diff options
Diffstat (limited to 'Build/source/utils/gzip/inflate.c')
-rw-r--r-- | Build/source/utils/gzip/inflate.c | 954 |
1 files changed, 0 insertions, 954 deletions
diff --git a/Build/source/utils/gzip/inflate.c b/Build/source/utils/gzip/inflate.c deleted file mode 100644 index ede365622b4..00000000000 --- a/Build/source/utils/gzip/inflate.c +++ /dev/null @@ -1,954 +0,0 @@ -/* inflate.c -- Not copyrighted 1992 by Mark Adler - version c10p1, 10 January 1993 */ - -/* You can do whatever you like with this source file, though I would - prefer that if you modify it and redistribute it that you include - comments to that effect with your name and the date. Thank you. - [The history has been moved to the file ChangeLog.] - */ - -/* - Inflate deflated (PKZIP's method 8 compressed) data. The compression - method searches for as much of the current string of bytes (up to a - length of 258) in the previous 32K bytes. If it doesn't find any - matches (of at least length 3), it codes the next byte. Otherwise, it - codes the length of the matched string and its distance backwards from - the current position. There is a single Huffman code that codes both - single bytes (called "literals") and match lengths. A second Huffman - code codes the distance information, which follows a length code. Each - length or distance code actually represents a base value and a number - of "extra" (sometimes zero) bits to get to add to the base value. At - the end of each deflated block is a special end-of-block (EOB) literal/ - length code. The decoding process is basically: get a literal/length - code; if EOB then done; if a literal, emit the decoded byte; if a - length then get the distance and emit the referred-to bytes from the - sliding window of previously emitted data. - - There are (currently) three kinds of inflate blocks: stored, fixed, and - dynamic. The compressor deals with some chunk of data at a time, and - decides which method to use on a chunk-by-chunk basis. A chunk might - typically be 32K or 64K. If the chunk is uncompressible, then the - "stored" method is used. In this case, the bytes are simply stored as - is, eight bits per byte, with none of the above coding. The bytes are - preceded by a count, since there is no longer an EOB code. - - If the data is compressible, then either the fixed or dynamic methods - are used. In the dynamic method, the compressed data is preceded by - an encoding of the literal/length and distance Huffman codes that are - to be used to decode this block. The representation is itself Huffman - coded, and so is preceded by a description of that code. These code - descriptions take up a little space, and so for small blocks, there is - a predefined set of codes, called the fixed codes. The fixed method is - used if the block codes up smaller that way (usually for quite small - chunks), otherwise the dynamic method is used. In the latter case, the - codes are customized to the probabilities in the current block, and so - can code it much better than the pre-determined fixed codes. - - The Huffman codes themselves are decoded using a mutli-level table - lookup, in order to maximize the speed of decoding plus the speed of - building the decoding tables. See the comments below that precede the - lbits and dbits tuning parameters. - */ - - -/* - Notes beyond the 1.93a appnote.txt: - - 1. Distance pointers never point before the beginning of the output - stream. - 2. Distance pointers can point back across blocks, up to 32k away. - 3. There is an implied maximum of 7 bits for the bit length table and - 15 bits for the actual data. - 4. If only one code exists, then it is encoded using one bit. (Zero - would be more efficient, but perhaps a little confusing.) If two - codes exist, they are coded using one bit each (0 and 1). - 5. There is no way of sending zero distance codes--a dummy must be - sent if there are none. (History: a pre 2.0 version of PKZIP would - store blocks with no distance codes, but this was discovered to be - too harsh a criterion.) Valid only for 1.93a. 2.04c does allow - zero distance