diff options
Diffstat (limited to 'Master/texmf-dist/asymptote/geometry.asy')
-rw-r--r-- | Master/texmf-dist/asymptote/geometry.asy | 520 |
1 files changed, 260 insertions, 260 deletions
diff --git a/Master/texmf-dist/asymptote/geometry.asy b/Master/texmf-dist/asymptote/geometry.asy index 1c8a95063f7..420d5bdc456 100644 --- a/Master/texmf-dist/asymptote/geometry.asy +++ b/Master/texmf-dist/asymptote/geometry.asy @@ -40,7 +40,7 @@ private transform rotate(explicit pair dir) real angle=degrees(dir); if(angle > 90 && angle < 270) angle -= 180; return rotate(angle); -} +} // *=======================================================* // *........................HEADER.........................* @@ -165,7 +165,7 @@ real rd(real x, real y, real z) ed = ea - 6 * eb; ee = ed + ec + ec; return 3 * sum + fac * (1.0 + ed * (-C1 + C5 * ed - C6 * delz * ee) - +delz * (C2 * ee + delz * (-C3 * ec + delz * C4 * ea)))/(ave * sqrt(ave)); + +delz * (C2 * ee + delz * (-C3 * ec + delz * C4 * ea)))/(ave * sqrt(ave)); } /*<asyxml><function type="real" signature="elle(real,real)"><code></asyxml>*/ @@ -258,10 +258,10 @@ struct coordsys {/*<asyxml></code><documentation>This structure represents a coordinate system in the plane.</documentation></asyxml>*/ /*<asyxml><method type = "pair" signature="relativetodefault(pair)"><code></asyxml>*/ restricted convert relativetodefault = new pair(pair m){return m;};/*<asyxml></code><documentation>Convert a pair given relatively to this coordinate system to - the pair relatively to the default coordinate system.</documentation></method></asyxml>*/ + the pair relatively to the default coordinate system.</documentation></method></asyxml>*/ /*<asyxml><method type = "pair" signature="defaulttorelativet(pair)"><code></asyxml>*/ restricted convert defaulttorelative = new pair(pair m){return m;};/*<asyxml></code><documentation>Convert a pair given relatively to the default coordinate system to - the pair relatively to this coordinate system.</documentation></method></asyxml>*/ + the pair relatively to this coordinate system.</documentation></method></asyxml>*/ /*<asyxml><method type = "real" signature="dot(pair,pair)"><code></asyxml>*/ restricted dot dot = new real(pair m, pair n){return dot(m, n);};/*<asyxml></code><documentation>Return the dot product of this coordinate system.</documentation></method></asyxml>*/ /*<asyxml><method type = "real" signature="abs(pair)"><code></asyxml>*/ @@ -287,50 +287,50 @@ struct coordsys /*<asyxml><operator type = "bool" signature="==(coordsys,coordsys)"><code></asyxml>*/ bool operator ==(coordsys c1, coordsys c2) -{/*<asyxml></code><documentation>Return true iff the coordinate system have the same origin and units vector.</documentation></operator></asyxml>*/ - return c1.O == c2.O && c1.i == c2.i && c1.j == c2.j; -} + {/*<asyxml></code><documentation>Return true iff the coordinate system have the same origin and units vector.</documentation></operator></asyxml>*/ + return c1.O == c2.O && c1.i == c2.i && c1.j == c2.j; + } /*<asyxml><function type="coordsys" signature="cartesiansystem(pair,pair,pair)"><code></asyxml>*/ coordsys cartesiansystem(pair O = (0, 0), pair i, pair j) {/*<asyxml></code><documentation>Return the Cartesian coordinate system (O, i, j).</documentation></function></asyxml>*/ - coordsys R; - real[][] P = {{0, 0}, {0, 0}}; - real[][] iP; - P[0][0] = i.x; - P[0][1] = j.x; - P[1][0] = i.y; - P[1][1] = j.y; - iP = inverse(P); - real ni = abs(i); - real nj = abs(j); - real ij = angle(j) - angle(i); - - pair rtd(pair m) - { - return O + (P[0][0] * m.x + P[0][1] * m.y, P[1][0] * m.x + P[1][1] * m.y); - } - - pair dtr(pair m) - { - m-=O; - return (iP[0][0] * m.x + iP[0][1] * m.y, iP[1][0] * m.x + iP[1][1] * m.y); - } - - pair polar(real r, real a) - { - real ca = sin(ij - a)/(ni * sin(ij)); - real sa = sin(a)/(nj * sin(ij)); - return r * (ca, sa); - } - - real tdot(pair m, pair n) - { - return m.x * n.x * ni^2 + m.y * n.y * nj^2 + (m.x * n.y + n.x * m.y) * dot(i, j); - } - - R.init(rtd, dtr, polar, tdot); - return R; + coordsys R; + real[][] P = {{0, 0}, {0, 0}}; + real[][] iP; + P[0][0] = i.x; + P[0][1] = j.x; + P[1][0] = i.y; + P[1][1] = j.y; + iP = inverse(P); + real ni = abs(i); + real nj = abs(j); + real ij = angle(j) - angle(i); + + pair rtd(pair m) + { + return O + (P[0][0] * m.x + P[0][1] * m.y, P[1][0] * m.x + P[1][1] * m.y); + } + + pair dtr(pair m) + { + m-=O; + return (iP[0][0] * m.x + iP[0][1] * m.y, iP[1][0] * m.x + iP[1][1] * m.y); + } + + pair polar(real r, real a) + { + real ca = sin(ij - a)/(ni * sin(ij)); + real sa = sin(a)/(nj * sin(ij)); + return r * (ca, sa); + } + + real tdot(pair m, pair n) + { + return m.x * n.x * ni^2 + m.y * n.y * nj^2 + (m.x * n.y + n.x * m.y) * dot(i, j); + } + + R.init(rtd, dtr, polar, tdot); + return R; } @@ -344,19 +344,19 @@ void show(picture pic = currentpicture, Label lo = "$O$", pen jpen = ipen, arrowbar arrow = Arrow) {/*<asyxml></code><documentation>Draw the components (O, i, j, x - axis, y - axis) of 'R'.</documentation></function></asyxml>*/ - unravel R; - dot(pic, O, dotpen); - drawline(pic, O, O + i, xpen); - drawline(pic, O, O + j, ypen); - draw(pic, li, O--(O + i), ipen, arrow); - Label lj = lj.copy(); - lj.align(lj.align, unit(I * j)); - draw(pic, lj, O--(O + j), jpen, arrow); - draw(pic, lj, O--(O + j), jpen, arrow); - Label lo = lo.copy(); - lo.align(lo.align, -2 * dir(O--O + i, O--O + j)); - lo.p(dotpen); - label(pic, lo, O); + unravel R; + dot(pic, O, dotpen); + drawline(pic, O, O + i, xpen); + drawline(pic, O, O + j, ypen); + draw(pic, li, O--(O + i), ipen, arrow); + Label lj = lj.copy(); + lj.align(lj.align, unit(I * j)); + draw(pic, lj, O--(O + j), jpen, arrow); + draw(pic, lj, O--(O + j), jpen, arrow); + Label lo = lo.copy(); + lo.align(lo.align, -2 * dir(O--O + i, O--O + j)); + lo.p(dotpen); + label(pic, lo, O); } /*<asyxml><operator type = "pair" signature="/(pair,coordsys)"><code></asyxml>*/ @@ -364,7 +364,7 @@ pair operator /(pair p, coordsys R) {/*<asyxml></code><documentation>Return the xy - coordinates of 'p' relatively to the coordinate system 'R'. For example, if R = cartesiansystem((1, 2), (1, 0), (0, 1)), (0, 0)/R is (-1, -2).