summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/path.cc
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/utils/asymptote/path.cc')
-rw-r--r--Build/source/utils/asymptote/path.cc1340
1 files changed, 1340 insertions, 0 deletions
diff --git a/Build/source/utils/asymptote/path.cc b/Build/source/utils/asymptote/path.cc
new file mode 100644
index 00000000000..0ad028d5cc5
--- /dev/null
+++ b/Build/source/utils/asymptote/path.cc
@@ -0,0 +1,1340 @@
+/*****
+ * path.cc
+ * Andy Hammerlindl 2002/06/06
+ *
+ * Stores and returns information on a predefined path.
+ *
+ * When changing the path algorithms, also update the corresponding
+ * three-dimensional algorithms in path3.cc.
+ *****/
+
+#include "path.h"
+#include "util.h"
+#include "angle.h"
+#include "camperror.h"
+#include "mathop.h"
+#include "arrayop.h"
+#include "predicates.h"
+#include "rounding.h"
+
+namespace camp {
+
+const double BigFuzz=10000.0*DBL_EPSILON;
+const double Fuzz=1000.0*DBL_EPSILON;
+const double Fuzz2=Fuzz*Fuzz;
+const double sqrtFuzz=sqrt(Fuzz);
+const double third=1.0/3.0;
+
+path nullpath;
+
+void checkEmpty(Int n) {
+ if(n == 0)
+ reportError("nullpath has no points");
+}
+
+// Accurate computation of sqrt(1+x)-1.
+inline double sqrt1pxm1(double x)
+{
+ return x/(sqrt(1.0+x)+1.0);
+}
+inline pair sqrt1pxm1(pair x)
+{
+ return x/(Sqrt(1.0+x)+1.0);
+}
+
+// Solve for the real roots of the quadratic equation ax^2+bx+c=0.
+quadraticroots::quadraticroots(double a, double b, double c)
+{
+ if(a == 0.0) {
+ if(b != 0.0) {
+ distinct=quadraticroots::ONE;
+ roots=1;
+ t1=-c/b;
+ } else if(c == 0.0) {
+ distinct=quadraticroots::MANY;
+ roots=1;
+ t1=0.0;
+ } else {
+ distinct=quadraticroots::NONE;
+ roots=0;
+ }
+ } else if(b == 0.0) {
+ double x=-c/a;
+ if(x >= 0.0) {
+ distinct=quadraticroots::TWO;
+ roots=2;
+ t2=sqrt(x);
+ t1=-t2;
+ } else {
+ distinct=quadraticroots::NONE;
+ roots=0;
+ }
+ } else {
+ double factor=0.5*b/a;
+ double x=-2.0*c/(b*factor);
+ if(x > -1.0) {
+ distinct=quadraticroots::TWO;
+ roots=2;
+ double sqrtm1=sqrt1pxm1(x);
+ double r2=factor*sqrtm1;
+ double r1=-r2-2.0*factor;
+ if(r1 <= r2) {
+ t1=r1;
+ t2=r2;
+ } else {
+ t1=r2;
+ t2=r1;
+ }
+ } else if(x == -1.0) {
+ distinct=quadraticroots::ONE;
+ roots=2;
+ t1=t2=-factor;
+ } else {
+ distinct=quadraticroots::NONE;
+ roots=0;
+ }
+ }
+}
+
+// Solve for the complex roots of the quadratic equation ax^2+bx+c=0.
+Quadraticroots::Quadraticroots(pair a, pair b, pair c)
+{
+ if(a == 0.0) {
+ if(b != 0.0) {
+ roots=1;
+ z1=-c/b;
+ } else if(c == 0.0) {
+ roots=1;
+ z1=0.0;
+ } else
+ roots=0;
+ } else {
+ roots=2;
+ if(b == 0.0) {
+ z1=Sqrt(-c/a);
+ z2=-z1;
+ } else {
+ pair factor=0.5*b/a;
+ pair x=-2.0*c/(b*factor);
+ pair sqrtm1=sqrt1pxm1(x);
+ z1=factor*sqrtm1;
+ z2=-z1-2.0*factor;
+ }
+ }
+}
+
+inline bool goodroot(double a, double b, double c, double t)
+{
+ return goodroot(t) && quadratic(a,b,c,t) >= 0.0;
+}
+
+// Accurate computation of cbrt(sqrt(1+x)+1)-cbrt(sqrt(1+x)-1).
+inline double cbrtsqrt1pxm(double x)
+{
+ double s=sqrt1pxm1(x);
+ return 2.0/(cbrt(x+2.0*(sqrt(1.0+x)+1.0))+cbrt(x)+cbrt(s*s));
+}
+
+// Taylor series of cos((atan(1.0/w)+pi)/3.0).
+static inline double costhetapi3(double w)
+{
+ static const double c1=1.0/3.0;
+ static const double c3=-19.0/162.0;
+ static const double c5=425.0/5832.0;
+ static const double c7=-16829.0/314928.0;
+ double w2=w*w;
+ double w3=w2*w;
+ double w5=w3*w2;
+ return c1*w+c3*w3+c5*w5+c7*w5*w2;
+}
+
+// Solve for the real roots of the cubic equation ax^3+bx^2+cx+d=0.
+cubicroots::cubicroots(double a, double b, double c, double d)
+{
+ static const double ninth=1.0/9.0;
+ static const double fiftyfourth=1.0/54.0;
+
+ // Remove roots at numerical infinity.
+ if(fabs(a) <= Fuzz*(fabs(b)+fabs(c)*Fuzz+fabs(d)*Fuzz2)) {
+ quadraticroots q(b,c,d);
+ roots=q.roots;
+ if(q.roots >= 1) t1=q.t1;
+ if(q.roots == 2) t2=q.t2;
+ return;
+ }
+
+ // Detect roots at numerical zero.