codes, which is sent as one code of zero bits in - length. - 6. There are up to 286 literal/length codes. Code 256 represents the - end-of-block. Note however that the static length tree defines - 288 codes just to fill out the Huffman codes. Codes 286 and 287 - cannot be used though, since there is no length base or extra bits - defined for them. Similarly, there are up to 30 distance codes. - However, static trees define 32 codes (all 5 bits) to fill out the - Huffman codes, but the last two had better not show up in the data. - 7. Unzip can check dynamic Huffman blocks for complete code sets. - The exception is that a single code would not be complete (see #4). - 8. The five bits following the block type is really the number of - literal codes sent minus 257. - 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits - (1+6+6). Therefore, to output three times the length, you output - three codes (1+1+1), whereas to output four times the same length, - you only need two codes (1+3). Hmm. - 10. In the tree reconstruction algorithm, Code = Code + Increment - only if BitLength(i) is not zero. (Pretty obvious.) - 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) - 12. Note: length code 284 can represent 227-258, but length code 285 - really is 258. The last length deserves its own, short code - since it gets used a lot in very redundant files. The length - 258 is special since 258 - 3 (the min match length) is 255. - 13. The literal/length and distance code bit lengths are read as a - single stream of lengths. It is possible (and advantageous) for - a repeat code (16, 17, or 18) to go across the boundary between - the two sets of lengths. - */ - -#ifdef RCSID -static char rcsid[] = "$Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp $"; -#endif - -#include <sys/types.h> - -#include "tailor.h" - -#if defined(STDC_HEADERS) || !defined(NO_STDLIB_H) -# include <stdlib.h> -#endif - -#include "gzip.h" -#define slide window - -/* Huffman code lookup table entry--this entry is four bytes for machines - that have 16-bit pointers (e.g. PC's in the small or medium model). - Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16 - means that v is a literal, 16 < e < 32 means that v is a pointer to - the next table, which codes e - 16 bits, and lastly e == 99 indicates - an unused code. If a code with e == 99 is looked up, this implies an - error in the data. */ -struct huft { - uch e; /* number of extra bits or operation */ - uch b; /* number of bits in this code or subcode */ - union { - ush n; /* literal, length base, or distance base */ - struct huft *t; /* pointer to next level of table */ - } v; -}; - - -/* Function prototypes */ -int huft_build OF((unsigned *, unsigned, unsigned, ush *, ush *, - struct huft **, int *)); -int huft_free OF((struct huft *)); -int inflate_codes OF((struct huft *, struct huft *, int, int)); -int inflate_stored OF((void)); -int inflate_fixed OF((void)); -int inflate_dynamic OF((void)); -int inflate_block OF((int *)); -int inflate OF((void)); - - -/* The inflate algorithm uses a sliding 32K byte window on the uncompressed - stream to find repeated byte strings. This is implemented here as a - circular buffer. The index is updated simply by incrementing and then - and'ing with 0x7fff (32K-1). */ -/* It is left to other modules to supply the 32K area. It is assumed - to be usable as if it were declared "uch slide[32768];" or as just - "uch *slide;" and then malloc'ed in the latter case. The definition - must be in unzip.h, included above. */ -/* unsigned wp; current position in slide */ -#define wp outcnt -#define flush_output(w) (wp=(w),flush_window()) - -/* Tables for deflate from PKZIP's appnote.txt. */ -static unsigned border[] = { /* Order of the bit length code lengths */ - 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; -static ush cplens[] = { /* Copy lengths for literal codes 257..285 */ - 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, - 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; - /* note: see note #13 above about the 258 in this list. */ -static ush cplext[] = { /* Extra