].triangular ?
+ patches[i].point(1/3, 1/3) : patches[i].point(1/2,1/2));
patches[i] = shift(center) * scale3(1.01) * shift(-center) * patches[i];
}
}