+ if(fabs(d) <= Fuzz*(fabs(c)+fabs(b)*Fuzz+fabs(a)*Fuzz2)) {
+ quadraticroots q(a,b,c);
+ roots=q.roots+1;
+ t1=0;
+ if(q.roots >= 1) t2=q.t1;
+ if(q.roots == 2) t3=q.t2;
+ return;
+ }
+
+ double ainv=1.0/a;
+ b *= ainv; c *= ainv; d *= ainv;
+
+ double b2=b*b;
+ double Q=3.0*c-b2;
+ if(fabs(Q) < Fuzz*(3.0*fabs(c)+fabs(b2)))
+ Q=0.0;
+
+ double R=(3.0*Q+b2)*b-27.0*d;
+ if(fabs(R) < Fuzz*((3.0*fabs(Q)+fabs(b2))*fabs(b)+27.0*fabs(d)))
+ R=0.0;
+
+ Q *= ninth;
+ R *= fiftyfourth;
+
+ double Q3=Q*Q*Q;
+ double R2=R*R;
+ double D=Q3+R2;
+ double mthirdb=-b*third;
+
+ if(D > 0.0) {
+ roots=1;
+ t1=mthirdb;
+ if(R2 != 0.0) t1 += cbrt(R)*cbrtsqrt1pxm(Q3/R2);
+ } else {
+ roots=3;
+ double v=0.0,theta;
+ if(R2 > 0.0) {
+ v=sqrt(-D/R2);
+ theta=atan(v);
+ } else theta=0.5*PI;
+ double factor=2.0*sqrt(-Q)*(R >= 0 ? 1 : -1);
+
+ t1=mthirdb+factor*cos(third*theta);
+ t2=mthirdb-factor*cos(third*(theta-PI));
+ t3=mthirdb;
+ if(R2 > 0.0)
+ t3 -= factor*((v < 100.0) ? cos(third*(theta+PI)) : costhetapi3(1.0/v));
+ }
+}
+
+pair path::point(double t) const
+{
+ checkEmpty(n);
+
+ Int i = Floor(t);
+ Int iplus;
+ t = fmod(t,1);
+ if (t < 0) t += 1;
+
+ if (cycles) {
+ i = imod(i,n);
+ iplus = imod(i+1,n);
+ }
+ else if (i < 0)
+ return nodes[0].point;
+ else if (i >= n-1)
+ return nodes[n-1].point;
+ else
+ iplus = i+1;
+
+ double one_t = 1.0-t;
+
+ pair a = nodes[i].point,
+ b = nodes[i].post,
+ c = nodes[iplus].pre,
+ d = nodes[iplus].point,
+ ab = one_t*a + t*b,
+ bc = one_t*b + t*c,
+ cd = one_t*c + t*d,
+ abc = one_t*ab + t*bc,
+ bcd = one_t*bc + t*cd,
+ abcd = one_t*abc + t*bcd;
+
+ return abcd;
+}
+
+pair path::precontrol(double t) const
+{
+ checkEmpty(n);
+
+ Int i = Floor(t);
+ Int iplus;
+ t = fmod(t,1);
+ if (t < 0) t += 1;
+
+ if (cycles) {
+ i = imod(i,n);
+ iplus = imod(i+1,n);
+ }
+ else if (i < 0)
+ return nodes[0].pre;
+ else if (i >= n-1)
+ return nodes[n-1].pre;
+ else
+ iplus = i+1;
+
+ double one_t = 1.0-t;
+
+ pair a = nodes[i].point,
+ b = nodes[i].post,
+ c = nodes[iplus].pre,
+ ab = one_t*a + t*b,
+ bc = one_t*b + t*c,
+ abc = one_t*ab + t*bc;
+
+ return (abc == a) ? nodes[i].pre : abc;
+}
+
+
+pair path::postcontrol(double t) const
+{
+ checkEmpty(n);
+
+ Int i = Floor(t);
+ Int iplus;
+ t = fmod(t,1);
+ if (t < 0) t += 1;
+
+ if (cycles) {
+ i = imod(i,n);
+ iplus = imod(i+1,n);
+ }
+ else if (i < 0)
+ return nodes[0].post;
+ else if (i >= n-1)
+ return nodes[n-1].post;
+ else
+ iplus = i+1;
+
+ double one_t = 1.0-t;
+
+ pair b = nodes[i].post,
+ c = nodes[iplus].pre,
+ d = nodes[iplus].point,
+ bc = one_t*b + t*c,
+ cd = one_t*c + t*d,
+ bcd = one_t*bc + t*cd;
+
+ return (bcd == d) ? nodes[iplus].post : bcd;
+}
+
+path path::reverse() const
+{
+ mem::vector<solvedKnot> nodes(n);
+ Int len=length();
+ for (Int i = 0, j = len; i < n; i++, j--) {
+ nodes[i].pre = postcontrol(j);
+ nodes[i].point = point(j);
+ nodes[i].post = precontrol(j);
+ nodes[i].straight = straight(j-1);
+ }
+ return path(nodes, n, cycles);
+}
+
+path path::subpath(Int a, Int b) const
+{
+ if(empty()) return path();
+
+ if (a > b) {
+ const path &rp = reverse();
+ Int len=length();
+ path result = rp.subpath(len-a, len-b);
+ return result;
+ }
+
+ if (!cycles) {
+ if (a < 0)
+ a = 0;
+ if (b > n-1)
+ b = n-1;
+ }
+
+ Int sn = b-a+1;
+ mem::vector<solvedKnot> nodes(sn);
+
+ for (Int i = 0, j = a; j <= b; i++, j++) {
+ nodes[i].pre = precontrol(j);
+ nodes[i].point = point(j);
+ nodes[i].post = postcontrol(j);
+ nodes[i].straight = straight(j);
+ }
+ nodes[0].pre = nodes[0].point;
+ nodes[sn-1].post = nodes[sn-1].point;
+
+ return path(nodes, sn);
+}
+
+inline pair split(double t, const pair& x, const pair& y) { return x+(y-x)*t; }
+
+inline void splitCubic(solvedKnot sn[], double t, const solvedKnot& left_,
+ const solvedKnot& right_)
+{
+ solvedKnot &left=(sn[0]=left_), &mid=sn[1], &right=(sn[2]=right_);
+ if(left.straight) {
+ mid.point=split(t,left.point,right.point);
+ pair deltaL=third*(mid.point-left.point);
