summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/doc/asymptote.texi
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/utils/asymptote/doc/asymptote.texi')
-rw-r--r--Build/source/utils/asymptote/doc/asymptote.texi155
1 files changed, 79 insertions, 76 deletions
diff --git a/Build/source/utils/asymptote/doc/asymptote.texi b/Build/source/utils/asymptote/doc/asymptote.texi
index 6b932fd4bf6..9fa13b64c4c 100644
--- a/Build/source/utils/asymptote/doc/asymptote.texi
+++ b/Build/source/utils/asymptote/doc/asymptote.texi
@@ -30,7 +30,7 @@ file LICENSE in the top-level source directory).
@title Asymptote: the Vector Graphics Language
@subtitle For version @value{VERSION}
@sp 1
-@center @image{logo}
+@center @image{./logo}
@page
@vskip 0pt plus 1filll
@@ -835,7 +835,7 @@ asy -V -f pdf test
In either case, the @code{-V} option opens up a viewer window so you
can immediately view the result:
@sp 1
-@center @image{diagonal}
+@center @image{./diagonal}
@cindex @code{bp}
@noindent
Here, the @code{--} connector joins the two points @code{(0,0)} and
@@ -891,7 +891,7 @@ size(100.5,100.5);
draw((0,0)--(1,1));
@end verbatim
@sp 1
-@center @image{diagonal}
+@center @image{./diagonal}
@cindex @code{inches}
@cindex @code{cm}
@@ -905,14 +905,14 @@ If 0 is given as a size argument, no restriction is made in that direction;
the overall scaling will be determined by the other direction (@pxref{size}):
@verbatiminclude bigdiagonal.asy
@sp 1
-@center @image{bigdiagonal}
+@center @image{./bigdiagonal}
@cindex @code{cycle}
To connect several points and create a cyclic path, use the
@code{cycle} keyword:
@verbatiminclude square.asy
@sp 1
-@center @image{square}
+@center @image{./square}
@noindent
For convenience, the path @code{(0,0)--(1,0)--(1,1)--(0,1)--cycle}
may be replaced with the predefined variable
@@ -935,7 +935,7 @@ label as a double-quoted @code{LaTeX} string, a
coordinate, and an optional alignment direction:
@verbatiminclude labelsquare.asy
@sp 1
-@center @image{labelsquare}
+@center @image{./labelsquare}
@cindex compass directions
@cindex @code{N}
@@ -957,7 +957,7 @@ This example draws a path that approximates a quarter circle,
terminated with an arrowhead:
@verbatiminclude quartercircle.asy
@sp 1
-@center @image{quartercircle}
+@center @image{./quartercircle}
@noindent
Here the directions @code{up} and @code{left} in braces specify the
outgoing and incoming directions at the points @code{(1,0)} and
@@ -994,7 +994,7 @@ initial point of the right-hand path, may be used to group several
@code{PostScript} path):
@verbatiminclude superpath.asy
@sp 1
-@center @image{superpath}
+@center @image{./superpath}
@cindex evenodd
@noindent
@@ -1013,7 +1013,7 @@ the module @code{three.asy} to construct the edges of a
cube @code{unitbox} without retracing steps (@pxref{three}):
@verbatiminclude cube.asy
@sp 1
-@center @image{cube}
+@center @image{./cube}
See section @ref{graph} (or the online
@code{Asymptote} @uref{http://asymptote.sourceforge.net/gallery,,gallery} and
@@ -1616,7 +1616,7 @@ to format string @code{s} into a paragraph of width @code{width}.