</documentation></operator></asyxml>*/ - return R.defaulttorelative(p); + return R.defaulttorelative(p); } /*<asyxml><operator type = "pair" signature="*(coordsys,pair)"><code></asyxml>*/ @@ -372,34 +372,34 @@ pair operator *(coordsys R, pair p) {/*<asyxml></code><documentation>Return the coordinates of 'p' given in the xy - coordinates 'R'. For example, if R = cartesiansystem((1, 2), (1, 0), (0, 1)), R * (0, 0) is (1, 2).</documentation></operator></asyxml>*/ - return R.relativetodefault(p); + return R.relativetodefault(p); } /*<asyxml><operator type = "path" signature="*(coordsys,path)"><code></asyxml>*/ path operator *(coordsys R, path g) {/*<asyxml></code><documentation>Return the reconstructed path applying R * pair to each node, pre and post control point of 'g'.</documentation></operator></asyxml>*/ - guide og = R * point(g, 0); - real l = length(g); - for(int i = 1; i <= l; ++i) - { - pair P = R * point(g, i); - pair post = R * postcontrol(g, i - 1); - pair pre = R * precontrol(g, i); - if(i == l && (cyclic(g))) - og = og..controls post and pre..cycle; - else - og = og..controls post and pre..P; - } - return og; + guide og = R * point(g, 0); + real l = length(g); + for(int i = 1; i <= l; ++i) + { + pair P = R * point(g, i); + pair post = R * postcontrol(g, i - 1); + pair pre = R * precontrol(g, i); + if(i == l && (cyclic(g))) + og = og..controls post and pre..cycle; + else + og = og..controls post and pre..P; + } + return og; } /*<asyxml><operator type = "coordsys" signature="*(transform,coordsys)"><code></asyxml>*/ coordsys operator *(transform t,coordsys R) {/*<asyxml></code><documentation>Provide transform * coordsys. Note that shiftless(t) is applied to R.i and R.j.</documentation></operator></asyxml>*/ - coordsys oc; - oc = cartesiansystem(t * R.O, shiftless(t) * R.i, shiftless(t) * R.j); - return oc; + coordsys oc; + oc = cartesiansystem(t * R.O, shiftless(t) * R.i, shiftless(t) * R.j); + return oc; } /*<asyxml><constant type = "coordsys" signature="defaultcoordsys"><code></asyxml>*/ @@ -651,26 +651,26 @@ point operator *(explicit pair p1, explicit point p2) /*<asyxml><operator type = "bool" signature="==(explicit point,explicit point)"><code></asyxml>*/ bool operator ==(explicit point M, explicit point N) -{/*<asyxml></code><documentation>Provide the test 'M == N' wish returns true iff MN < EPS</documentation></operator></asyxml>*/ - return abs(locate(M) - locate(N)) < EPS; -} + {/*<asyxml></code><documentation>Provide the test 'M == N' wish returns true iff MN < EPS</documentation></operator></asyxml>*/ + return abs(locate(M) - locate(N)) < EPS; + } /*<asyxml><operator type = "bool" signature="!=(explicit point,explicit point)"><code></asyxml>*/ bool operator !=(explicit point M, explicit point N) {/*<asyxml></code><documentation>Provide the test 'M != N' wish return true iff MN >= EPS</documentation></operator></asyxml>*/ - return !(M == N); + return !(M == N); } /*<asyxml><operator type = "guide" signature="cast(point)"><code></asyxml>*/ guide operator cast(point p) {/*<asyxml></code><documentation>Cast point to guide.</documentation></operator></asyxml>*/ - return locate(p); + return locate(p); } /*<asyxml><operator type = "path" signature="cast(point)"><code></asyxml>*/ path operator cast(point p) {/*<asyxml></code><documentation>Cast point to path.</documentation></operator></asyxml>*/ - return locate(p); + return locate(p); } /*<asyxml><function type="void" signature="dot(picture,Label,explicit point,align,string,pen)"><code></asyxml>*/ @@ -678,103 +678,103 @@ void dot(picture pic = currentpicture, Label L, explicit point Z, align align = NoAlign, string format = defaultformat, pen p = currentpen) {/*<asyxml></code><documentation></documentation></function></asyxml>*/ - Label L = L.copy(); - L.position(locate(Z)); - if(L.s == "") { - if(format == "") format = defaultformat; - L.s = "("+format(format, Z.x)+", "+format(format, Z.y)+")"; - } - L.align(align, E); - L.p(p); - dot(pic, locate(Z), p); - add(pic, L); + Label L = L.copy(); + L.position(locate(Z)); + if(L.s == "") { + if(format == "") format = defaultformat; + L.s = "("+format(format, Z.x)+", "+format(format, Z.y)+")"; + } + L.align(align, E); + L.p(p); + dot(pic, locate(Z), p); + add(pic, L); } /*<asyxml><function type="real" signature="abs(coordsys,pair)"><code></asyxml>*/ real abs(coordsys R, pair m) {/*<asyxml></code><documentation>Return the modulus |m| in the coordinate system 'R'.</documentation></function></asyxml>*/ - return R.abs(m); + return R.abs(m); } /*<asyxml><function type="real" signature="abs(explicit point)"><code></asyxml>*/ real abs(explicit point M) {/*<asyxml></code><documentation>Return the modulus |M| in its coordinate system.</documentation></function></asyxml>*/ - return M.coordsys.abs(M.coordinates); + return M.coordsys.abs(M.coordinates); } /*<asyxml><function type="real" signature="length(explicit point)"><code></asyxml>*/ real length(explicit point M) {/*<asyxml></code><documentation>Return the modulus |M| in its coordinate system (same as 'abs').</documentation></function></asyxml>*/ - return M.coordsys.abs(M.coordinates); + return M.coordsys.abs(M.coordinates); } /*<asyxml><function type="point" signature="conj(explicit point)"><code></asyxml>*/ point conj(explicit point M) {/*<asyxml></code><documentation>Conjugate.