+ left.post=left.point+deltaL;
+ mid.pre=mid.point-deltaL;
+ pair deltaR=third*(right.point-mid.point);
+ mid.post=mid.point+deltaR;
+ right.pre=right.point-deltaR;
+ mid.straight=true;
+ } else {
+ pair x=split(t,left.post,right.pre); // m1
+ left.post=split(t,left.point,left.post); // m0
+ right.pre=split(t,right.pre,right.point); // m2
+ mid.pre=split(t,left.post,x); // m3
+ mid.post=split(t,x,right.pre); // m4
+ mid.point=split(t,mid.pre,mid.post); // m5
+ }
+}
+
+path path::subpath(double a, double b) const
+{
+ if(empty()) return path();
+
+ if (a > b) {
+ const path &rp = reverse();
+ Int len=length();
+ return rp.subpath(len-a, len-b);
+ }
+
+ solvedKnot aL, aR, bL, bR;
+ if (!cycles) {
+ if (a < 0) {
+ a = 0;
+ if (b < 0)
+ b = 0;
+ }
+ if (b > n-1) {
+ b = n-1;
+ if (a > n-1)
+ a = n-1;
+ }
+ aL = nodes[(Int)floor(a)];
+ aR = nodes[(Int)ceil(a)];
+ bL = nodes[(Int)floor(b)];
+ bR = nodes[(Int)ceil(b)];
+ } else {
+ if(run::validInt(a) && run::validInt(b)) {
+ aL = nodes[imod((Int) floor(a),n)];
+ aR = nodes[imod((Int) ceil(a),n)];
+ bL = nodes[imod((Int) floor(b),n)];
+ bR = nodes[imod((Int) ceil(b),n)];
+ } else reportError("invalid path index");
+ }
+
+ if (a == b) return path(point(a));
+
+ solvedKnot sn[3];
+ path p = subpath(Ceil(a), Floor(b));
+ if (a > floor(a)) {
+ if (b < ceil(a)) {
+ splitCubic(sn,a-floor(a),aL,aR);
+ splitCubic(sn,(b-a)/(ceil(b)-a),sn[1],sn[2]);
+ return path(sn[0],sn[1]);
+ }
+ splitCubic(sn,a-floor(a),aL,aR);
+ p=concat(path(sn[1],sn[2]),p);
+ }
+ if (ceil(b) > b) {
+ splitCubic(sn,b-floor(b),bL,bR);
+ p=concat(p,path(sn[0],sn[1]));
+ }
+ return p;
+}
+
+// Special case of subpath for paths of length 1 used by intersect.
+void path::halve(path &first, path &second) const
+{
+ solvedKnot sn[3];
+ splitCubic(sn,0.5,nodes[0],nodes[1]);
+ first=path(sn[0],sn[1]);
+ second=path(sn[1],sn[2]);
+}
+
+// Calculate the coefficients of a Bezier derivative divided by 3.
+static inline void derivative(pair& a, pair& b, pair& c,
+ const pair& z0, const pair& c0,
+ const pair& c1, const pair& z1)
+{
+ a=z1-z0+3.0*(c0-c1);
+ b=2.0*(z0+c1)-4.0*c0;
+ c=c0-z0;
+}
+
+bbox path::bounds() const
+{
+ if(!box.empty) return box;
+
+ if (empty()) {
+ // No bounds
+ return bbox();
+ }
+
+ Int len=length();
+ box.add(point(len));
+
+ for (Int i = 0; i < len; i++) {
+ addpoint(box,i);
+ if(straight(i)) continue;
+
+ pair a,b,c;
+ derivative(a,b,c,point(i),postcontrol(i),precontrol(i+1),point(i+1));
+
+ // Check x coordinate
+ quadraticroots x(a.getx(),b.getx(),c.getx());
+ if(x.distinct != quadraticroots::NONE && goodroot(x.t1))
+ addpoint(box,i+x.t1);
+ if(x.distinct == quadraticroots::TWO && goodroot(x.t2))
+ addpoint(box,i+x.t2);
+
+ // Check y coordinate
+ quadraticroots y(a.gety(),b.gety(),c.gety());
+ if(y.distinct != quadraticroots::NONE && goodroot(y.t1))
+ addpoint(box,i+y.t1);
+ if(y.distinct == quadraticroots::TWO && goodroot(y.t2))
+ addpoint(box,i+y.t2);
+ }
+ return box;
+}
+
+bbox path::bounds(double min, double max) const
+{
+ bbox box;
+
+ Int len=length();
+ for (Int i = 0; i < len; i++) {
+ addpoint(box,i,min,max);
+ if(straight(i)) continue;
+
+ pair a,b,c;
+ derivative(a,b,c,point(i),postcontrol(i),precontrol(i+1),point(i+1));
+
+ // Check x coordinate
+ quadraticroots x(a.getx(),b.getx(),c.getx());
+ if(x.distinct != quadraticroots::NONE && goodroot(x.t1))
+ addpoint(box,i+x.t1,min,max);
+
+ if(x.distinct == quadraticroots::TWO && goodroot(x.t2))
+ addpoint(box,i+x.t2,min,max);
+
+ // Check y coordinate
+ quadraticroots y(a.gety(),b.gety(),c.gety());
+ if(y.distinct != quadraticroots::NONE && goodroot(y.t1))
+ addpoint(box,i+y.t1,min,max);
+ if(y.distinct == quadraticroots::TWO && goodroot(y.t2))
+ addpoint(box,i+y.t2,min,max);
+ }
+ addpoint(box,len,min,max);
+ return box;
+}
+
+inline void add(bbox& box, const pair& z, const pair& min, const pair& max)
+{
+ box += z+min;
+ box += z+max;
+}
+
+bbox path::internalbounds(const bbox& padding) const
+{
+ bbox box;
+
+ // Check interior nodes.