This example uses @code{minipage}, @code{clip}, and @code{graphic} to
produce a CD label:
@sp 1
-@center @image{CDlabel}
+@center @image{./CDlabel}
@verbatiminclude CDlabel.asy
@node Bezier curves, Programming, Drawing commands, Top
@@ -1633,7 +1633,7 @@ A cubic spline between the node @math{z_0}, with postcontrol point
@math{c_0}, and the node @math{z_1}, with precontrol point @math{c_1},
is computed as the Bezier curve
@sp 1
-@center @image{bezier,,,(1-t)^3*z_0+3t(1-t)^2*c_0+3t^2(1-t)*c_1+t^3*z_1 for 0 <=t <= 1.}
+@center @image{./bezier,,,(1-t)^3*z_0+3t(1-t)^2*c_0+3t^2(1-t)*c_1+t^3*z_1 for 0 <=t <= 1.}
As illustrated in the diagram below, the third-order midpoint (@math{m_5})
constructed from two endpoints @math{z_0} and @math{z_1} and two control points
@@ -1644,7 +1644,7 @@ desired curve, by using the newly extracted third-order midpoint as an
endpoint and the respective second- and first-order midpoints as control
points:
@sp 1
-@center @image{bezier2}
+@center @image{./bezier2}
Here @math{m_0}, @math{m_1} and @math{m_2} are the first-order
midpoints, @math{m_3} and @math{m_4} are the second-order midpoints, and
@@ -1715,12 +1715,12 @@ variable number of arguments; @pxref{Rest arguments}). For example,
compare
@verbatiminclude dots.asy
@sp 1
-@center @image{dots}
+@center @image{./dots}
@noindent
with
@verbatiminclude colons.asy
@sp 1
-@center @image{colons}
+@center @image{./colons}
@cindex @code{---}
@cindex @code{&}
@@ -2389,7 +2389,7 @@ This example illustrates the use of all five guide connectors discussed
in @ref{Tutorial} and @ref{Bezier curves}:
@verbatiminclude join.asy
@sp 1
-@center @image{join}
+@center @image{./join}
Here are some useful functions for paths:
@@ -2493,7 +2493,7 @@ the path in the sense of @code{point(path p, real t)}, at which the
cumulative arclength (measured from the beginning of the path) equals @code{L}.
@cindex @code{arcpoint}
-@item real arcpoint(path p, real L);
+@item pair arcpoint(path p, real L);
returns @code{point(p,arctime(p,L))}.
@cindex @code{dirtime}
@@ -2690,7 +2690,7 @@ incrementally resolved at each iteration, before the entire set of nodes
@verbatiminclude mexicanhat.asy
@sp 1
-@center @image{mexicanhat}
+@center @image{./mexicanhat}
We point out an efficiency distinction in the use of guides and paths:
@verbatim
@@ -2885,7 +2885,7 @@ are defined as named colors, along with the @acronym{CMYK} primary
colors @code{Cyan}, @code{Magenta}, @code{Yellow}, and @code{Black}, in
the module @code{plain}:
@sp 1
-@center @image{colors}
+@center @image{./colors}
The standard 140 @acronym{RGB} @code{X11} colors can be imported with
the command
@@ -2952,7 +2952,7 @@ pen Dotted(pen p=currentpen) {return linetype(new real[] {0,3})+2*linewidth(p);}
pen Dotted=Dotted();
@end verbatim
@sp 1
-@center @image{linetype}
+@center @image{./linetype}
@cindex @code{defaultpen}
The default line type is @code{solid}; this may be changed with
@@ -3181,7 +3181,7 @@ module @code{patterns}:
@cindex brick
@verbatiminclude tile.asy
@sp 1
-@center @image{tile}
+@center @image{./tile}
@cindex hatch
@cindex crosshatch
@@ -3190,7 +3190,7 @@ Hatch patterns can be generated with the routines
@code{picture crosshatch(real H=5mm, pen p=currentpen)}:
@verbatiminclude hatch.asy
@sp 1
-@center @image{hatch}
+@center @image{./hatch}
You may need to turn off aliasing in your @code{PostScript} viewer for
patterns to appear correctly. Custom patterns can easily be constructed,
@@ -3210,7 +3210,7 @@ recovered from a pen with @code{path nib(pen)}. Unlike in
@verbatiminclude makepen.asy
@sp 1
-@center @image{makepen}
+@center @image{./makepen}
The value @code{nullpath} represents a circular pen nib (the default);
an elliptical pen can be achieved simply by multiplying the pen by a
@@ -3684,7 +3684,7 @@ or more subpictures, group them two at a time:
@verbatiminclude subpictures.asy
@sp 1
-@center @image{subpictures}
+@center @image{./subpictures}
Alternatively, one can use @code{attach} to automatically increase the
size of picture @code{dest} to accommodate adding a frame @code{src}
@@ -4629,7 +4629,7 @@ This produces the output
(non-function variables have null signatures). Variables with the
same name are allowed, so long as they have distinct signatures.