</documentation></function></asyxml>*/ - return point(M.coordsys, conj(M.coordinates), M.m); + return point(M.coordsys, conj(M.coordinates), M.m); } /*<asyxml><function type="real" signature="degrees(explicit point,coordsys,bool)"><code></asyxml>*/ real degrees(explicit point M, coordsys R = M.coordsys, bool warn = true) {/*<asyxml></code><documentation>Return the angle of M (in degrees) relatively to 'R'.</documentation></function></asyxml>*/ - return (degrees(locate(M) - R.O, warn) - degrees(R.i))%360; + return (degrees(locate(M) - R.O, warn) - degrees(R.i))%360; } /*<asyxml><function type="real" signature="angle(explicit point,coordsys,bool)"><code></asyxml>*/ real angle(explicit point M, coordsys R = M.coordsys, bool warn = true) {/*<asyxml></code><documentation>Return the angle of M (in radians) relatively to 'R'.</documentation></function></asyxml>*/ - return radians(degrees(M, R, warn)); + return radians(degrees(M, R, warn)); } bool Finite(explicit point z) { - return abs(z.x) < Infinity && abs(z.y) < Infinity; + return abs(z.x) < Infinity && abs(z.y) < Infinity; } /*<asyxml><function type="bool" signature="finite(explicit point)"><code></asyxml>*/ bool finite(explicit point p) {/*<asyxml></code><documentation>Avoid to compute 'finite((pair)(infinite_point))'.</documentation></function></asyxml>*/ - return finite(p.coordinates); + return finite(p.coordinates); } /*<asyxml><function type="real" signature="dot(point,point)"><code></asyxml>*/ real dot(point A, point B) {/*<asyxml></code><documentation>Return the dot product in the coordinate system of 'A'.</documentation></function></asyxml>*/ - point[] P = standardizecoordsys(A.coordsys, A, B); - return P[0].coordsys.dot(P[0].coordinates, P[1].coordinates); + point[] P = standardizecoordsys(A.coordsys, A, B); + return P[0].coordsys.dot(P[0].coordinates, P[1].coordinates); } /*<asyxml><function type="real" signature="dot(point,explicit pair)"><code></asyxml>*/ real dot(point A, explicit pair B) {/*<asyxml></code><documentation>Return the dot product in the default coordinate system. dot(explicit pair, point) is also defined.</documentation></function></asyxml>*/ - return dot(locate(A), B); + return dot(locate(A), B); } real dot(explicit pair A, point B) { - return dot(A, locate(B)); + return dot(A, locate(B)); } /*<asyxml><function type="transforms" signature="rotateO(real)"><code></asyxml>*/ transform rotateO(real a) {/*<asyxml></code><documentation>Rotation around the origin of the current coordinate system.</documentation></function></asyxml>*/ - return rotate(a, currentcoordsys.O); + return rotate(a, currentcoordsys.O); } /*<asyxml><function type="transform" signature="projection(point,point)"><code></asyxml>*/ transform projection(point A, point B) {/*<asyxml></code><documentation>Return the orthogonal projection on the line (AB).</documentation></function></asyxml>*/ - pair dir = unit(locate(A) - locate(B)); - pair a = locate(A); - real cof = dir.x * a.x + dir.y * a.y; - real tx = a.x - dir.x * cof; - real txx = dir.x^2; - real txy = dir.x * dir.y; - real ty = a.y - dir.y * cof; - real tyx = txy; - real tyy = dir.y^2; - transform t = (tx, ty, txx, txy, tyx, tyy); - return t; + pair dir = unit(locate(A) - locate(B)); + pair a = locate(A); + real cof = dir.x * a.x + dir.y * a.y; + real tx = a.x - dir.x * cof; + real txx = dir.x^2; + real txy = dir.x * dir.y; + real ty = a.y - dir.y * cof; + real tyx = txy; + real tyy = dir.y^2; + transform t = (tx, ty, txx, txy, tyx, tyy); + return t; } /*<asyxml><function type="transform" signature="projection(point,point,point,point,bool)"><code></asyxml>*/ @@ -782,45 +782,45 @@ transform projection(point A, point B, point C, point D, bool safe = false) {/*<asyxml></code><documentation>Return the (CD) parallel projection on (AB). If 'safe = true' and (AB)//(CD) return the identity. If 'safe = false' and (AB)//(CD) return an infinity scaling.</documentation></function></asyxml>*/ - pair a = locate(A); - pair u = unit(locate(B) - locate(A)); - pair v = unit(locate(D) - locate(C)); - real c = u.x * a.y - u.y * a.x; - real d = (conj(u) * v).y; - if (abs(d) < epsgeo) { - return safe ? identity() : scale(infinity); - } - real tx = c * v.x/d; - real ty = c * v.y/d; - real txx = u.x * v.y/d; - real txy = -u.x * v.x/d; - real tyx = u.y * v.y/d; - real tyy = -u.y * v.x/d; - transform t = (tx, ty, txx, txy, tyx, tyy); - return t; + pair a = locate(A); + pair u = unit(locate(B) - locate(A)); + pair v = unit(locate(D) - locate(C)); + real c = u.x * a.y - u.y * a.x; + real d = (conj(u) * v).y; + if (abs(d) < epsgeo) { + return safe ? identity() : scale(infinity); + } + real tx = c * v.x/d; + real ty = c * v.y/d; + real txx = u.x * v.y/d; + real txy = -u.x * v.x/d; + real tyx = u.y * v.y/d; + real tyy = -u.y * v.x/d; + transform t = (tx, ty, txx, txy, tyx, tyy); + return t; } /*<asyxml><function type="transform" signature="scale(real,point)"><code></asyxml>*/ transform scale(real k, point M) {/*<asyxml></code><documentation>Homothety.</documentation></function></asyxml>*/ - pair P = locate(M); - return shift(P) * scale(k) * shift(-P); + pair P = locate(M); + return shift(P) * scale(k) * shift(-P); } /*<asyxml><function type="transform" signature="xscale(real,point)"><code></asyxml>*/ transform xscale(real k, point M) {/*<asyxml></code><documentation>xscale from 'M' relatively to the x - axis of the coordinate system of 'M'.