bits for literal codes 257..285 */ - 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, - 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ -static ush cpdist[] = { /* Copy offsets for distance codes 0..29 */ - 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, - 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, - 8193, 12289, 16385, 24577}; -static ush cpdext[] = { /* Extra bits for distance codes */ - 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, - 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, - 12, 12, 13, 13}; - - - -/* Macros for inflate() bit peeking and grabbing. - The usage is: - - NEEDBITS(j) - x = b & mask_bits[j]; - DUMPBITS(j) - - where NEEDBITS makes sure that b has at least j bits in it, and - DUMPBITS removes the bits from b. The macros use the variable k - for the number of bits in b. Normally, b and k are register - variables for speed, and are initialized at the beginning of a - routine that uses these macros from a global bit buffer and count. - - If we assume that EOB will be the longest code, then we will never - ask for bits with NEEDBITS that are beyond the end of the stream. - So, NEEDBITS should not read any more bytes than are needed to - meet the request. Then no bytes need to be "returned" to the buffer - at the end of the last block. - - However, this assumption is not true for fixed blocks--the EOB code - is 7 bits, but the other literal/length codes can be 8 or 9 bits. - (The EOB code is shorter than other codes because fixed blocks are - generally short. So, while a block always has an EOB, many other - literal/length codes have a significantly lower probability of - showing up at all.) However, by making the first table have a - lookup of seven bits, the EOB code will be found in that first - lookup, and so will not require that too many bits be pulled from - the stream. - */ - -ulg bb; /* bit buffer */ -unsigned bk; /* bits in bit buffer */ - -ush mask_bits[] = { - 0x0000, - 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, - 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff -}; - -#ifdef CRYPT - uch cc; -# define NEXTBYTE() \ - (decrypt ? (cc = get_byte(), zdecode(cc), cc) : get_byte()) -#else -# define NEXTBYTE() (uch)get_byte() -#endif -#define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}} -#define DUMPBITS(n) {b>>=(n);k-=(n);} - - -/* - Huffman code decoding is performed using a multi-level table lookup. - The fastest way to decode is to simply build a lookup table whose - size is determined by the longest code. However, the time it takes - to build this table can also be a factor if the data being decoded - is not very long. The most common codes are necessarily the - shortest codes, so those codes dominate the decoding time, and hence - the speed. The idea is you can have a shorter table that decodes the - shorter, more probable codes, and then point to subsidiary tables for - the longer codes. The time it costs to decode the longer codes is - then traded against the time it takes to make longer tables. - - This results of this trade are in the variables lbits and dbits - below. lbits is the number of bits the first level table for literal/ - length codes can decode in one step, and dbits is the same thing for - the distance codes. Subsequent tables are also less than or equal to - those sizes. These values may be adjusted either when all of the - codes are shorter than that, in which case the longest code length in - bits is used, or when the shortest code is *longer* than the requested - table size, in which case the length of the shortest code in bits is - used. - - There are two different values for the two tables, since they code a - different number of possibilities each. The literal/length table - codes 286 possible values, or in a flat code, a little over eight - bits. The distance table codes 30 possible values, or a little less - than five bits, flat. The optimum values for speed end up being - about one bit more than those, so lbits is 8+1 and dbits is 5+1. - The optimum values may differ though from machine to