-Functions arguments are passed by value. To pass an argument by
+Function arguments are passed by value. To pass an argument by
reference, simply enclose it in a structure (@pxref{Structures}).
Here are some significant features of @code{Asymptote} functions:
@@ -6146,7 +6146,7 @@ to the type. This is regardless of what fields the variable actually possesses.
@cindex @code{asymptote.sty}
@code{Asymptote} comes with a convenient @code{LaTeX} style file
-@code{asymptote.sty} (v1.34 or later required) that makes @code{LaTeX}
+@code{asymptote.sty} (v1.35 or later required) that makes @code{LaTeX}
@code{Asymptote}-aware. Entering @code{Asymptote} code
directly into the @code{LaTeX} source file, at the point where it is
needed, keeps figures organized and avoids the need to invent new file
@@ -6248,7 +6248,7 @@ hyperdvi option).
Here now is @code{latexusage.tex}:
@verbatiminclude latexusage.tex
@page
-@image{latexusage,,25cm}
+@image{./latexusage,,25cm}
@node Base modules, Options, LaTeX usage, Top
@chapter Base modules
@@ -6506,7 +6506,7 @@ from the above frames. The example @code{@uref{http://asymptote.sourceforge.net/
use of these markers:
@sp 1
-@center @image{markers1}
+@center @image{./markers1}
This package also provides a routine for marking an angle @math{AOB}:
@cindex @code{markangle}
@@ -6521,7 +6521,7 @@ void markangle(picture pic=currentpicture, Label L="",
as illustrated in the example @code{@uref{http://asymptote.sourceforge.net/gallery/markers2.svg,,markers2}@uref{http://asymptote.sourceforge.net/gallery/markers2.asy,,.asy}}.
@sp 1
-@center @image{markers2}
+@center @image{./markers2}
@node tree, binarytree, markers, Base modules
@section @code{tree}
@@ -6536,7 +6536,7 @@ input routine for the special case of a binary search tree, as
illustrated in the example @code{@uref{http://asymptote.sourceforge.net/gallery/binarytreetest.svg,,binarytreetest}@uref{http://asymptote.sourceforge.net/gallery/binarytreetest.asy,,.asy}}:
@verbatiminclude binarytreetest.asy
@sp 1
-@center @image{binarytreetest}
+@center @image{./binarytreetest}
@node drawtree, syzygy, binarytree, Base modules
@section @code{drawtree}
@@ -7250,7 +7250,7 @@ Here are some simple examples of two-dimensional graphs:
@math{y=} exp@math{(x)}, with the @math{y} axis starting at @math{y=0}:
@verbatiminclude exp.asy
@sp 1
-@center @image{exp}
+@center @image{./exp}
@item The next example draws a scientific-style graph with a legend.
@@ -7264,7 +7264,7 @@ the picture covered by a label:
@cindex scientific graph
@verbatiminclude lineargraph0.asy
@sp 1
-@center @image{lineargraph0}
+@center @image{./lineargraph0}
@cindex @code{attach}
To specify a fixed size for the graph proper, use @code{attach}:
@@ -7274,19 +7274,19 @@ To specify a fixed size for the graph proper, use @code{attach}:
A legend can have multiple entries per line:
@verbatiminclude legend.asy
@sp 1
-@center @image{legend}
+@center @image{./legend}
@item This example draws a graph of one array versus another (both of
the same size) using custom tick locations and a smaller font size for
the tick labels on the @math{y} axis.
@verbatiminclude datagraph.asy
@sp 1
-@center @image{datagraph}
+@center @image{./datagraph}
@item This example shows how to graph columns of data read from a file.
@verbatiminclude filegraph.asy
@sp 1
-@center @image{filegraph}
+@center @image{./filegraph}
@cindex @code{polygon}
@cindex @code{cross}
@@ -7365,18 +7365,18 @@ positive and negative extents of the error are assumed to be equal.
@cindex error bars
@verbatiminclude errorbars.asy
@sp 1
-@center @image{errorbars}
+@center @image{./errorbars}
@cindex custom mark routine
@item A custom mark routine can be also be specified:
@verbatiminclude graphmarkers.asy
@sp 1
-@center @image{graphmarkers}
+@center @image{./graphmarkers}
@item This example shows how to label an axis with arbitrary strings.