</documentation></function></asyxml>*/ - pair P = locate(M); - real a = degrees(M.coordsys.i); - return (shift(P) * rotate(a)) * xscale(k) * (rotate(-a) * shift(-P)); + pair P = locate(M); + real a = degrees(M.coordsys.i); + return (shift(P) * rotate(a)) * xscale(k) * (rotate(-a) * shift(-P)); } /*<asyxml><function type="transform" signature="yscale(real,point)"><code></asyxml>*/ transform yscale(real k, point M) {/*<asyxml></code><documentation>yscale from 'M' relatively to the y - axis of the coordinate system of 'M'.</documentation></function></asyxml>*/ - pair P = locate(M); - real a = degrees(M.coordsys.j) - 90; - return (shift(P) * rotate(a)) * yscale(k) * (rotate(-a) * shift(-P)); + pair P = locate(M); + real a = degrees(M.coordsys.j) - 90; + return (shift(P) * rotate(a)) * yscale(k) * (rotate(-a) * shift(-P)); } /*<asyxml><function type="transform" signature="scale(real,point,point,point,point,bool)"><code></asyxml>*/ @@ -829,41 +829,41 @@ transform scale(real k, point A, point B, point C, point D, bool safe = false) (help me for English translation...) If 'safe = true' and (AB)//(CD) return the identity. If 'safe = false' and (AB)//(CD) return a infinity scaling.</documentation></function></asyxml>*/ - pair a = locate(A); - pair u = unit(locate(B) - locate(A)); - pair v = unit(locate(D) - locate(C)); - real c = u.x * a.y - u.y * a.x; - real d = (conj(u) * v).y; - real d = (conj(u) * v).y; - if (abs(d) < epsgeo) { - return safe ? identity() : scale(infinity); - } - real tx = (1 - k) * c * v.x/d; - real ty = (1 - k) * c * v.y/d; - real txx = (1 - k) * u.x * v.y/d + k; - real txy = (k - 1) * u.x * v.x/d; - real tyx = (1 - k) * u.y * v.y/d; - real tyy = (k - 1) * u.y * v.x/d + k; - transform t = (tx, ty, txx, txy, tyx, tyy); - return t; + pair a = locate(A); + pair u = unit(locate(B) - locate(A)); + pair v = unit(locate(D) - locate(C)); + real c = u.x * a.y - u.y * a.x; + real d = (conj(u) * v).y; + real d = (conj(u) * v).y; + if (abs(d) < epsgeo) { + return safe ? identity() : scale(infinity); + } + real tx = (1 - k) * c * v.x/d; + real ty = (1 - k) * c * v.y/d; + real txx = (1 - k) * u.x * v.y/d + k; + real txy = (k - 1) * u.x * v.x/d; + real tyx = (1 - k) * u.y * v.y/d; + real tyy = (k - 1) * u.y * v.x/d + k; + transform t = (tx, ty, txx, txy, tyx, tyy); + return t; } /*<asyxml><function type="transform" signature="scaleO(real)"><code></asyxml>*/ transform scaleO(real x) {/*<asyxml></code><documentation>Homothety from the origin of the current coordinate system.</documentation></function></asyxml>*/ - return scale(x, (0, 0)); + return scale(x, (0, 0)); } /*<asyxml><function type="transform" signature="xscaleO(real)"><code></asyxml>*/ transform xscaleO(real x) {/*<asyxml></code><documentation>xscale from the origin and relatively to the current coordinate system.</documentation></function></asyxml>*/ - return scale(x, (0, 0), (0, 1), (0, 0), (1, 0)); + return scale(x, (0, 0), (0, 1), (0, 0), (1, 0)); } /*<asyxml><function type="transform" signature="yscaleO(real)"><code></asyxml>*/ transform yscaleO(real x) {/*<asyxml></code><documentation>yscale from the origin and relatively to the current coordinate system.</documentation></function></asyxml>*/ - return scale(x, (0, 0), (1, 0), (0, 0), (0, 1)); + return scale(x, (0, 0), (1, 0), (0, 0), (0, 1)); } /*<asyxml><struct signature="vector"><code></asyxml>*/ @@ -876,121 +876,121 @@ struct vector /*<asyxml><operator type = "point" signature="cast(vector)"><code></asyxml>*/ point operator cast(vector v) {/*<asyxml></code><documentation>Cast vector 'v' to point 'M' so that OM = v.</documentation></operator></asyxml>*/ - return v.v; + return v.v; } /*<asyxml><operator type = "vector" signature="cast(pair)"><code></asyxml>*/ vector operator cast(pair v) {/*<asyxml></code><documentation>Cast pair to vector relatively to the current coordinate system 'currentcoordsys'.</documentation></operator></asyxml>*/ - vector ov; - ov.v = point(currentcoordsys, v); - return ov; + vector ov; + ov.v = point(currentcoordsys, v); + return ov; } /*<asyxml><operator type = "vector" signature="cast(explicit point)"><code></asyxml>*/ vector operator cast(explicit point v) {/*<asyxml></code><documentation>A point can be interpreted like a vector using the code '(vector)a_point'.</documentation></operator></asyxml>*/ - vector ov; - ov.v = v; - return ov; + vector ov; + ov.v = v; + return ov; } /*<asyxml><operator type = "pair" signature="cast(explicit vector)"><code></asyxml>*/ pair operator cast(explicit vector v) {/*<asyxml></code><documentation>Cast vector to pair (the coordinates of 'v' in the default coordinate system).</documentation></operator></asyxml>*/ - return locate(v.v) - v.v.coordsys.O; + return locate(v.v) - v.v.coordsys.O; } /*<asyxml><operator type = "align" signature="cast(vector)"><code></asyxml>*/ align operator cast(vector v) {/*<asyxml></code><documentation>Cast vector to align.</documentation></operator></asyxml>*/ - return (pair)v; + return (pair)v; } /*<asyxml><function type="vector" signature="vector(coordsys, pair)"><code></asyxml>*/ vector vector(coordsys R = currentcoordsys, pair v) {/*<asyxml></code><documentation>Return the vector of 'R' which has the coordinates 'v'.</documentation></function></asyxml>*/ - vector ov; - ov.v = point(R, v); - return ov; + vector ov; + ov.v = point(R, v); + return ov; } /*<asyxml><function type="vector" signature="vector(point)"><code></asyxml>*/ vector vector(point M) {/*<asyxml></code><documentation>Return the vector OM, where O is the origin of the coordinate system of 'M'. Useful to write 'vector(P - M);' instead of '(vector)(P - M)'.</documentation></function></asyxml>*/ - return M; + return M; } /*<asyxml><function type="point" signature="point(explicit vector)"><code></asyxml>*/ point point(explicit vector u) {/*<asyxml></code><documentation>Return the point M so that OM = u, where O is the origin of the coordinate system of 'u'.