machine, and - possibly even between compilers. Your mileage may vary. - */ - - -int lbits = 9; /* bits in base literal/length lookup table */ -int dbits = 6; /* bits in base distance lookup table */ - - -/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */ -#define BMAX 16 /* maximum bit length of any code (16 for explode) */ -#define N_MAX 288 /* maximum number of codes in any set */ - - -unsigned hufts; /* track memory usage */ - - -int huft_build(b, n, s, d, e, t, m) -unsigned *b; /* code lengths in bits (all assumed <= BMAX) */ -unsigned n; /* number of codes (assumed <= N_MAX) */ -unsigned s; /* number of simple-valued codes (0..s-1) */ -ush *d; /* list of base values for non-simple codes */ -ush *e; /* list of extra bits for non-simple codes */ -struct huft **t; /* result: starting table */ -int *m; /* maximum lookup bits, returns actual */ -/* Given a list of code lengths and a maximum table size, make a set of - tables to decode that set of codes. Return zero on success, one if - the given code set is incomplete (the tables are still built in this - case), two if the input is invalid (all zero length codes or an - oversubscribed set of lengths), and three if not enough memory. */ -{ - unsigned a; /* counter for codes of length k */ - unsigned c[BMAX+1]; /* bit length count table */ - unsigned f; /* i repeats in table every f entries */ - int g; /* maximum code length */ - int h; /* table level */ - register unsigned i; /* counter, current code */ - register unsigned j; /* counter */ - register int k; /* number of bits in current code */ - int l; /* bits per table (returned in m) */ - register unsigned *p; /* pointer into c[], b[], or v[] */ - register struct huft *q; /* points to current table */ - struct huft r; /* table entry for structure assignment */ - struct huft *u[BMAX]; /* table stack */ - unsigned v[N_MAX]; /* values in order of bit length */ - register int w; /* bits before this table == (l * h) */ - unsigned x[BMAX+1]; /* bit offsets, then code stack */ - unsigned *xp; /* pointer into x */ - int y; /* number of dummy codes added */ - unsigned z; /* number of entries in current table */ - - - /* Generate counts for each bit length */ - memzero(c, sizeof(c)); - p = b; i = n; - do { - Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"), - n-i, *p)); - c[*p]++; /* assume all entries <= BMAX */ - p++; /* Can't combine with above line (Solaris bug) */ - } while (--i); - if (c[0] == n) /* null input--all zero length codes */ - { - *t = (struct huft *)NULL; - *m = 0; - return 0; - } - - - /* Find minimum and maximum length, bound *m by those */ - l = *m; - for (j = 1; j <= BMAX; j++) - if (c[j]) - break; - k = j; /* minimum code length */ - if ((unsigned)l < j) - l = j; - for (i = BMAX; i; i--) - if (c[i]) - break; - g = i; /* maximum code length */ - if ((unsigned)l > i) - l = i; - *m = l; - - - /* Adjust last length count to fill out codes, if needed */ - for (y = 1 << j; j < i; j++, y <<= 1) - if ((y -= c[j]) < 0) - return 2; /* bad input: more codes than bits */ - if ((y -= c[i]) < 0) - return 2; - c[i] += y; - - - /* Generate starting offsets into the value table for each length */ - x[1] = j = 0; - p = c + 1; xp = x + 2; - while (--i) { /* note that i == g from above */ - *xp++ = (j += *p++); - } - - - /* Make a table of values in order of bit lengths */ - p = b; i = 0; - do { - if ((j = *p++) != 0) - v[x[j]++] = i; - } while (++i < n); - - - /* Generate the Huffman codes and for each, make the table entries */ - x[0] = i = 0; /* first Huffman code is zero */ - p = v; /* grab values in bit order */ - h = -1; /* no tables yet--level -1 */ - w = -l; /* bits decoded == (l * h) */ - u[0] = (struct huft *)NULL; /* just to keep compilers happy */ - q = (struct huft *)NULL; /* ditto */ - z = 0; /* ditto */ - - /* go through the bit lengths (k already is bits in shortest code) */ - for (; k <= g; k++) - { - a = c[k]; - while (a--) - { - /* here i is the Huffman code of length k bits for value *p */ - /* make tables up to required level */ - while (k > w + l) - { - h++; - w += l; /* previous table always l bits */ - - /* compute minimum size table less than or equal to l bits */ - z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */ - if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ - { /* too few codes for k-w bit table */ - f -= a + 1; /* deduct codes from patterns left */ - xp = c + k; - while (++j < z) /* try smaller tables up to z bits */ - { - if ((f <<= 1) <= *++xp) - break; /* enough codes to use up j bits */ - f -= *xp; /* else deduct codes from patterns */ - } - } - z = 1 << j; /* table entries for j-bit table */ - - /* allocate and link in new table */ - if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) == - (struct huft *)NULL) - { - if (h) - huft_free(u[0]); - return 3; /* not enough memory */ - } - hufts += z + 1; /* track memory usage */ - *t = q + 1; /* link to list for huft_free() */ - *(t = &(q->v.t)) = (struct huft *)NULL; - u[h] = ++q; /* table starts after link */ - - /* connect to last table, if there is one */ - if (h) - { - x[h] = i; /* save pattern for backing up */ - r.b = (uch)l; /* bits to dump before this table */ - r.e = (uch)(16 + j); /* bits in this table */ - r.v.t = q; /* pointer to this table */ - j = i >> (w - l); /* (get around Turbo C bug) */ - u[h-1][j] = r; /* connect to last table */ - } - } - - /* set up table entry in r */ - r.b = (uch)(k - w); - if (p >= v + n) - r.e = 99; /* out of values--invalid code */ - else if (*p < s) - { - r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */ - r.v.n = (ush)(*p); /* simple code is just the value */ - p++; /* one compiler does not like *p++ */ - } - else - { - r.e = (uch)e[*p - s]; /* non-simple--look up in lists */ - r.v.n = d[*p++ - s]; - } - - /* fill code-like entries with r */ - f = 1 << (k - w); - for (j = i >> w; j < z; j += f) - q[j] = r; - - /* backwards increment the k-bit code i */ - for (j = 1 << (k - 1); i & j; j >>= 1) - i ^= j; - i ^= j; - - /* backup over finished tables */ - while ((i & ((1 << w) - 1)) != x[h]) - { - h--; /* don't need to update q */ - w -= l; - } - } - } - - - /* Return true (1) if we were given an incomplete table */ - return y != 0 && g != 1; -} - - - -int huft_free(t) -struct huft *t; /* table to free */ -/* Free the malloc'ed tables built by huft_build(), which makes a linked - list of the tables it made, with the links in a dummy first entry of - each table. */ -{ - register struct huft *p, *q; - - - /* Go through linked list, freeing from the malloced (t[-1]) address. */ - p = t; - while (p != (struct huft *)NULL) - { - q = (--p)->v.t; - free((char*)p); - p = q; - } - return 0; -} - - -int inflate_codes(tl, td, bl, bd) -struct huft *tl, *td; /* literal/length and distance decoder tables */ -int bl, bd; /* number of bits decoded by tl[] and td[] */ -/* inflate (decompress) the codes in a deflated (compressed) block. - Return an error code or zero if it all goes ok. */ -{ - register unsigned e; /* table entry flag/number of extra bits */ - unsigned n, d; /* length and index for copy */ - unsigned w; /* current window position */ - struct huft *t; /* pointer to table entry */ - unsigned ml, md; /* masks for bl and bd bits */ - register ulg b; /* bit buffer */ - register unsigned k; /* number of bits in bit buffer */ - - - /* make local copies of globals */ - b = bb; /* initialize bit buffer */ - k = bk; - w = wp; /* initialize window position */ - - /* inflate the coded data */ - ml = mask_bits[bl]; /* precompute masks for speed */ - md = mask_bits[bd]; - for (;;) /* do until end of block */ - { - NEEDBITS((unsigned)bl) - if ((e = (t = tl + ((unsigned)b & ml))->e) > 16) - do { - if (e == 99) - return 1; - DUMPBITS(t->b) - e -= 16; - NEEDBITS(e) - } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); - DUMPBITS(t->b) - if (e == 16) /* then it's a literal */ - { - slide[w++] = (uch)t->v.n; - Tracevv((stderr, "%c", slide[w-1])); - if (w == WSIZE) - { - flush_output(w); - w = 0; - } - } - else /* it's an EOB or a length */ - { - /* exit if end of block */ - if (e == 15) - break; - - /* get length of block to copy */ - NEEDBITS(e) - n = t->v.n + ((unsigned)b & mask_bits[e]); - DUMPBITS(e); - - /* decode