@verbatiminclude monthaxis.asy
@sp 1
-@center @image{monthaxis}
+@center @image{./monthaxis}
@item The next example draws a graph of a parametrized curve.
@cindex parametrized curve
@@ -7404,14 +7404,14 @@ within the given limits if @code{crop}=@code{Crop}. The function
graph limits.
@verbatiminclude parametricgraph.asy
@sp 1
-@center @image{parametricgraph}
+@center @image{./parametricgraph}
@cindex scaled graph
The next example illustrates how one can extract a common axis scaling
factor.
@verbatiminclude scaledgraph.asy
@sp 1
-@center @image{scaledgraph}
+@center @image{./scaledgraph}
@anchor{automatic scaling}
@cindex automatic scaling
@@ -7465,25 +7465,25 @@ multiplicative scaling factor and intercept (e.g.@ for a depth axis,
For example, to draw a log/log graph of a function, use @code{scale(Log,Log)}:
@verbatiminclude loggraph.asy
@sp 1
-@center @image{loggraph}
+@center @image{./loggraph}
@cindex grid
By extending the ticks, one can easily produce a logarithmic grid:
@verbatiminclude loggrid.asy
@sp 1
-@center @image{loggrid}
+@center @image{./loggrid}
One can also specify custom tick locations and formats for logarithmic axes:
@verbatiminclude logticks.asy
@sp 1
-@center @image{logticks}
+@center @image{./logticks}
@cindex @code{log2} graph
It is easy to draw logarithmic graphs with respect to other bases:
@verbatiminclude log2graph.asy
@sp 1
-@center @image{log2graph}
+@center @image{./log2graph}
@cindex broken axis
Here is an example of "broken" linear @math{x} and logarithmic
@@ -7492,7 +7492,7 @@ In the case of a logarithmic axis, the break endpoints are automatically
rounded to the nearest integral power of the base.
@verbatiminclude brokenaxis.asy
@sp 1
-@center @image{brokenaxis}
+@center @image{./brokenaxis}
@cindex secondary axis
@cindex @code{secondaryX}
@@ -7507,31 +7507,31 @@ In this example, @code{secondaryY} is used to draw a secondary linear
@math{y} axis against a primary logarithmic @math{y} axis:
@verbatiminclude Bode.asy
@sp 1
-@center @image{Bode}
+@center @image{./Bode}
A secondary logarithmic @math{y} axis can be drawn like this:
@verbatiminclude secondaryaxis.asy
@sp 1
-@center @image{secondaryaxis}
+@center @image{./secondaryaxis}
@item Here is a histogram example, which uses the @code{stats} module.
@cindex @code{axis}
@verbatiminclude histogram.asy
@sp 1
-@center @image{histogram}
+@center @image{./histogram}
@item Here is an example of reading column data in from a file and a
least-squares fit, using the @code{stats} module.
@cindex @code{leastsquares}
@verbatiminclude leastsquares.asy
@sp 1
-@center @image{leastsquares}
+@center @image{./leastsquares}
@item Here is an example that illustrates the general @code{axis} routine.