</documentation></function></asyxml>*/ - return u.v; + return u.v; } /*<asyxml><function type="pair" signature="locate(explicit vector)"><code></asyxml>*/ pair locate(explicit vector v) {/*<asyxml></code><documentation>Return the coordinates of 'v' in the default coordinate system (like casting vector to pair).</documentation></function></asyxml>*/ - return (pair)v; + return (pair)v; } /*<asyxml><function type="void" signature="show(Label,pen,arrowbar)"><code></asyxml>*/ void show(Label L, vector v, pen p = currentpen, arrowbar arrow = Arrow) {/*<asyxml></code><documentation>Draw the vector v (from the origin of its coordinate system).</documentation></function></asyxml>*/ - coordsys R = v.v.coordsys; - draw(L, R.O--v.v, p, arrow); + coordsys R = v.v.coordsys; + draw(L, R.O--v.v, p, arrow); } /*<asyxml><function type="vector" signature="changecoordsys(coordsys,vector)"><code></asyxml>*/ vector changecoordsys(coordsys R, vector v) {/*<asyxml></code><documentation>Return the vector 'v' relatively to coordinate system 'R'.</documentation></function></asyxml>*/ - vector ov; - ov.v = point(R, (locate(v) + R.O)/R); - return ov; + vector ov; + ov.v = point(R, (locate(v) + R.O)/R); + return ov; } /*<asyxml><operator type = "vector" signature="*(real,explicit vector)"><code></asyxml>*/ vector operator *(real x, explicit vector v) {/*<asyxml></code><documentation>Provide real * vector.</documentation></operator></asyxml>*/ - return x * v.v; + return x * v.v; } /*<asyxml><operator type = "vector" signature="/(explicit vector,real)"><code></asyxml>*/ vector operator /(explicit vector v, real x) {/*<asyxml></code><documentation>Provide vector/real</documentation></operator></asyxml>*/ - return v.v/x; + return v.v/x; } /*<asyxml><operator type = "vector" signature="*(transform t,explicit vector)"><code></asyxml>*/ vector operator *(transform t, explicit vector v) {/*<asyxml></code><documentation>Provide transform * vector.</documentation></operator></asyxml>*/ - return t * v.v; + return t * v.v; } /*<asyxml><operator type = "vector" signature="*(explicit point,explicit vector)"><code></asyxml>*/ vector operator *(explicit point M, explicit vector v) {/*<asyxml></code><documentation>Provide point * vector</documentation></operator></asyxml>*/ - return M * v.v; + return M * v.v; } /*<asyxml><operator type = "point" signature="+(explicit point,explicit vector)"><code></asyxml>*/ point operator +(point M, explicit vector v) {/*<asyxml></code><documentation>Return 'M' shifted by 'v'.</documentation></operator></asyxml>*/ - return shift(locate(v)) * M; + return shift(locate(v)) * M; } /*<asyxml><operator type = "point" signature="-(explicit point,explicit vector)"><code></asyxml>*/ point operator -(point M, explicit vector v) {/*<asyxml></code><documentation>Return 'M' shifted by '-v'.</documentation></operator></asyxml>*/ - return shift(-locate(v)) * M; + return shift(-locate(v)) * M; } /*<asyxml><operator type = "vector" signature="-(explicit vector)"><code></asyxml>*/ vector operator -(explicit vector v) {/*<asyxml></code><documentation>Provide -v.</documentation></operator></asyxml>*/ - return -v.v; + return -v.v; } /*<asyxml><operator type = "point" signature="+(explicit pair,explicit vector)"><code></asyxml>*/ @@ -998,7 +998,7 @@ point operator +(explicit pair m, explicit vector v) {/*<asyxml></code><documentation>The pair 'm' is supposed to be the coordinates of a point in the current coordinates system 'currentcoordsys'. Return this point shifted by the vector 'v'.</documentation></operator></asyxml>*/ - return locate(m) + v; + return locate(m) + v; } /*<asyxml><operator type = "point" signature="-(explicit pair,explicit vector)"><code></asyxml>*/ @@ -1006,7 +1006,7 @@ point operator -(explicit pair m, explicit vector v) {/*<asyxml></code><documentation>The pair 'm' is supposed to be the coordinates of a point in the current coordinates system 'currentcoordsys'. Return this point shifted by the vector '-v'.</documentation></operator></asyxml>*/ - return m + (-v); + return m + (-v); } /*<asyxml><operator type = "vector" signature="+(explicit vector,explicit vector)"><code></asyxml>*/ @@ -1014,9 +1014,9 @@ vector operator +(explicit vector v1, explicit vector v2) {/*<asyxml></code><documentation>Provide vector + vector. If the two vector haven't the same coordinate system, the returned vector is relative to the default coordinate system (without warning).</documentation></operator></asyxml>*/ - coordsys R = v1.v.coordsys; - if(samecoordsys(false, v1, v2)){R = defaultcoordsys;} - return vector(R, (locate(v1) + locate(v2))/R); + coordsys R = v1.v.coordsys; + if(samecoordsys(false, v1, v2)){R = defaultcoordsys;} + return vector(R, (locate(v1) + locate(v2))/R); } /*<asyxml><operator type = "vector" signature="-(explicit vector, explicit vector)"><code></asyxml>*/ @@ -1024,31 +1024,31 @@ vector operator -(explicit vector v1, explicit vector v2) {/*<asyxml></code><documentation>Provide vector - vector. If the two vector haven't the same coordinate system, the returned vector is relative to the default coordinate system (without warning).</documentation></operator></asyxml>*/ - return v1 + (-v2); + return v1 + (-v2); } /*<asyxml><operator type = "bool" signature="==(explicit vector,explicit vector)"><code></asyxml>*/ bool operator ==(explicit vector u, explicit vector v) -{/*<asyxml></code><documentation>Return true iff |u - v|<EPS.</documentation></operator></asyxml>*/ - return abs(u - v) < EPS; -} + {/*<asyxml></code><documentation>Return true iff |u - v|<EPS.</documentation></operator></asyxml>*/ + return abs(u - v) < EPS; + } /*<asyxml><function type="bool" signature="collinear(vector,vector)"><code></asyxml>*/ bool collinear(vector u, vector v) {/*<asyxml></code><documentation>Return 'true' iff the vectors 'u' and 'v' are collinear.