+ Int len=length();
+ for (Int i = 1; i < len; i++) {
+ pair pre=point(i)-precontrol(i);
+ pair post=postcontrol(i)-point(i);
+
+ // Check node x coordinate
+ if((pre.getx() >= 0.0) ^ (post.getx() >= 0))
+ add(box,point(i),padding.left,padding.right);
+
+ // Check node y coordinate
+ if((pre.gety() >= 0.0) ^ (post.gety() >= 0))
+ add(box,point(i),pair(0,padding.bottom),pair(0,padding.top));
+ }
+
+ // Check interior segments.
+ for (Int i = 0; i < len; i++) {
+ if(straight(i)) continue;
+
+ pair a,b,c;
+ derivative(a,b,c,point(i),postcontrol(i),precontrol(i+1),point(i+1));
+
+ // Check x coordinate
+ quadraticroots x(a.getx(),b.getx(),c.getx());
+ if(x.distinct != quadraticroots::NONE && goodroot(x.t1))
+ add(box,point(i+x.t1),padding.left,padding.right);
+ if(x.distinct == quadraticroots::TWO && goodroot(x.t2))
+ add(box,point(i+x.t2),padding.left,padding.right);
+
+ // Check y coordinate
+ quadraticroots y(a.gety(),b.gety(),c.gety());
+ if(y.distinct != quadraticroots::NONE && goodroot(y.t1))
+ add(box,point(i+y.t1),pair(0,padding.bottom),pair(0,padding.top));
+ if(y.distinct == quadraticroots::TWO && goodroot(y.t2))
+ add(box,point(i+y.t2),pair(0,padding.bottom),pair(0,padding.top));
+ }
+ return box;
+}
+
+// {{{ Arclength Calculations
+
+static pair a,b,c;
+
+static double ds(double t)
+{
+ double dx=quadratic(a.getx(),b.getx(),c.getx(),t);
+ double dy=quadratic(a.gety(),b.gety(),c.gety(),t);
+ return sqrt(dx*dx+dy*dy);
+}
+
+// Calculates arclength of a cubic using adaptive simpson integration.
+double path::cubiclength(Int i, double goal) const
+{
+ const pair& z0=point(i);
+ const pair& z1=point(i+1);
+ double L;
+ if(straight(i)) {
+ L=(z1-z0).length();
+ return (goal < 0 || goal >= L) ? L : -goal/L;
+ }
+
+ const pair& c0=postcontrol(i);
+ const pair& c1=precontrol(i+1);
+
+ double integral;
+ derivative(a,b,c,z0,c0,c1,z1);
+
+ if(!simpson(integral,ds,0.0,1.0,DBL_EPSILON,1.0))
+ reportError("nesting capacity exceeded in computing arclength");
+ L=3.0*integral;
+ if(goal < 0 || goal >= L) return L;
+
+ double t=goal/L;
+ goal *= third;
+ static double dxmin=sqrt(DBL_EPSILON);
+ if(!unsimpson(goal,ds,0.0,t,100.0*DBL_EPSILON,integral,1.0,dxmin))
+ reportError("nesting capacity exceeded in computing arctime");
+ return -t;
+}
+
+double path::arclength() const
+{
+ if (cached_length != -1) return cached_length;
+
+ double L=0.0;
+ for (Int i = 0; i < n-1; i++) {
+ L += cubiclength(i);
+ }
+ if(cycles) L += cubiclength(n-1);
+ cached_length = L;
+ return cached_length;
+}
+
+double path::arctime(double goal) const
+{
+ if (cycles) {
+ if (goal == 0 || cached_length == 0) return 0;
+ if (goal < 0) {
+ const path &rp = this->reverse();
+ double result = -rp.arctime(-goal);
+ return result;
+ }
+ if (cached_length > 0 && goal >= cached_length) {
+ Int loops = (Int)(goal / cached_length);
+ goal -= loops*cached_length;
+ return loops*n+arctime(goal);
+ }
+ } else {
+ if (goal <= 0)
+ return 0;
+ if (cached_length > 0 && goal >= cached_length)
+ return n-1;
+ }
+
+ double l,L=0;
+ for (Int i = 0; i < n-1; i++) {
+ l = cubiclength(i,goal);
+ if (l < 0)
+ return (-l+i);
+ else {
+ L += l;
+ goal -= l;
+ if (goal <= 0)
+ return i+1;
+ }
+ }
+ if (cycles) {
+ l = cubiclength(n-1,goal);
+ if (l < 0)
+ return -l+n-1;
+ if (cached_length > 0 && cached_length != L+l) {
+ reportError("arclength != length.\n"
+ "path::arclength(double) must have broken semantics.\n"
+ "Please report this error.");
+ }
+ cached_length = L += l;
+ goal -= l;
+ return arctime(goal)+n;
+ }
+ else {
+ cached_length = L;
+ return length();
+ }
+}
+
+// }}}
+
+// {{{ Direction Time Calulation
+// Algorithm Stolen from Knuth's MetaFont
+inline double cubicDir(const solvedKnot& left, const solvedKnot& right,
+ const pair& rot)
+{
+ pair a,b,c;
+ derivative(a,b,c,left.point,left.post,right.pre,right.point);
+ a *= rot; b *= rot; c *= rot;
+
+ quadraticroots ret(a.gety(),b.gety(),c.gety());
+ switch(ret.distinct) {
+ case quadraticroots::MANY:
+ case quadraticroots::ONE:
+ {
+ if(goodroot(a.getx(),b.getx(),c.getx(),ret.t1)) return ret.t1;
+ } break;
+
+ case quadraticroots::TWO:
+ {
+ if(goodroot(a.getx(),b.getx(),c.getx(),ret.t1)) return ret.t1;
+ if(goodroot(a.getx(),b.getx(),c.getx(),ret.t2)) return ret.t2;
+ } break;
+
+ case quadraticroots::NONE:
+ break;
+ }
+
+ return -1;
+}
+
+// TODO: Check that we handle corner cases.