@cindex @code{axis}
@verbatiminclude generalaxis.asy
@sp 1
-@center @image{generalaxis}
+@center @image{./generalaxis}
@item To draw a vector field of @code{n} arrows evenly spaced along
the arclength of a path, use the routine
@@ -7543,7 +7543,7 @@ picture vectorfield(path vector(real), path g, int n, bool truesize=false,
as illustrated in this simple example of a flow field:
@verbatiminclude flow.asy
@sp 1
-@center @image{flow}
+@center @image{./flow}
@item To draw a vector field of @code{nx}@math{\times}@code{ny} arrows
in @code{box(a,b)}, use the routine
@@ -7558,7 +7558,7 @@ picture vectorfield(path vector(pair), pair a, pair b,
as illustrated in this example:
@verbatiminclude vectorfield.asy
@sp 1
-@center @image{vectorfield}
+@center @image{./vectorfield}
@item The following scientific graphs, which illustrate many features of
@code{Asymptote}'s graphics routines, were generated from the examples
@@ -7567,9 +7567,9 @@ data in @code{@uref{http://asymptote.sourceforge.net/gallery/2Dgraphs/diatom.csv
@page
@sp 1
-@center @image{diatom}
+@center @image{./diatom}
@sp 1
-@center @image{westnile,,7.5cm}
+@center @image{./westnile,,7.5cm}
@end enumerate
@page
@@ -7699,14 +7699,14 @@ optionally aligned to a picture at the desired location:
@anchor{image}
@verbatiminclude image.asy
@sp 1
-@center @image{image}
+@center @image{./image}
Here is an example that uses logarithmic scaling of the function values:
@anchor{logimage}
@verbatiminclude logimage.asy
@sp 1
-@center @image{logimage}
+@center @image{./logimage}
One can also draw an image directly from a two-dimensional pen array
or a function @code{pen f(int, int)}:
@@ -7726,12 +7726,12 @@ as illustrated in the following examples:
@anchor{penimage}
@verbatiminclude penimage.asy
@sp 1
-@center @image{penimage}
+@center @image{./penimage}
@anchor{penfunctionimage}
@verbatiminclude penfunctionimage.asy
@sp 1
-@center @image{penfunctionimage}
+@center @image{./penfunctionimage}
For convenience, the module @code{palette} also defines functions
that may be used to construct a pen array from a given function and palette:
@@ -7764,12 +7764,12 @@ For example, a unit circle in the @math{XY} plane may be filled and
drawn like this:
@verbatiminclude unitcircle3.asy
@sp 1
-@center @image{unitcircle3}
+@center @image{./unitcircle3}
@noindent
and then distorted into a saddle:
@verbatiminclude saddle.asy
@sp 1
-@center @image{saddle}
+@center @image{./saddle}
@noindent
Module @code{three} provides constructors for converting two-dimensional
@@ -8061,7 +8061,10 @@ per @code{css} pixel).
The interactive @code{WebGL} files produced by @code{Asymptote} use the
default mouse and (many of the same) key bindings as the @code{OpenGL}
-renderer.
+renderer. Zooming via the mouse wheel of a @code{WebGL} image embedded
+within another page is disabled until the image is activated by a
+click or touch event and will remain enabled until the @code{ESC} key
+is pressed.
By default, viewing the 3D @acronym{HTML} files generated by Asymptote requires
network access to download the @code{AsyGL} rendering library, which
@@ -8590,7 +8593,7 @@ The value returned is the determinant
Here is an example showing all five guide3 connectors:
@verbatiminclude join3.asy
@sp 1
-@center @image{join3}
+@center @image{./join3}
@cindex @code{BeginBar3}
@cindex @code{EndBar3}
@@ -8706,7 +8709,7 @@ two-dimensional vector graphics projection of three orthogonal
intersecting planes:
@verbatiminclude planes.asy
@sp 1
-@center @image{planes}
+@center @image{./planes}
@node obj, graph3, three, Base modules
@section @code{obj}
@@ -8782,20 +8785,20 @@ Here is an example of a helix and bounding box axes with ticks
and axis labels, using orthographic projection:
@verbatiminclude helix.asy
@sp 1
-@center @image{helix}
+@center @image{./helix}
The next example illustrates three-dimensional @math{x}, @math{y}, and
@math{z} axes, without autoscaling of the axis limits:
@cindex @code{axis}
@verbatiminclude axis3.asy
@sp 1
-@center @image{axis3}
+@center @image{./axis3}
One can also place ticks along a general three-dimensional axis:
@cindex @code{axis}
@verbatiminclude generalaxis3.asy
@sp 1
-@center @image{generalaxis3}
+@center @image{./generalaxis3}
@cindex @code{surface}
@cindex @code{Spline}
@@ -8839,7 +8842,7 @@ of a Gaussian surface:
@anchor{GaussianSurface}
@verbatiminclude GaussianSurface.asy
@sp 1
-@center @image{GaussianSurface}
+@center @image{./GaussianSurface}
@noindent
A mesh can be drawn without surface filling by specifying @code{nullpen}
for the surfacepen.