distance of block to copy */ - NEEDBITS((unsigned)bd) - if ((e = (t = td + ((unsigned)b & md))->e) > 16) - do { - if (e == 99) - return 1; - DUMPBITS(t->b) - e -= 16; - NEEDBITS(e) - } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); - DUMPBITS(t->b) - NEEDBITS(e) - d = w - t->v.n - ((unsigned)b & mask_bits[e]); - DUMPBITS(e) - Tracevv((stderr,"\\[%d,%d]", w-d, n)); - - /* do the copy */ - do { - n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e); -#if !defined(NOMEMCPY) && !defined(DEBUG) - if (w - d >= e) /* (this test assumes unsigned comparison) */ - { - memcpy(slide + w, slide + d, e); - w += e; - d += e; - } - else /* do it slow to avoid memcpy() overlap */ -#endif /* !NOMEMCPY */ - do { - slide[w++] = slide[d++]; - Tracevv((stderr, "%c", slide[w-1])); - } while (--e); - if (w == WSIZE) - { - flush_output(w); - w = 0; - } - } while (n); - } - } - - - /* restore the globals from the locals */ - wp = w; /* restore global window pointer */ - bb = b; /* restore global bit buffer */ - bk = k; - - /* done */ - return 0; -} - - - -int inflate_stored() -/* "decompress" an inflated type 0 (stored) block. */ -{ - unsigned n; /* number of bytes in block */ - unsigned w; /* current window position */ - register ulg b; /* bit buffer */ - register unsigned k; /* number of bits in bit buffer */ - - - /* make local copies of globals */ - b = bb; /* initialize bit buffer */ - k = bk; - w = wp; /* initialize window position */ - - - /* go to byte boundary */ - n = k & 7; - DUMPBITS(n); - - - /* get the length and its complement */ - NEEDBITS(16) - n = ((unsigned)b & 0xffff); - DUMPBITS(16) - NEEDBITS(16) - if (n != (unsigned)((~b) & 0xffff)) - return 1; /* error in compressed data */ - DUMPBITS(16) - - - /* read and output the compressed data */ - while (n--) - { - NEEDBITS(8) - slide[w++] = (uch)b; - if (w == WSIZE) - { - flush_output(w); - w = 0; - } - DUMPBITS(8) - } - - - /* restore the globals from the locals */ - wp = w; /* restore global window pointer */ - bb = b; /* restore global bit buffer */ - bk = k; - return 0; -} - - - -int inflate_fixed() -/* decompress an inflated type 1 (fixed Huffman codes) block. We should - either replace this with a custom decoder, or at least precompute the - Huffman tables. */ -{ - int i; /* temporary variable */ - struct huft *tl; /* literal/length code table */ - struct huft *td; /* distance code table */ - int bl; /* lookup bits for tl */ - int bd; /* lookup bits for td */ - unsigned l[288]; /* length list for huft_build */ - - - /* set up literal table */ - for (i = 0; i < 144; i++) - l[i] = 8; - for (; i < 256; i++) - l[i] = 9; - for (; i < 280; i++) - l[i] = 7; - for (; i < 288; i++) /* make a complete, but wrong code set */ - l[i] = 8; - bl = 7; - if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) - return i; - - - /* set up distance table */ - for (i = 0; i < 30; i++) /* make an incomplete code set */ - l[i] = 5; - bd = 5; - if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1) - { - huft_free(tl); - return i; - } - - - /* decompress until an end-of-block code */ - if (inflate_codes(tl, td, bl, bd)) - return 1; - - - /* free the decoding tables, return */ - huft_free(tl); - huft_free(td); - return 0; -} - - - -int inflate_dynamic() -/* decompress an inflated type 2 (dynamic Huffman codes) block. */ -{ - int i; /* temporary variables */ - unsigned j; - unsigned l; /* last length */ - unsigned m; /* mask for bit lengths table */ - unsigned n; /* number of lengths to get */ - struct huft *tl; /* literal/length code table */ - struct huft *td; /* distance code table */ - int bl; /* lookup bits for tl */ - int bd; /* lookup bits for td */ - unsigned nb; /* number of bit length codes */ - unsigned nl; /* number of literal/length codes */ - unsigned nd; /* number of distance codes */ -#ifdef PKZIP_BUG_WORKAROUND - unsigned ll[288+32]; /* literal/length and distance code lengths */ -#else - unsigned ll[286+30]; /* literal/length and distance code lengths */ -#endif - register ulg b; /* bit buffer */ - register unsigned k; /* number of bits in bit buffer */ - - - /* make