+// Velocity(t) == (0,0)
+double path::directiontime(const pair& dir) const {
+ if (dir == pair(0,0)) return 0;
+ pair rot = pair(1,0)/unit(dir);
+
+ double t; double pre,post;
+ for (Int i = 0; i < n-1+cycles; ) {
+ t = cubicDir(this->nodes[i],(cycles && i==n-1) ? nodes[0]:nodes[i+1],rot);
+ if (t >= 0) return i+t;
+ i++;
+ if (cycles || i != n-1) {
+ pair Pre = (point(i)-precontrol(i))*rot;
+ pair Post = (postcontrol(i)-point(i))*rot;
+ static pair zero(0.0,0.0);
+ if(Pre != zero && Post != zero) {
+ pre = angle(Pre);
+ post = angle(Post);
+ if ((pre <= 0 && post >= 0 && pre >= post - PI) ||
+ (pre >= 0 && post <= 0 && pre <= post + PI))
+ return i;
+ }
+ }
+ }
+
+ return -1;
+}
+// }}}
+
+// {{{ Path Intersection Calculations
+
+const unsigned maxdepth=DBL_MANT_DIG;
+const unsigned mindepth=maxdepth-16;
+
+void roots(std::vector<double> &roots, double a, double b, double c, double d)
+{
+ cubicroots r(a,b,c,d);
+ if(r.roots >= 1) roots.push_back(r.t1);
+ if(r.roots >= 2) roots.push_back(r.t2);
+ if(r.roots == 3) roots.push_back(r.t3);
+}
+
+void roots(std::vector<double> &r, double x0, double c0, double c1, double x1,
+ double x)
+{
+ double a=x1-x0+3.0*(c0-c1);
+ double b=3.0*(x0+c1)-6.0*c0;
+ double c=3.0*(c0-x0);
+ double d=x0-x;
+ roots(r,a,b,c,d);
+}
+
+// Return all intersection times of path g with the pair z.
+void intersections(std::vector<double>& T, const path& g, const pair& z,
+ double fuzz)
+{
+ double fuzz2=fuzz*fuzz;
+ Int n=g.length();
+ bool cycles=g.cyclic();
+ for(Int i=0; i < n; ++i) {
+ // Check both directions to circumvent degeneracy.
+ std::vector<double> r;
+ roots(r,g.point(i).getx(),g.postcontrol(i).getx(),
+ g.precontrol(i+1).getx(),g.point(i+1).getx(),z.getx());
+ roots(r,g.point(i).gety(),g.postcontrol(i).gety(),
+ g.precontrol(i+1).gety(),g.point(i+1).gety(),z.gety());
+
+ size_t m=r.size();
+ for(size_t j=0 ; j < m; ++j) {
+ double t=r[j];
+ if(t >= -Fuzz && t <= 1.0+Fuzz) {
+ double s=i+t;
+ if((g.point(s)-z).abs2() <= fuzz2) {
+ if(cycles && s >= n-Fuzz) s=0;
+ T.push_back(s);
+ }
+ }
+ }
+ }
+}
+
+inline bool online(const pair&p, const pair& q, const pair& z, double fuzz)
+{
+ if(p == q) return (z-p).abs2() <= fuzz*fuzz;
+ return (z.getx()-p.getx())*(q.gety()-p.gety()) ==
+ (q.getx()-p.getx())*(z.gety()-p.gety());
+}
+
+// Return all intersection times of path g with the (infinite)
+// line through p and q; if there are an infinite number of intersection points,
+// the returned list is guaranteed to include the endpoint times of
+// the intersection if endpoints=true.
+void lineintersections(std::vector<double>& T, const path& g,
+ const pair& p, const pair& q, double fuzz,
+ bool endpoints=false)
+{
+ Int n=g.length();
+ if(n == 0) {
+ if(online(p,q,g.point((Int) 0),fuzz)) T.push_back(0.0);
+ return;
+ }
+ bool cycles=g.cyclic();
+ double dx=q.getx()-p.getx();
+ double dy=q.gety()-p.gety();
+ double det=p.gety()*q.getx()-p.getx()*q.gety();
+ for(Int i=0; i < n; ++i) {
+ pair z0=g.point(i);
+ pair c0=g.postcontrol(i);
+ pair c1=g.precontrol(i+1);
+ pair z1=g.point(i+1);
+ pair t3=z1-z0+3.0*(c0-c1);
+ pair t2=3.0*(z0+c1)-6.0*c0;
+ pair t1=3.0*(c0-z0);
+ double a=dy*t3.getx()-dx*t3.gety();
+ double b=dy*t2.getx()-dx*t2.gety();
+ double c=dy*t1.getx()-dx*t1.gety();
+ double d=dy*z0.getx()-dx*z0.gety()+det;
+ std::vector<double> r;
+ if(max(max(max(a*a,b*b),c*c),d*d) >
+ Fuzz2*max(max(max(z0.abs2(),z1.abs2()),c0.abs2()),c1.abs2()))
+ roots(r,a,b,c,d);
+ else r.push_back(0.0);
+ if(endpoints) {
+ path h=g.subpath(i,i+1);
+ intersections(r,h,p,fuzz);
+ intersections(r,h,q,fuzz);
+ if(online(p,q,z0,fuzz)) r.push_back(0.0);
+ if(online(p,q,z1,fuzz)) r.push_back(1.0);
+ }
+ size_t m=r.size();
+ for(size_t j=0 ; j < m; ++j) {
+ double t=r[j];
+ if(t >= -Fuzz && t <= 1.0+Fuzz) {
+ double s=i+t;
+ if(cycles && s >= n-Fuzz) s=0;
+ T.push_back(s);
+ }
+ }
+ }
+}
+
+// An optimized implementation of intersections(g,p--q);
+// if there are an infinite number of intersection points, the returned list is
+// only guaranteed to include the endpoint times of the intersection.