@@ -8867,7 +8870,7 @@ This module, contributed by Philippe Ivaldi, can be used for drawing
@code{grid3.asy} and at @url{http://www.piprime.fr/files/asymptote/grid3/}):
@verbatiminclude grid3xyz.asy
@sp 1
-@center @image{grid3xyz}
+@center @image{./grid3xyz}
@node solids, tube, grid3, Base modules
@section @code{solids}
@@ -8878,7 +8881,7 @@ uses it to display the outline of a circular cylinder of radius 1
with axis @code{O--1.5unit(Y+Z)} with perspective projection:
@verbatiminclude cylinderskeleton.asy
@sp 1
-@center @image{cylinderskeleton}
+@center @image{./cylinderskeleton}
Further illustrations are provided in the example files @code{@uref{http://asymptote.sourceforge.net/gallery/3Dwebgl/cylinder.html,,cylinder}@uref{http://asymptote.sourceforge.net/gallery/3Dwebgl/cylinder.asy,,.asy}},
@code{@uref{http://asymptote.sourceforge.net/gallery/3Dwebgl/cones.html,,cones}@uref{http://asymptote.sourceforge.net/gallery/3Dwebgl/cones.asy,,.asy}}, @code{@uref{http://asymptote.sourceforge.net/gallery/3Dwebgl/hyperboloid.html,,hyperboloid}@uref{http://asymptote.sourceforge.net/gallery/3Dwebgl/hyperboloid.asy,,.asy}}, and @code{@uref{http://asymptote.sourceforge.net/gallery/3Dwebgl/torus.html,,torus}@uref{http://asymptote.sourceforge.net/gallery/3Dwebgl/torus.asy,,.asy}}.
@@ -8911,7 +8914,7 @@ surface tube(path3 g, coloredpath section,
@end verbatim
@noindent
draws a tube along @code{g} with cross section @code{section}, after
-applying the transformation @code{T(t)} at @code{relpoint(g,t)}.
+applying the transformation @code{T(t)} at @code{point(g,t)}.
The parameter @code{corner} controls the number of elementary tubes at
the angular points of @code{g}. A nonzero value of @code{relstep}
specifies a fixed relative time step (in the sense of
@@ -9092,7 +9095,7 @@ Here is a simple flowchart example (see also the example
@verbatiminclude flowchartdemo.asy
@sp 1
-@center @image{flowchartdemo}
+@center @image{./flowchartdemo}
@node contour, contour3, flowchart, Base modules
@section @code{contour}
@@ -9150,26 +9153,26 @@ The following simple example draws the contour at value @code{1}
for the function @math{z=x^2+y^2}, which is a unit circle:
@verbatiminclude onecontour.asy
@sp 1
-@center @image{onecontour}
+@center @image{./onecontour}
The next example draws and labels multiple contours for the function
@math{z=x^2-y^2} with the resolution @code{100 x 100}, using a dashed
pen for negative contours and a solid pen for positive (and zero) contours:
@verbatiminclude multicontour.asy
@sp 1
-@center @image{multicontour}
+@center @image{./multicontour}
The next example illustrates how contour lines can be drawn on color
density images:
@verbatiminclude imagecontour.asy
@sp 1
-@center @image{imagecontour}
+@center @image{./imagecontour}
Finally, here is an example that illustrates the construction of contours
from irregularly spaced data:
@verbatiminclude irregularcontour.asy
@sp 1
-@center @image{irregularcontour}
+@center @image{./irregularcontour}
In the above example, the contours of irregularly spaced data are constructed by
first creating a triangular mesh from an array @code{z} of pairs:
@@ -9181,7 +9184,7 @@ int[][] triangulate(pair[] z);
@verbatiminclude triangulate.asy
@sp 1
-@center @image{triangulate}
+@center @image{./triangulate}
The example @code{@uref{http://asymptote.sourceforge.net/gallery/2Dgraphs/Gouraudcontour.pdf,,Gouraudcontour}@uref{http://asymptote.sourceforge.net/gallery/2Dgraphs/Gouraudcontour.asy,,.asy}} illustrates how to produce color
density images over such irregular triangular meshes.
@@ -9271,7 +9274,7 @@ Both @code{slopefield} and @code{curve} alternatively accept a function
@verbatiminclude slopefield1.asy
@sp 1
-@center @image{slopefield1}
+@center @image{./slopefield1}
@node ode, , slopefield, Base modules
@section @code{ode}