local bit buffer */ - b = bb; - k = bk; - - - /* read in table lengths */ - NEEDBITS(5) - nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */ - DUMPBITS(5) - NEEDBITS(5) - nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */ - DUMPBITS(5) - NEEDBITS(4) - nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */ - DUMPBITS(4) -#ifdef PKZIP_BUG_WORKAROUND - if (nl > 288 || nd > 32) -#else - if (nl > 286 || nd > 30) -#endif - return 1; /* bad lengths */ - - - /* read in bit-length-code lengths */ - for (j = 0; j < nb; j++) - { - NEEDBITS(3) - ll[border[j]] = (unsigned)b & 7; - DUMPBITS(3) - } - for (; j < 19; j++) - ll[border[j]] = 0; - - - /* build decoding table for trees--single level, 7 bit lookup */ - bl = 7; - if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) - { - if (i == 1) - huft_free(tl); - return i; /* incomplete code set */ - } - - - /* read in literal and distance code lengths */ - n = nl + nd; - m = mask_bits[bl]; - i = l = 0; - while ((unsigned)i < n) - { - NEEDBITS((unsigned)bl) - j = (td = tl + ((unsigned)b & m))->b; - DUMPBITS(j) - j = td->v.n; - if (j < 16) /* length of code in bits (0..15) */ - ll[i++] = l = j; /* save last length in l */ - else if (j == 16) /* repeat last length 3 to 6 times */ - { - NEEDBITS(2) - j = 3 + ((unsigned)b & 3); - DUMPBITS(2) - if ((unsigned)i + j > n) - return 1; - while (j--) - ll[i++] = l; - } - else if (j == 17) /* 3 to 10 zero length codes */ - { - NEEDBITS(3) - j = 3 + ((unsigned)b & 7); - DUMPBITS(3) - if ((unsigned)i + j > n) - return 1; - while (j--) - ll[i++] = 0; - l = 0; - } - else /* j == 18: 11 to 138 zero length codes */ - { - NEEDBITS(7) - j = 11 + ((unsigned)b & 0x7f); - DUMPBITS(7) - if ((unsigned)i + j > n) - return 1; - while (j--) - ll[i++] = 0; - l = 0; - } - } - - - /* free decoding table for trees */ - huft_free(tl); - - - /* restore the global bit buffer */ - bb = b; - bk = k; - - - /* build the decoding tables for literal/length and distance codes */ - bl = lbits; - if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0) - { - if (i == 1) { - fprintf(stderr, " incomplete literal tree\n"); - huft_free(tl); - } - return i; /* incomplete code set */ - } - bd = dbits; - if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0) - { - if (i == 1) { - fprintf(stderr, " incomplete distance tree\n"); -#ifdef PKZIP_BUG_WORKAROUND - i = 0; - } -#else - huft_free(td); - } - huft_free(tl); - return i; /* incomplete code set */ -#endif - } - - - /* decompress until an end-of-block code */ - if (inflate_codes(tl, td, bl, bd)) - return 1; - - - /* free the decoding tables, return */ - huft_free(tl); - huft_free(td); - return 0; -} - - - -int inflate_block(e) -int *e; /* last block flag */ -/* decompress an inflated block */ -{ - unsigned t; /* block type */ - register ulg b; /* bit buffer */ - register unsigned k; /* number of bits in bit buffer */ - - - /* make local bit buffer */ - b = bb; - k = bk; - - - /* read in last block bit */ - NEEDBITS(1) - *e = (int)b & 1; - DUMPBITS(1) - - - /* read in block type */ - NEEDBITS(2) - t = (unsigned)b & 3; - DUMPBITS(2) - - - /* restore the global bit buffer */ - bb = b; - bk = k; - - - /* inflate that block type */ - if (t == 2) - return inflate_dynamic(); - if (t == 0) - return inflate_stored(); - if (t == 1) - return inflate_fixed(); - - - /* bad block type */ - return 2; -} - - - -int inflate() -/* decompress an inflated entry */ -{ - int e; /* last block flag */ - int r; /* result code */ - unsigned h; /* maximum struct huft's malloc'ed */ - - - /* initialize window, bit buffer */ - wp = 0; - bk = 0; - bb = 0; - - - /* decompress until the last block */ - h = 0; - do { - hufts = 0; - if ((r = inflate_block(&e)) != 0) - return r; - if (hufts > h) - h = hufts; - } while (!e); - - /* Undo too much lookahead. The next read will be byte aligned so we - * can discard unused bits in the last meaningful byte. - */ - while (bk >= 8) { - bk -= 8; - inptr--; - } - - /* flush out slide */ - flush_output(wp); - - - /* return success */ -#ifdef DEBUG - fprintf(stderr, "<%u> ", h); -#endif /* DEBUG */ - return 0; -} |