+void intersections(std::vector<double>& S, std::vector<double>& T,
+ const path& g, const pair& p, const pair& q, double fuzz)
+{
+ if(q == p) {
+ std::vector<double> S1;
+ intersections(S1,g,p,fuzz);
+ size_t n=S1.size();
+ for(size_t i=0; i < n; ++i) {
+ S.push_back(S1[i]);
+ T.push_back(0);
+ }
+ } else {
+ pair factor=(q-p)/((q-p).abs2());
+ std::vector<double> S1;
+ lineintersections(S1,g,p,q,fuzz,true);
+ size_t n=S1.size();
+ for(size_t i=0; i < n; ++i) {
+ double s=S1[i];
+ pair z=g.point(s);
+ double t=dot(g.point(s)-p,factor);
+ if(t >= -Fuzz && t <= 1.0+Fuzz) {
+ S.push_back(s);
+ T.push_back(t);
+ }
+ }
+ }
+}
+
+void add(std::vector<double>& S, double s, const path& p, double fuzz2)
+{
+ pair P=p.point(s);
+ for(size_t i=0; i < S.size(); ++i)
+ if((p.point(S[i])-P).abs2() <= fuzz2) return;
+ S.push_back(s);
+}
+
+void add(std::vector<double>& S, std::vector<double>& T, double s, double t,
+ const path& p, const path& q, double fuzz2)
+{
+ pair P=p.point(s);
+ for(size_t i=0; i < S.size(); ++i)
+ if((p.point(S[i])-P).abs2() <= fuzz2) return;
+ S.push_back(s);
+ T.push_back(t);
+}
+
+void add(double& s, double& t, std::vector<double>& S, std::vector<double>& T,
+ std::vector<double>& S1, std::vector<double>& T1,
+ double pscale, double qscale, double poffset, double qoffset,
+ const path& p, const path& q, double fuzz, bool single)
+{
+ if(single) {
+ s=s*pscale+poffset;
+ t=t*qscale+qoffset;
+ } else {
+ double fuzz2=4.0*fuzz*fuzz;
+ size_t n=S1.size();
+ for(size_t i=0; i < n; ++i)
+ add(S,T,pscale*S1[i]+poffset,qscale*T1[i]+qoffset,p,q,fuzz2);
+ }
+}
+
+void add(double& s, double& t, std::vector<double>& S, std::vector<double>& T,
+ std::vector<double>& S1, std::vector<double>& T1,
+ const path& p, const path& q, double fuzz, bool single)
+{
+ size_t n=S1.size();
+ if(single) {
+ if(n > 0) {
+ s=S1[0];
+ t=T1[0];
+ }
+ } else {
+ double fuzz2=4.0*fuzz*fuzz;
+ for(size_t i=0; i < n; ++i)
+ add(S,T,S1[i],T1[i],p,q,fuzz2);
+ }
+}
+
+void intersections(std::vector<double>& S, path& g,
+ const pair& p, const pair& q, double fuzz)
+{
+ double fuzz2=fuzz*fuzz;
+ std::vector<double> S1;
+ lineintersections(S1,g,p,q,fuzz);
+ size_t n=S1.size();
+ for(size_t i=0; i < n; ++i)
+ add(S,S1[i],g,fuzz2);
+}
+
+bool intersections(double &s, double &t, std::vector<double>& S,
+ std::vector<double>& T, path& p, path& q,
+ double fuzz, bool single, bool exact, unsigned depth)
+{
+ if(errorstream::interrupt) throw interrupted();
+
+ Int lp=p.length();
+ if(((lp == 1 && p.straight(0)) || lp == 0) && exact) {
+ std::vector<double> T1,S1;
+ intersections(T1,S1,q,p.point((Int) 0),p.point(lp),fuzz);
+ add(s,t,S,T,S1,T1,p,q,fuzz,single);
+ return S1.size() > 0;
+ }
+
+ Int lq=q.length();
+ if(((lq == 1 && q.straight(0)) || lq == 0) && exact) {
+ std::vector<double> S1,T1;
+ intersections(S1,T1,p,q.point((Int) 0),q.point(lq),fuzz);
+ add(s,t,S,T,S1,T1,p,q,fuzz,single);
+ return S1.size() > 0;
+ }
+
+ pair maxp=p.max();
+ pair minp=p.min();
+ pair maxq=q.max();
+ pair minq=q.min();
+
+ if(maxp.getx()+fuzz >= minq.getx() &&
+ maxp.gety()+fuzz >= minq.gety() &&
+ maxq.getx()+fuzz >= minp.getx() &&
+ maxq.gety()+fuzz >= minp.gety()) {
+ // Overlapping bounding boxes
+
+ --depth;
+ if((maxp-minp).length()+(maxq-minq).length() <= fuzz || depth == 0) {
+ if(single) {
+ s=0;
+ t=0;
+ } else {
+ S.push_back(0.0);
+ T.push_back(0.0);
+ }
+ return true;
+ }
+
+ path p1,p2;
+ double pscale,poffset;
+
+ if(lp <= 1) {
+ if(lp == 1) p.halve(p1,p2);
+ if(lp == 0 || p1 == p || p2 == p) {
+ std::vector<double> T1,S1;
+ intersections(T1,S1,q,p.point((Int) 0),p.point((Int) 0),fuzz);
+ add(s,t,S,T,S1,T1,p,q,fuzz,single);
+ return S1.size() > 0;
+ }
+ pscale=poffset=0.5;
+ } else {
+ Int tp=lp/2;
+ p1=p.subpath(0,tp);
+ p2=p.subpath(tp,lp);
+ poffset=tp;
+ pscale=1.0;
+ }
+
+ path q1,q2;
+ double qscale,qoffset;