</documentation></function></asyxml>*/ - return abs(ypart((conj((pair)u) * (pair)v))) < EPS; + return abs(ypart((conj((pair)u) * (pair)v))) < EPS; } /*<asyxml><function type="vector" signature="unit(point)"><code></asyxml>*/ vector unit(point M) {/*<asyxml></code><documentation>Return the unit vector according to the modulus of its coordinate system.</documentation></function></asyxml>*/ - return M/abs(M); + return M/abs(M); } /*<asyxml><function type="vector" signature="unit(vector)"><code></asyxml>*/ vector unit(vector u) {/*<asyxml></code><documentation>Return the unit vector according to the modulus of its coordinate system.</documentation></function></asyxml>*/ - return u.v/abs(u.v); + return u.v/abs(u.v); } /*<asyxml><function type="real" signature="degrees(vector,coordsys,bool)"><code></asyxml>*/ @@ -1056,7 +1056,7 @@ real degrees(vector v, coordsys R = v.v.coordsys, bool warn = true) {/*<asyxml></code><documentation>Return the angle of 'v' (in degrees) relatively to 'R'.</documentation></function></asyxml>*/ - return (degrees(locate(v), warn) - degrees(R.i))%360; + return (degrees(locate(v), warn) - degrees(R.i))%360; } /*<asyxml><function type="real" signature="angle(vector,coordsys,bool)"><code></asyxml>*/ @@ -1064,13 +1064,13 @@ real angle(explicit vector v, coordsys R = v.v.coordsys, bool warn = true) {/*<asyxml></code><documentation>Return the angle of 'v' (in radians) relatively to 'R'.</documentation></function></asyxml>*/ - return radians(degrees(v, R, warn)); + return radians(degrees(v, R, warn)); } /*<asyxml><function type="vector" signature="conj(explicit vector)"><code></asyxml>*/ vector conj(explicit vector u) {/*<asyxml></code><documentation>Conjugate.</documentation></function></asyxml>*/ - return conj(u.v); + return conj(u.v); } /*<asyxml><function type="transform" signature="rotate(explicit vector)"><code></asyxml>*/ @@ -1079,7 +1079,7 @@ transform rotate(explicit vector dir) This is useful for rotating text along a line in the direction dir. rotate(explicit point dir) is also defined. </documentation></function></asyxml>*/ - return rotate(locate(dir)); + return rotate(locate(dir)); } transform rotate(explicit point dir){return rotate(locate(vector(dir)));} // *......................COORDINATES......................* @@ -1311,7 +1311,7 @@ void perpendicularmark(picture pic = currentpicture, point z, g = margin(g, p).g; draw(apic, g, p); if(filltype != NoFill) filltype.fill(apic, (relpoint(g, 0) - relpoint(g, 0.5)+ - relpoint(g, 1))--g--cycle, p + solid); + relpoint(g, 1))--g--cycle, p + solid); add(pic, apic, locate(z)); } @@ -1360,7 +1360,7 @@ void markrightangle(picture pic = currentpicture, point A, point O, pair Ap = A, Bp = B, Op = O; pair dir = Ap - Op; real a1 = degrees(dir); - pair align = rotate(-a1) * unit(dir(Op--Ap, Op--Bp)); + pair align = rotate(-a1) * dir(Op--Ap, Op--Bp); perpendicularmark(pic = pic, z = O, align = align, dir = dir, size = size, p = p, margin = margin, filltype = filltype); @@ -1700,80 +1700,80 @@ void write(explicit segment s) /*<asyxml><operator type = "bool" signature="==(line,line)"><code></asyxml>*/ bool operator ==(line l1, line l2) -{/*<asyxml></code><documentation>Provide the test 'line == line'.</documentation></operator></asyxml>*/ - return (collinear(l1.u, l2.u) && - abs(ypart((locate(l1.A) - locate(l1.B))/(locate(l1.A) - locate(l2.B)))) < epsgeo && - l1.extendA == l2.extendA && l1.extendB == l2.extendB); -} + {/*<asyxml></code><documentation>Provide the test 'line == line'.</documentation></operator></asyxml>*/ + return (collinear(l1.u, l2.u) && + abs(ypart((locate(l1.A) - locate(l1.B))/(locate(l1.A) - locate(l2.B)))) < epsgeo && + l1.extendA == l2.extendA && l1.extendB == l2.extendB); + } /*<asyxml><operator type = "bool" signature="!=(line,line)"><code></asyxml>*/ bool operator !=(line l1, line l2) {/*<asyxml></code><documentation>Provide the test 'line != line'.</documentation></operator></asyxml>*/ - return !(l1 == l2); + return !(l1 == l2); } /*<asyxml><operator type = "bool" signature="@(point,line)"><code></asyxml>*/ bool operator @(point m, line l) {/*<asyxml></code><documentation>Provide the test 'point @ line'. Return true iff 'm' is on the 'l'.</documentation></operator></asyxml>*/ - point M = changecoordsys(l.A.coordsys, m); - if (abs(l.a * M.x + l.b * M.y + l.c) >= epsgeo) return false; - if (l.extendA && l.extendB) return true; - if (!l.extendA && !l.extendB) return between(l.A, M, l.B); - if (l.extendA) return sameside(M, l.A, l.B); - return sameside(M, l.B, l.A); + point M = changecoordsys(l.A.coordsys, m); + if (abs(l.a * M.x + l.b * M.y + l.c) >= epsgeo) return false; + if (l.extendA && l.extendB) return true; + if (!l.extendA && !l.extendB) return between(l.A, M, l.B); + if (l.extendA) return sameside(M, l.A, l.B); + return sameside(M, l.B, l.A); } /*<asyxml><function type="coordsys" signature="coordsys(line)"><code></asyxml>*/ coordsys coordsys(line l) {/*<asyxml></code><documentation>Return the coordinate system in which 'l' is defined.</documentation></function></asyxml>*/ - return l.A.coordsys; + return l.A.coordsys; } /*<asyxml><function type="line" signature="reverse(line)"><code></asyxml>*/ line reverse(line l) {/*<asyxml></code><documentation>Permute the points 'A' and 'B' of 'l' and so its orientation.</documentation></function></asyxml>*/ - return line(l.B, l.extendB, l.A, l.extendA); + return line(l.B, l.extendB, l.A, l.extendA); } /*<asyxml><function type="line" signature="extend(line)"><code></asyxml>*/ line extend(line l) {/*<asyxml></code><documentation>Return the infinite line passing through 'l.A' and 'l.B'.