+
+ if(lq <= 1) {
+ if(lq == 1) q.halve(q1,q2);
+ if(lq == 0 || q1 == q || q2 == q) {
+ std::vector<double> S1,T1;
+ intersections(S1,T1,p,q.point((Int) 0),q.point((Int) 0),fuzz);
+ add(s,t,S,T,S1,T1,p,q,fuzz,single);
+ return S1.size() > 0;
+ }
+ qscale=qoffset=0.5;
+ } else {
+ Int tq=lq/2;
+ q1=q.subpath(0,tq);
+ q2=q.subpath(tq,lq);
+ qoffset=tq;
+ qscale=1.0;
+ }
+
+ bool Short=lp == 1 && lq == 1;
+
+ static size_t maxcount=9;
+ size_t count=0;
+
+ std::vector<double> S1,T1;
+ if(intersections(s,t,S1,T1,p1,q1,fuzz,single,exact,depth)) {
+ add(s,t,S,T,S1,T1,pscale,qscale,0.0,0.0,p,q,fuzz,single);
+ if(single || depth <= mindepth)
+ return true;
+ count += S1.size();
+ if(Short && count > maxcount) return true;
+ }
+
+ S1.clear();
+ T1.clear();
+ if(intersections(s,t,S1,T1,p1,q2,fuzz,single,exact,depth)) {
+ add(s,t,S,T,S1,T1,pscale,qscale,0.0,qoffset,p,q,fuzz,single);
+ if(single || depth <= mindepth)
+ return true;
+ count += S1.size();
+ if(Short && count > maxcount) return true;
+ }
+
+ S1.clear();
+ T1.clear();
+ if(intersections(s,t,S1,T1,p2,q1,fuzz,single,exact,depth)) {
+ add(s,t,S,T,S1,T1,pscale,qscale,poffset,0.0,p,q,fuzz,single);
+ if(single || depth <= mindepth)
+ return true;
+ count += S1.size();
+ if(Short && count > maxcount) return true;
+ }
+
+ S1.clear();
+ T1.clear();
+ if(intersections(s,t,S1,T1,p2,q2,fuzz,single,exact,depth)) {
+ add(s,t,S,T,S1,T1,pscale,qscale,poffset,qoffset,p,q,fuzz,single);
+ if(single || depth <= mindepth)
+ return true;
+ count += S1.size();
+ if(Short && count > maxcount) return true;
+ }
+
+ return S.size() > 0;
+ }
+ return false;
+}
+
+// }}}
+
+ostream& operator<< (ostream& out, const path& p)
+{
+ Int n = p.length();
+ if(n < 0)
+ out << "<nullpath>";
+ else {
+ for(Int i = 0; i < n; i++) {
+ out << p.point(i);
+ if(p.straight(i)) out << "--";
+ else
+ out << ".. controls " << p.postcontrol(i) << " and "
+ << p.precontrol(i+1) << newl << " ..";
+ }
+ if(p.cycles)
+ out << "cycle";
+ else
+ out << p.point(n);
+ }
+ return out;
+}
+
+path concat(const path& p1, const path& p2)
+{
+ Int n1 = p1.length(), n2 = p2.length();
+
+ if (n1 == -1) return p2;
+ if (n2 == -1) return p1;
+ pair a=p1.point(n1);
+ pair b=p2.point((Int) 0);
+
+ mem::vector<solvedKnot> nodes(n1+n2+1);
+
+ Int i = 0;
+ nodes[0].pre = p1.point((Int) 0);
+ for (Int j = 0; j < n1; j++) {
+ nodes[i].point = p1.point(j);
+ nodes[i].straight = p1.straight(j);
+ nodes[i].post = p1.postcontrol(j);
+ nodes[i+1].pre = p1.precontrol(j+1);
+ i++;
+ }
+ for (Int j = 0; j < n2; j++) {
+ nodes[i].point = p2.point(j);
+ nodes[i].straight = p2.straight(j);
+ nodes[i].post = p2.postcontrol(j);
+ nodes[i+1].pre = p2.precontrol(j+1);
+ i++;
+ }
+ nodes[i].point = nodes[i].post = p2.point(n2);
+
+ return path(nodes, i+1);
+}
+
+// Interface to orient2d predicate optimized for pairs.
+double orient2d(const pair& a, const pair& b, const pair& c)
+{
+ double detleft, detright, det;
+ double detsum, errbound;
+ double orient;
+
+ FPU_ROUND_DOUBLE;
+
+ detleft = (a.getx() - c.getx()) * (b.gety() - c.gety());
+ detright = (a.gety() - c.gety()) * (b.getx() - c.getx());
+ det = detleft - detright;
+
+ if (detleft > 0.0) {
+ if (detright <= 0.0) {
+ FPU_RESTORE;
+ return det;
+ } else {
+ detsum = detleft + detright;
+ }
+ } else if (detleft < 0.0) {
+ if (detright >= 0.0) {
+ FPU_RESTORE;
+ return det;
+ } else {
+ detsum = -detleft - detright;
+ }
+ } else {
+ FPU_RESTORE;
+ return det;
+ }
+
+ errbound = ccwerrboundA * detsum;
+ if ((det >= errbound) || (-det >= errbound)) {
+ FPU_RESTORE;
+ return det;
+ }
+
+ double pa[]={a.getx(),a.gety()};
+ double pb[]={b.getx(),b.gety()};
+ double pc[]={c.getx(),c.gety()};
+
+ orient = orient2dadapt(pa, pb, pc, detsum);
+ FPU_RESTORE;
+ return orient;
+}
+
+// Returns true iff the point z lies in or on the bounding box
+// of a,b,c, and d.