</documentation></function></asyxml>*/ - line ol = l.copy(); - ol.extendA = true; - ol.extendB = true; - return ol; + line ol = l.copy(); + ol.extendA = true; + ol.extendB = true; + return ol; } /*<asyxml><function type="line" signature="complementary(explicit line)"><code></asyxml>*/ line complementary(explicit line l) {/*<asyxml></code><documentation>Return the complementary of a half-line with respect of the full line 'l'.</documentation></function></asyxml>*/ - if (l.extendA && l.extendB) - abort("complementary: the parameter is not a half-line."); - point origin = l.extendA ? l.B : l.A; - point ptdir = l.extendA ? - rotate(180, l.B) * l.A : rotate(180, l.A) * l.B; - return line(origin, false, ptdir); + if (l.extendA && l.extendB) + abort("complementary: the parameter is not a half-line."); + point origin = l.extendA ? l.B : l.A; + point ptdir = l.extendA ? + rotate(180, l.B) * l.A : rotate(180, l.A) * l.B; + return line(origin, false, ptdir); } /*<asyxml><function type="line[]" signature="complementary(explicit segment)"><code></asyxml>*/ line[] complementary(explicit segment s) {/*<asyxml></code><documentation>Return the two half-lines of origin 's.A' and 's.B' respectively.</documentation></function></asyxml>*/ - line[] ol = new line[2]; - ol[0] = complementary(line(s.A, false, s.B)); - ol[1] = complementary(line(s.A, s.B, false)); - return ol; + line[] ol = new line[2]; + ol[0] = complementary(line(s.A, false, s.B)); + ol[1] = complementary(line(s.A, s.B, false)); + return ol; } /*<asyxml><function type="line" signature="Ox(coordsys)"><code></asyxml>*/ line Ox(coordsys R = currentcoordsys) {/*<asyxml></code><documentation>Return the x-axis of 'R'.</documentation></function></asyxml>*/ - return line(point(R, (0, 0)), point(R, E)); + return line(point(R, (0, 0)), point(R, E)); } /*<asyxml><constant type = "line" signature="Ox"><code></asyxml>*/ restricted line Ox = Ox();/*<asyxml></code><documentation>the x-axis of - the default coordinate system.</documentation></constant></asyxml>*/ + the default coordinate system.</documentation></constant></asyxml>*/ /*<asyxml><function type="line" signature="Oy(coordsys)"><code></asyxml>*/ line Oy(coordsys R = currentcoordsys) @@ -1782,7 +1782,7 @@ line Oy(coordsys R = currentcoordsys) } /*<asyxml><constant type = "line" signature="Oy"><code></asyxml>*/ restricted line Oy = Oy();/*<asyxml></code><documentation>the y-axis of - the default coordinate system.</documentation></constant></asyxml>*/ + the default coordinate system.</documentation></constant></asyxml>*/ /*<asyxml><function type="line" signature="line(real,point)"><code></asyxml>*/ line line(real a, point A = point(currentcoordsys, (0, 0))) @@ -1826,7 +1826,7 @@ line vline(coordsys R = currentcoordsys) } /*<asyxml><constant type = "line" signature="vline"><code></asyxml>*/ restricted line vline = vline();/*<asyxml></code><documentation>The vertical line in the current coordinate system passing - through the origin of this system.</documentation></constant></asyxml>*/ + through the origin of this system.</documentation></constant></asyxml>*/ /*<asyxml><function type="line" signature="hline(coordsys)"><code></asyxml>*/ line hline(coordsys R = currentcoordsys) @@ -1837,7 +1837,7 @@ line hline(coordsys R = currentcoordsys) } /*<asyxml><constant type = "line" signature="hline"><code></asyxml>*/ line hline = hline();/*<asyxml></code><documentation>The horizontal line in the current coordinate system passing - through the origin of this system.</documentation></constant></asyxml>*/ + through the origin of this system.</documentation></constant></asyxml>*/ /*<asyxml><function type="line" signature="changecoordsys(coordsys,line)"><code></asyxml>*/ line changecoordsys(coordsys R, line l) @@ -2358,11 +2358,11 @@ bqe bqe(coordsys R = currentcoordsys, bqe changecoordsys(coordsys R, bqe bqe) {/*<asyxml></code><documentation>Returns the bivariate quadratic equation relatively to 'R'.</documentation></function></asyxml>*/ pair i = coordinates(changecoordsys(R, vector(defaultcoordsys, - bqe.coordsys.i))); + bqe.coordsys.i))); pair j = coordinates(changecoordsys(R, vector(defaultcoordsys, - bqe.coordsys.j))); + bqe.coordsys.j))); pair O = coordinates(changecoordsys(R, point(defaultcoordsys, - bqe.coordsys.O))); + bqe.coordsys.O))); real a = bqe.a[0], b = bqe.a[1], c = bqe.a[2], d = bqe.a[3], f = bqe.a[4], g = bqe.a[5]; real ux = i.x, uy = i.y; real vx = j.x, vy = j.y; @@ -2372,14 +2372,14 @@ bqe changecoordsys(coordsys R, bqe bqe) real bpp = (-2 * a * vx * vy + b * ux * vy + b * uy * vx - 2 * c * ux * uy)/D^2; real cp = (a * vx^2 - b * ux * vx + c * ux^2)/D^2; real dp = (-2a * ox * vy^2 + 2a * oy * vx * vy + 2b * ox * uy * vy- - b * oy * ux * vy - b * oy * uy * vx - 2c * ox * uy^2 + 2c * oy * uy * ux)/D^2+ + b * oy * ux * vy - b * oy * uy * vx - 2c * ox * uy^2 + 2c * oy * uy * ux)/D^2+ (d * vy - f * uy)/D; real fp = (2a * ox * vx * vy - b * ox * ux * vy - 2a * oy * vx^2- - b * ox * uy * vx + 2 * b * oy * ux * vx + 2c * ox * ux * uy - 2c * oy * ux^2)/D^2+ + b * ox * uy * vx + 2 * b * oy * ux * vx + 2c * ox * ux * uy - 2c * oy * ux^2)/D^2+ (f * ux - d * vx)/D; g = (a * ox^2 * vy^2 - 2a * ox * oy * vx * vy - b * ox^2 * uy * vy + b * ox * oy * ux * vy+ - a * oy^2 * vx^2 + b * ox * oy * uy * vx - b * oy^2 * ux * vx + c * ox^2 * uy^2- - 2 * c * ox * oy * ux * uy + c * oy^2 * ux^2)/D^2+ + a * oy^2 * vx^2 + b * ox * oy * uy * vx - b * oy^2 * ux * vx + c * ox^2 * uy^2- + 2 * c * ox * oy * ux * uy + c * oy^2 * ux^2)/D^2+ (d * oy * vx + f * ox * uy - d * ox * vy - f * oy * ux)/D + g; bqe obqe; obqe.a = approximate(new real[] {ap, bpp, cp, dp, fp, g}); @@ -2636,7 +2636,7 @@ struct hyperbola this.b = a * sqrt(this.e^2 - 1); this.p = a * (this.e^2 - 1); point A = this.C + (a^2/this.c) * unit(P[0]-this.C); - this.D1 = line(A, A + rotateO(90) * unit(A - this.C)); + this.D1 = line(A, A + rotate(90,this.C.coordsys.O) * unit(A - this.C)); this.D2 = reverse(rotate(180, C) * D1); this.V1 = C + a * unit(F1 - C); this.V2 = C + a * unit(F2 - C); @@ -3073,8 +3073,8 @@ parabola parabola(point M1, point M2, point M3, line l) real gle = degrees(l); coordsys Rp = cartesiansystem(R.O, rotate(gle) * R.i, rotate(gle) * R.j); pts = new pair[] {coordinates(changecoordsys(Rp, M1)), - coordinates(changecoordsys(Rp, M2)), - coordinates(changecoordsys(Rp, M3))}; + coordinates(changecoordsys(Rp, M2)), + coordinates(changecoordsys(Rp, M3))}; real[][] M; real[] x; for (int i = 0; i < 3; ++i) { @@ -3560,10 +3560,10 @@ path arcfromcenter(explicit conic co, real angle1, real angle2, path g; if(co.e < 1) g = arcfromcenter((ellipse)co, angle1, - angle2, direction, n); + angle2, direction, n); else if(co.e > 1) g = arcfromcenter((hyperbola)co, angle1, - angle2, n, direction); + angle2, n, direction); else abort("arcfromcenter: does not exist for a parabola."); return g; } @@ -3590,8 +3590,8 @@ bqe equation(ellipse el) } real[] coef = solve(M, x); bqe bqe = changecoordsys(coordsys(el), - bqe(defaultcoordsys, - 1, coef[0], coef[1], coef[2], coef[3], coef[4])); + bqe(defaultcoordsys, + 1, coef[0], coef[1], coef[2], coef[3], coef[4])); bqe.a = approximate(bqe.a); return bqe; } @@ -4038,8 +4038,8 @@ real arclength(ellipse el, real angle1, real angle2, // given form the center of the ellipse. real gle = atan(el.a * tan(radians(a))/el.b)+ pi * (((a%90 == 0 && a != 0) ? floor(a/90) - 1 : floor(a/90)) - - ((a%180 == 0) ? 0 : floor(a/180)) - - (a%360 == 0 ? floor(a/(360)) : 0)); + ((a%180 == 0) ? 0 : floor(a/180)) - + (a%360 == 0 ? floor(a/(360)) : 0)); /* // Uncomment to visualize the used branches unitsize(2cm, 1cm); import graph; @@ -4076,7 +4076,7 @@ real arclength(parabola p, real angle) {/*<asyxml></code><documentation>Return the arclength from 180 to 'angle' given from focus in the canonical coordinate system of 'p'.</documentation></function></asyxml>*/ real a = p.a; /* In canonicalcartesiansystem(p) the equation of p - is x = y^2/(4a) */ + is x = y^2/(4a) */ // integrate(sqrt(1 + (x/(2 * a))^2), x); real S(real t){return 0.5 * t * sqrt(1 + t^2/(4 * a^2)) + a * asinh(t/(2 * a));} real R(real gle){return 2 * a/(1 - Cos(gle));} @@ -4110,7 +4110,7 @@ struct abscissa real x;/*<asyxml></code><documentation>The abscissa value.</documentation></property><property type = "int" signature="system"><code></asyxml>*/ int system;/*<asyxml></code><documentation>0 = relativesystem; 1 = curvilinearsystem; 2 = angularsystem; 3 = nodesystem</documentation></property><property type = "polarconicroutine" signature="polarconicroutine"><code></asyxml>*/ polarconicroutine polarconicroutine = fromCenter;/*<asyxml></code><documentation>The routine used with angular system and two foci conic section. - Possible values are 'formCenter' and 'formFocus'.</documentation></property></asyxml>*/ + Possible values are 'formCenter' and 'formFocus'.</documentation></property></asyxml>*/ /*<asyxml><method type = "abscissa" signature="copy()"><code></asyxml>*/ abscissa copy() {/*<asyxml></code><documentation>Return a copy of this abscissa.</documentation></method></asyxml>*/ @@ -4800,7 +4800,7 @@ struct arc { restricted real angle1, angle2;/*<asyxml></code><documentation>Values (in degrees) in ]-360, 360[.</documentation></property><property type = "bool" signature="direction"><code></asyxml>*/ bool direction = CCW;/*<asyxml></code><documentation>The arc will be drawn from 'angle1' to 'angle2' rotating in the direction 'direction'.</documentation></property><property type = "polarconicroutine" signature="polarconicroutine"><code></asyxml>*/ polarconicroutine polarconicroutine = currentpolarconicroutine;/*<asyxml></code><documentation>The routine to which the angles refer. - If 'el' is a circle 'fromCenter' is always used.</documentation></property></asyxml>*/ + If 'el' is a circle 'fromCenter' is always used.</documentation></property></asyxml>*/ /*<asyxml><method type = "void" signature="setangles(real,real,real)"><code></asyxml>*/ void setangles(real a0, real a1, real a2) @@ -6478,7 +6478,7 @@ point[] intersectionpoints(line l, circle c) coordsys Rc = cartesiansystem(c.C, (1, 0), (0, 1)); line ll = changecoordsys(Rc, l); pair[] P = intersectionpoints(ll.A.coordinates, ll.B.coordinates, - 1, 0, 1, 0, 0, -c.r^2); + 1, 0, 1, 0, 0, -c.r^2); for (int i = 0; i < P.length; ++i) { point inter = changecoordsys(R, point(Rc, P[i])); if(inter @ l) op.push(inter); @@ -6518,7 +6518,7 @@ point[] intersectionpoints(line l, ellipse el) coordsys Rc = canonicalcartesiansystem(el); line ll = changecoordsys(Rc, l); pair[] P = intersectionpoints(ll.A.coordinates, ll.B.coordinates, - 1/el.a^2, 0, 1/el.b^2, 0, 0, -1); + 1/el.a^2, 0, 1/el.b^2, 0, 0, -1); for (int i = 0; i < P.length; ++i) { point inter = changecoordsys(R, point(Rc, P[i])); if(inter @ l) op.push(inter); @@ -6575,7 +6575,7 @@ point[] intersectionpoints(line l, hyperbola h) point[] op; coordsys R = coordsys(h); point A = intersectionpoint(l, h.A1), B = intersectionpoint(l, h.A2); - point M = midpoint(segment(A, B)); + point M = 0.5*(A + B); bool tgt = Finite(M) ? M @ h : false; if(tgt) { if(M @ l) op.push(M); @@ -6644,7 +6644,7 @@ point[] intersectionpoints(bqe bqe1, bqe bqe2) if(abs(b[4]) > e) { real D=b[4]^2; c=new real[] {(a[0]*b[4]^2+a[2]*b[3]^2+ - (-2*a[2]*a[3])*b[3]+a[2]*a[3]^2)/D, + (-2*a[2]*a[3])*b[3]+a[2]*a[3]^2)/D, -((-2*a[2]*b[3]+2*a[2]*a[3])*b[5]-a[3]*b[4]^2+ (2*a[2]*a[5])*b[3])/D,a[2]*(a[5]-b[5])^2/D+a[5]}; x=quadraticroots(c[0],c[1],c[2]); |