+bool insidebbox(const pair& a, const pair& b, const pair& c, const pair& d,
+ const pair& z)
+{
+ bbox B(a);
+ B.addnonempty(b);
+ B.addnonempty(c);
+ B.addnonempty(d);
+ return B.left <= z.getx() && z.getx() <= B.right && B.bottom <= z.gety()
+ && z.gety() <= B.top;
+}
+
+inline bool inrange(double x0, double x1, double x)
+{
+ return (x0 <= x && x <= x1) || (x1 <= x && x <= x0);
+}
+
+// Return true if point z is on z0--z1; otherwise compute contribution to
+// winding number.
+bool checkstraight(const pair& z0, const pair& z1, const pair& z, Int& count)
+{
+ if(z0.gety() <= z.gety() && z.gety() <= z1.gety()) {
+ double side=orient2d(z0,z1,z);
+ if(side == 0.0 && inrange(z0.getx(),z1.getx(),z.getx()))
+ return true;
+ if(z.gety() < z1.gety() && side > 0) ++count;
+ } else if(z1.gety() <= z.gety() && z.gety() <= z0.gety()) {
+ double side=orient2d(z0,z1,z);
+ if(side == 0.0 && inrange(z0.getx(),z1.getx(),z.getx()))
+ return true;
+ if(z.gety() < z0.gety() && side < 0) --count;
+ }
+ return false;
+}
+
+// returns true if point is on curve; otherwise compute contribution to
+// winding number.
+bool checkcurve(const pair& z0, const pair& c0, const pair& c1,
+ const pair& z1, const pair& z, Int& count, unsigned depth)
+{
+ if(depth == 0) return true;
+ --depth;
+ if(insidebbox(z0,c0,c1,z1,z)) {
+ const pair m0=0.5*(z0+c0);
+ const pair m1=0.5*(c0+c1);
+ const pair m2=0.5*(c1+z1);
+ const pair m3=0.5*(m0+m1);
+ const pair m4=0.5*(m1+m2);
+ const pair m5=0.5*(m3+m4);
+ if(checkcurve(z0,m0,m3,m5,z,count,depth) ||
+ checkcurve(m5,m4,m2,z1,z,count,depth)) return true;
+ } else
+ if(checkstraight(z0,z1,z,count)) return true;
+ return false;
+}
+
+// Return the winding number of the region bounded by the (cyclic) path
+// relative to the point z, or the largest odd integer if the point lies on
+// the path.
+Int path::windingnumber(const pair& z) const
+{
+ static const Int undefined=Int_MAX+((Int_MAX % 2)-1);;
+
+ if(!cycles)
+ reportError("path is not cyclic");
+
+ bbox b=bounds();
+
+ if(z.getx() < b.left || z.getx() > b.right ||
+ z.gety() < b.bottom || z.gety() > b.top) return 0;
+
+ Int count=0;
+ for(Int i=0; i < n; ++i)
+ if(straight(i)) {
+ if(checkstraight(point(i),point(i+1),z,count))
+ return undefined;
+ } else
+ if(checkcurve(point(i),postcontrol(i),precontrol(i+1),point(i+1),z,count,
+ maxdepth)) return undefined;
+ return count;
+}
+
+path path::transformed(const transform& t) const
+{
+ mem::vector<solvedKnot> nodes(n);
+
+ for (Int i = 0; i < n; ++i) {
+ nodes[i].pre = t * this->nodes[i].pre;
+ nodes[i].point = t * this->nodes[i].point;
+ nodes[i].post = t * this->nodes[i].post;
+ nodes[i].straight = this->nodes[i].straight;
+ }
+
+ path p(nodes, n, cyclic());
+ return p;
+}
+
+path transformed(const transform& t, const path& p)
+{
+ Int n = p.size();
+ mem::vector<solvedKnot> nodes(n);
+
+ for (Int i = 0; i < n; ++i) {
+ nodes[i].pre = t * p.precontrol(i);
+ nodes[i].point = t * p.point(i);
+ nodes[i].post = t * p.postcontrol(i);
+ nodes[i].straight = p.straight(i);
+ }
+
+ return path(nodes, n, p.cyclic());
+}
+
+path nurb(pair z0, pair z1, pair z2, pair z3,
+ double w0, double w1, double w2, double w3, Int m)
+{
+ mem::vector<solvedKnot> nodes(m+1);
+
+ if(m < 1) reportError("invalid sampling interval");
+
+ double step=1.0/m;
+ for(Int i=0; i <= m; ++i) {
+ double t=i*step;
+ double t2=t*t;
+ double onemt=1.0-t;
+ double onemt2=onemt*onemt;
+ double W0=w0*onemt2*onemt;
+ double W1=w1*3.0*t*onemt2;
+ double W2=w2*3.0*t2*onemt;
+ double W3=w3*t2*t;
+ nodes[i].point=(W0*z0+W1*z1+W2*z2+W3*z3)/(W0+W1+W2+W3);
+ }
+
+ static const double twothirds=2.0/3.0;
+ pair z=nodes[0].point;
+ nodes[0].pre=z;
+ nodes[0].post=twothirds*z+third*nodes[1].point;
+ for(int i=1; i < m; ++i) {
+ pair z0=nodes[i].point;
+ pair zm=nodes[i-1].point;
+ pair zp=nodes[i+1].point;
+ pair pre=twothirds*z0+third*zm;
+ pair pos=twothirds*z0+third*zp;
+ pair dir=unit(pos-pre);
+ nodes[i].pre=z0-length(z0-pre)*dir;
+ nodes[i].post=z0+length(pos-z0)*dir;
+ }
+ z=nodes[m].point;
+ nodes[m].pre=twothirds*z+third*nodes[m-1].point;
+ nodes[m].post=z;
+ return path(nodes,m+1);
+}
+
+} //namespace camp